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Abstract: Behavioural studies of elusive wildlife species are challenging but important when they are
threatened and involved in human-wildlife conflicts. Accelerometers (ACCs) and supervised machine
learning algorithms (MLAs) are valuable tools to remotely determine behaviours. Here we used
five captive cheetahs in Namibia to test the applicability of ACC data in identifying six behaviours
by using six MLAs on data we ground-truthed by direct observations. We included two ensemble
learning approaches and a probability threshold to improve prediction accuracy. We used the model
to then identify the behaviours in four free-ranging cheetah males. Feeding behaviours identified by
the model and matched with corresponding GPS clusters were verified with previously identified
kill sites in the field. The MLAs and the two ensemble learning approaches in the captive cheetahs
achieved precision (recall) ranging from 80.1% to 100.0% (87.3% to 99.2%) for resting, walking and
trotting/running behaviour, from 74.4% to 81.6% (54.8% and 82.4%) for feeding behaviour and from
0.0% to 97.1% (0.0% and 56.2%) for drinking and grooming behaviour. The model application to
the ACC data of the free-ranging cheetahs successfully identified all nine kill sites and 17 of the
18 feeding events of the two brother groups. We demonstrated that our behavioural model reliably
detects feeding events of free-ranging cheetahs. This has useful applications for the determination of
cheetah kill sites and helping to mitigate human-cheetah conflicts.

Keywords: accelerometry; automated behaviour classification; Acinonyx jubatus; cheetah; GPS
clusters; supervised machine learning

1. Introduction

One of the most complex aspects to study in animals is their behaviour [1]. Understand-
ing species-specific behaviour is essential for their management, welfare and conserva-
tion [2–6]. Studying the behaviour of free-ranging animals often poses several challenges.
Traditional ethology is based on direct observation, but the presence of an observer might
alter the natural behaviour of the study animals if they are not fully habituated to the ob-
server [7]. Furthermore, the animals might be difficult to observe when they are nocturnal,
shy and cryptic [8], or are from an aquatic or migratory species [9].

Using biologgers has fueled research on remote monitoring of animal behaviour and
unlocked the former limitations of direct observations [10–12]. Collecting data on fine-scale
movement via accelerometers (ACCs) is an effective way to continuously monitor free-
ranging animals [13,14]. ACCs measure the change in velocity of the sensors attached to the
body and allow translation of the quantified movement patterns into distinct behavioural
categories or activities [13]. This technique has been successfully used for a variety of
bird species [15–19], marine animals [20–23], and terrestrial mammals [24–28], including
cheetahs, Acinonyx jubatus [29–32].
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The training of machine learning algorithms for pattern recognition and data classifica-
tion is conducted with observational verified data. For this, a ground-truthed behavioural
data set is used to train the algorithm and another data set is used to infer behaviour
from it. Campbell and colleagues [30] used ground-truthed data of a tame surrogate dog
(Canis lupus familiaris) to train their support vector machine (SVM) algorithm to predict
walking, running, sitting, standing and lying in ACC data collected from different species,
including the cheetah. Using the cheetah dataset generated by Campbell et al. [30], Bidder
and colleagues [31] successfully predicted sitting and standing in cheetahs using another
algorithm, the k-nearest neighbour (KNN) algorithm. While these two studies had strict val-
idation purposes, Grünewälder et al. [29] observed six free-ranging cheetahs and recorded
stationary, mobile and feeding behaviour during an average time of 31 h. A SVM and a
hidden Markov model were trained with this ground-truthed dataset of each cheetah and
used to predict the three behaviour categories for the remaining unobserved data collected
during an average time of 332 days of the six cheetahs [29]. To our knowledge, there is
currently no study that transferred a behaviour classification model trained on one group
of cheetahs to another group of cheetahs. If the inferred behaviour classification in the
latter group is verified, the classification model has a wide application for the species.

Cheetahs occur at low densities and cover large home ranges, making it difficult to
observe them in the wild [33–35]. Southern Africa hosts the largest free-ranging cheetah
population in the world, where cheetahs predominantly occur on farmland, i.e., outside of
protected areas such as national parks or game reserves [36–38]. On farmland, cheetahs
might come into conflict with landowners when they predate on their livestock and/or
valuable game species [35,39]. Because cheetahs are not protected on farmland, landowners
regularly kill cheetahs to prevent such losses [35,39]. The cheetah is listed as vulnerable by
the International Union for Conservation of Nature and Natural Resources (IUCN) [36],
and human–cheetah conflicts are amongst the major threats to its existence in the wild.

To investigate the extent of the farmer–cheetah conflict, it is important to under-
stand the feeding ecology of the cheetahs, thus detecting feeding behaviours in the wild.
Cheetahs feed very rarely on carcasses, thus feeding events can be interpreted as chee-
tahs having killed the prey animals [40]. Grünewälder et al. [29] used individual-based
behaviour predictions from ACC data to investigate feeding-related behaviours. Other stud-
ies successfully used clusters of GPS positions to detect potential kill sites of carnivores,
e.g., of leopards (Panthera pardus) [41,42] and jaguars (Panthera onca) [43]. Such clusters
represent locations to which the animal returned repeatedly and/or spent an extended
amount of time. From these spatial data alone, it is not possible to determine whether the
animal was indeed feeding or rather resting. It is therefore required that GPS positions are
retrieved and visualised in regular intervals and detected clusters visited within a time
frame that allows finding of prey remains in the field [41,42]. Additional spatial and tem-
poral information can be helpful in discriminating between potential kill sites and non-kill
sites [43]. Combining both ACC and GPS data, Wang et al. [44] were able to identify and
verify five predation events in free-ranging cougars (Puma concolor) by associating periods
of high acceleration movements with subsequent GPS clusters. This was a useful approach
because their behavioural model was trained with ground-truthed data of captive pumas
and was weak at predicting feeding behaviour. Also, the combination of ACC and GPS
data was successfully used to differentiate feeding from non-feeding events in a single
leopard [45] and non-active (resting) from active (potentially feeding) stationary events in
cougars [46].

The goal of this study was to detect six behaviours, including feeding behaviour,
from acceleration data recorded in free-ranging cheetahs by using behaviour classification
models trained on ACC data of captive cheetahs. For this, we first tested the potential of
six common supervised machine learning algorithms (MLA) in inferring the behaviours
from ACC data from captive cheetahs. We trained the MLAs on a dataset which we
ground-truthed by direct observation. We then used the validated dataset to identify
behaviour in ACC data from free-ranging cheetahs and, by adding GPS cluster analysis,
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detect feeding events. We verified feeding events identified by the model with kill sites
that were previously confirmed by visiting GPS clusters in the field and identifying the
prey remains.

2. Materials and Methods
2.1. Study Area and Animals

For the data validation, we used five captive cheetahs held in two enclosures on a
private game farm in east-central Namibia (−22.5803◦ S, 18.1875◦ E). The enclosures were
set within their natural environment. One enclosure (1.0 ha) contained three brothers
of approximately 8 years of age and the other enclosure (1.3 ha) a brother and sister of
approximately 4 years of age. All five animals were born in the wild but came into captivity
at an early age. They were accustomed to human presence and allowed observers in
their vicinity (Figure 1). The animals had ad libitum access to clean water in an artificial
water trough and were fed once a day in the late afternoon. On 3 October 2017, we fitted
GPS collars with ACC sensors (e-obs GmbH, Grünwald, Germany [47]) on the three
brothers during immobilisations for medical check-ups and on the two other cheetahs
without immobilisation since they accepted this handling by one of the authors (DB).
The collars were colour-coded to help with the identification of the animals during the
behavioural observations. After data collection, the collars were removed again with the
same procedures.
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figuration options provided by the manufacturer. We programmed the collars in such a 
way that the dataset collected with the two firmwares were as similar as possible and 
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we resampled the data using the resample_poly function from the signal package within 
the scipy library (Version 1.4.1 [48]). The resampling was done in python 3.7.10 [49]. This 
function includes a low pass filter that is applied before down sampling. The collars did 
not have an analog anti-aliasing filter, but these low sampling frequencies were neverthe-
less chosen (see Section 4). We focused on the heave-axis (z-axis, Figure 1) because the 
collars of the free-ranging cheetahs only recorded ACC data from this axis (see Section 
2.2.2).  

Figure 1. Observer taking notes of a captive cheetah’s behaviour. Captive cheetahs allowed observers
to approach to approximately 10–20 m. Collars were set to record acceleration data on the z-axis
(yellow arrow in insert), which translates to up-down movements.
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To test the applicability of the behavioural model, we used data from four free-ranging
territorial males in two coalition groups. They were equipped with the same collar types
as the five captive cheetahs on 18 November 2014 and 7 December 2014 (coalition 1) and
21 May 2014 (coalition 2). Their GPS data were used to visually detect kill sites (by GPS
clusters) and verify them by checking for prey remains in the field. Their ACC and GPS
data were then used to detect feeding events correlating to the confirmed kill sites.

All experimental procedures described were approved by the Internal Ethics Commit-
tee of the Leibniz Institute for Zoo and Wildlife Research (IZW, Berlin, Germany) (permit
number: 1 April 2002) and the Ministry of Environment, Forestry and Tourism of Namibia
(permit numbers: 1514/2011, 1689/2012, 1813/2013), 1914/2014, 2067/2015, 2194/2016,
2208/2017).

2.2. Data Collection
2.2.1. Data Collection on Captive Cheetahs for Model Validation

Observations of the three brothers were conducted during 36 full or half days between
the 6 October and the 10 December 2017, whereas the brother and sister were observed
during 20 full or half days between the 20 November and the 19 December 2017. The e-obs
collars were set to record ACC data from 4:00 until 17:00 Universal Time Coordinated
(UTC), corresponding to the hours of daylight at the time of data collection to ensure
good visibility for the behavioural observations. The ACC data were recorded in ‘bursts’
occurring every 30 s. The collars were equipped with two different tag firmware and the
settings for the burst lengths and sampling frequencies were chosen from the configuration
options provided by the manufacturer. We programmed the collars in such a way that the
dataset collected with the two firmwares were as similar as possible and fitted best with
the data collected from the free-ranging animals (Table 1). The sampling frequency for the
three captive brothers was temporarily increased from 10 Hz to 33.3 Hz during 7 to 15 days
to assess differences in model performance due to different sampling frequencies in another
study. To also make use of the 33.3 Hz data in the present study, we resampled the data
using the resample_poly function from the signal package within the scipy library (Version
1.4.1 [48]). The resampling was done in python 3.7.10 [49]. This function includes a low
pass filter that is applied before down sampling. The collars did not have an analog anti-
aliasing filter, but these low sampling frequencies were nevertheless chosen (see Section 4).
We focused on the heave-axis (z-axis, Figure 1) because the collars of the free-ranging
cheetahs only recorded ACC data from this axis (see Section 2.2.2).

Table 1. Settings of the accelerometer recordings. The settings for the three captive brothers were
programmed at 10.0 Hz and 4.0 s burst length during most of the 36 observation days and at 33.3 Hz
and 3.3 s burst length during 7 to 15 days.

Animals Tag
Firmware

Sampling
Frequency [Hz]

Burst Length
[s]

ACC Samples per
Burst & Axis

Captive brothers A 10.0 or 33.3 4.0 or 3.3 40 or 110
Captive male A 10 4.0 40

Captive female B 10.54 3.8 40
Free-ranging males B 10 3.6 36

All observations were carried out by two observers simultaneously. An ultra-high
frequency (UHF) pinger with a unique frequency for each collars was running during
the on-time period, emitting a rhythmical beeping signal which was picked up by a UHF
receiver (AR8200, AOR, Tokyo, Japan). A change in the rhythm of the beeping signal
indicated the start and the end of each ACC burst. During the burst, the behaviours of the
animals were observed and recorded on a sheet. Using a digital radio clock, each recorded
burst was linked to a unique timestamp. Since the collars of the cheetahs sharing the
same enclosure were synchronised in their sampling time of ACC data, we recorded the
behaviour of all individuals in sight during any given burst.
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We recorded six behavioural categories during the observations: drinking (D), feeding
(F), grooming (G), resting (R, including all non-motion behaviours), trotting/running (T)
and walking (W). To simulate feeding events as naturally as possible, we used either big
pieces of meat, bones and organs or entire carcasses obtained from animals hunted on
the game farm. We aimed to record at least 30 bursts per behaviour and animal to ensure
good trainability of the MLAs. The ACC data were downloaded manually from the collars
with a UHF connection using an e-obs basestation (BaseStation b5) [47] at the end of each
observation day.

For each behaviour, one ACC burst was randomly chosen to create sample plots of
the raw data (Appendix A Figure A1).

2.2.2. Data Collection on Free-Ranging Cheetahs to Test Model Application

For the model application part, GPS and ACC data from four collared free-ranging
cheetah males in two coalitions were used over 91 days from 6 February 2015 to 7 May 2015.
The collars recorded ACC data of the heave-axis (z-axis, Figure 1) in bursts of 3.6 s every
two minutes at a frequency of 10 Hz (Table 1). Due to battery lifetime constraints and fast,
field-applicable data download, we focused on one axis. We decided on the heave-axis,
because our main interest was to detect feeding behaviour and the ripping movements
of the head during feeding are likely to be well display in this axis. In each coalition,
GPS data were recorded every 15 min from both coalition members, while for one coalition
member the schedule was increased temporarily to every three minutes. The GPS collars
with the higher resolution, recorded fixes from the 22 January 2015 to the 16 April 2015 for
coalition 1 and from the 6 February 2015 to the 25 March 2015 for coalition 2, respectively.
This higher frequency of GPS data recording was used to facilitate a higher accuracy in
determining a feeding event and the duration thereof. To save battery lifetime we used
an ACC informed GPS recording scheme, such that GPS data were recorded only every
6 h when a predetermined threshold of ACC data variance between consecutive GPS fixes
were not reached, implying the animal was inactive. As soon as the animal became active
again, the GPS interval raised again to 15 min or 3 min, respectively. Due to the low battery
lifetime of one member of coalition 2, we set the GPS interval from 3 min to 6 h for the last
12 days.

The GPS data were downloaded on a weekly basis during aerial tracking flights as
described in Melzheimer et al. [34]. When initially analysing the GPS positions on a map
using geographical information systems, distinct clusters were identified visually at places
where the cheetahs spent an extended amount of time at the same geographical location.
Due to the ACC informed GPS measurement, the collars only recorded consecutive GPS
fixes at the same position if the animal was active. The dynamic GPS scheduling was
therefore used as an additional clue to distinguish resting and feeding spots. Once such
potential feeding spots were identified, the sites were visited within a week of the suspected
kill and examined for prey remains to confirm that a prey animal was killed and eaten
there. The duration of the feeding event was set based on the first and last GPS position
taken at the specific location where the prey was consumed. In cheetahs, members of the
same coalition are always together [34]. Thus, we assigned feeding events of members of
the same coalition to a common kill site.

2.3. Data Analyses
2.3.1. Algorithms Used and Data Validation

We worked with supervised machine learning algorithms (MLAs) to analyse the ACC
data [50]. Supervised MLAs are common tools in pattern recognition and are characterised
by the two processes of training and testing. In short, we used six supervised MLAs,
namely linear discriminant analysis (LDA) [51], quadratic discriminant analysis (QDA) [16],
the KNN algorithm [31,52], the classification and regression tree (CART) [16,53] algorithm,
SVM algorithm [54,55], and the random forest (RF) [56,57] algorithm. All six MLAs were
applied on the same set of six predictors: mean of z-axis (mnz), standard deviation of
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z-axis (sdz), weighted mean of the Fourier transformation of the z-axis (wmz = weighted
mean of the periodogram ordinates for all Fourier frequencies w = 2πj/n, j = 1,..., q with
q = n/2 (n even) or q = n/2 − 1 (n odd), with n being the number of data points in the
sample), inverse coefficient of variance of z-axis (ICVz = mnz/sdz), kurtosis of z-axis
(kz) and skewness of z-axis (sz). They were calculated for each burst of raw ACC data.
We also implemented two ensemble learning approaches, the mean and the majority
voting, that are based on the predictions derived from the six algorithms to improve the
classification performance of our behavioural model. More details are provided in the
Appendix A Text A1.

The validation of ACC data was done using two different approaches. Firstly, we esti-
mated the classification performance of our behavioural model with a classic leave-one-
out cross-validation (LOOCV) using the complete dataset of the five captive cheetahs,
i.e., the ground-truthed dataset. Secondly, we conducted a per-animal cross-validation
(PACV) for each of the five cheetahs by training the behavioural model with the complete
datasets of four animals to predict behaviour in the complete dataset of the fifth animal.

To further improve the performance of the model, we added a probability threshold.
For this the model labelled a burst as a particular behaviour only when an algorithm
classified this behaviour with the defined or a higher probability. Any burst below the
probability threshold was labelled “not conclusive”. To determine the probability threshold
with the highest gain in predictive performance in relation to the percentage of bursts
that did not exceed the probability threshold, we performed the LOOCV with thresholds
ranging from 0.3 to 0.8. For the PACV we only used the probability threshold that per-
formed best. For the LOOCV, we assessed the performance of each algorithm and of the
two ensemble approaches by calculating overall precision, precision per behaviour with PR
= TP/(TP+FP) and recall per behaviour using the respective confusion matrices, with RE =
TP/(TP+FN) (TP = true positive, FP = false positive, FN = false negative). For the PACV,
we did the same but assessed the performance only for the two ensemble approaches since
they performed best in the LOOCV (Table 2).

2.3.2. Model Application and Verification

To test the applicability of the behavioural model, we used ACC and GPS data of the
four free-ranging cheetahs, covering one full day before and one full day after the date
of each confirmed kill site (see Section 2.2.2) (that were previously identified by visually
checking for GPS clusters and visiting these clusters in the field to check for prey remains).
This time-frame was based on the average kill rates of free-ranging cheetahs, which is less
than, or equal to, one kill every two days in southern Africa [29,58] and never exceeded
a kill per day in the Serengeti National Park in Tanzania, East Africa [33]. Using this
time frame, we limited the chances of including data from unconfirmed and unverifiable
feeding events.

After calculating the six predictors for all raw ACC bursts of the free-ranging cheetahs,
we trained the behavioural model with the previously established complete ground-truthed
dataset to predict behaviour in this unknown data using the six algorithms, the two ensem-
ble learning approaches and the probability threshold that performed best. The resulting
file contained all eight behaviour predictions (from the six MLAs and the two ensemble
learning approaches) for each burst. The unique timestamp of each burst allowed us to
‘read’ the predicted behaviours in chronological order.

Next, we searched for clusters of feeding bursts in the chronological sequence of all
predicted behaviours, in the following termed as ‘feeding cluster’. Since both the ensemble
learning approaches with probability threshold and the SVM algorithm with probability
threshold performed best in predicting feeding behaviour in the LOOCV (Table 2), all bursts
that were identified to be ‘feeding’ by either one of the ensemble learning approaches or the
SVM algorithm were defined to be ‘true feeding’. We used a sliding window approach to
find feeding cluster with at least a third of bursts per sliding window being ‘true feeding’.
We determined start and end time of these feeding clusters allowing a minimum length
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of 30 min per cluster to cover medium to large kills following Grünewälder et al. [29].
They determined for cheetahs a feeding time of 10 to 15 min for small prey animals and
one of up to 3 h for large prey animals. We allowed for a maximum gap of 120 min of ‘not
feeding’ within a cluster.

We then screened the corresponding GPS data for clusters. GPS clusters were de-
termined based on the condition that consecutive coordinates did not exceed a distance
of 50 m to each other and lasted at least 30 min. The centroid of each GPS cluster was
determined by calculating the mean longitude and latitude of all coordinates of the cluster.

The GPS clusters and feeding clusters were then checked for overlaps in time. If multi-
ple GPS clusters fell into the time frame of one feeding cluster, we either merged these GPS
clusters, if their centroids were less than 50 m apart from each other, or we determined
the GPS cluster with the highest time overlap with the feeding cluster to match a feeding
event. If this process was inconclusive, we examined the data manually and assigned GPS
coordinates to the ‘unmatched’ feeding cluster or dropped the feeding cluster as ‘false posi-
tive’. If feeding clusters started/ended more than 3 or 15 min, respectively (i.e., the interval
between consecutive GPS fixes) before/after the animal was stationary according to a GPS
cluster, start and end time of the feeding cluster were corrected accordingly.

Since free-ranging cheetahs kill their prey themselves and only rarely scavenge [40],
they typically engage in hunting activity prior to a feeding event. We therefore also scanned
the behaviour predictions one hour prior to the feeding events for bursts identified as ‘high
ACC variation’, i.e., trotting and running, indicating a potential hunt.

All feeding events determined this way were then descriptively compared to the
previously confirmed nine kill sites.

All analyses were conducted using the statistical computing software R Version 3.5.1 [59].

3. Results
3.1. Data Validation

For the five captive cheetahs, a total of 7760 bursts were recorded, of which 6641 were
single-behaviour bursts. The remaining 1119 bursts were discarded as they contained
mixed behaviours, i.e., a change from one behaviour to another within a burst. The most
sampled behaviour was resting with 2717 bursts (35.0%), followed by walking with 1673
bursts (21.6%), feeding with 1319 bursts (16.9%), and grooming with 487 bursts (6.3%).
Trotting/running and drinking were the least sampled behaviours with 260 (3.4%) and 185
(2.4%) bursts, respectively.

The LOOCV was run with thresholds from 0.3 to 0.8 to find the most effective one.
The probability threshold of 0.5 had the best ratio in increasing the precision and at the
same time decreasing the recall (Appendix A Table A1). Confusion matrices for all algo-
rithms with the 0.5 probability threshold are in the appendix (Appendix A Tables A2–A9).
Adding this threshold to the LOOCV increased the performance of the model, particularly
in predicting feeding behaviour by the SVM algorithm (performance increase 2.7%) by
simultaneously only missing 5.4% of true feeding bursts by labeling them as “not conclu-
sive” (Appendix A Table A1). Thus, the SVM algorithm played an essential role in the
determination of ‘true feeding’ in the model application.

With the threshold of 0.5, the LOCCV achieved overall precisions ranging from 57.5%
to 91.4%, depending on the algorithm and ensemble learning method used (Table 2). The al-
gorithms achieved high accuracies for resting, walking and trotting/running behaviour,
but performed less well for drinking and grooming behaviour (Table 2). The combination
of precision and recall for feeding behaviour was best at (78.8%/82.4% (precision/recall))
with the SVM algorithm (Table 2). The two ensemble learning approaches, both per-
formed better than the SVM in respect to the precision but worst in respect to the recall
(Table 2). The highest precisions for behaviours were 99.0% and 100% for resting and
trotting/running at a recall of 90.7% and 99.2%, respectively. A comparison of all values in
Table 2 with the results for the LOOCV without adding a probability threshold is presented
in Appendix A Table A10.
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Table 2. Results of the leave-one-out cross-validations (LOOCV) with a probability threshold of 0.5 for behaviour classifica-
tion for each of the six machine learning algorithms (MLA), i.e., linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), the k-nearest neighbour (KNN) algorithm, the classification and regression tree (CART) algorithm, sup-
port vector machine (SVM) algorithm and the random forest (RF) algorithm, and the two ensemble-learning approaches,
i.e., the majority and mean voting. Precisions (PR) across all acceleration data and for the behaviours drinking (D), feeding
(F), grooming (G), resting (R), trotting/running (T) and walking (W), and recall (RE) for all behaviours are shown. PR
and RE were calculated using the respective confusion matrices, with PR = TP/(TP+FP) and RE = TP/(TP+FN). TP = true
positive, FP = false positive, FN = false negative.

MLA Overall D F G R T W
PR RE PR RE PR RE PR RE PR RE PR RE PR RE

LDA 71.5 55.5 <0.1 0.0 81.6 54.8 71.7 6.8 94.0 87.3 100 89.2 82.0 94.6
QDA 75.5 76.2 41.8 56.2 78.2 71.3 50.0 44.6 99.0 90.7 97.8 99.2 86.1 94.9
KNN 87.5 65.7 12.4 12.4 78.3 74.4 76.4 19.9 94.9 94.8 100 99.2 95.0 93.7
CART 57.5 59.7 <0.1 0.0 74.4 75.4 0.0 0.0 92.1 93.2 98.0 97.7 80.1 91.9

RF 87.4 74.4 82.4 37.8 80.4 77.9 70.8 44.4 97.6 96.8 98.8 98.5 94.1 91.3
SVM 86.9 74.5 79.1 36.8 78.8 82.4 74.0 38.6 96.6 97.6 100 99.2 92.8 92.2
Mean 91.4 67.8 97.1 17.8 81.5 74.9 80.6 25.7 97.9 96.8 99.6 98.1 91.9 93.5

Majority 87.9 70.9 84.4 26.5 79.4 79.4 77.5 29.0 96.5 97.5 99.6 99.2 90.0 94.0

The PACV with a probability threshold of 0.5 also reached high overall precision,
ranging from 69.9% to 92.5% for the two ensemble learning approaches, while the overall
recall, ranging between 57.5% and 70.0%, did not reach such high values (Appendix A
Table A11). The precision for feeding behaviour ranged from 65.6% to 91.4% and the recall
from 47.0% to 81.1%.

3.2. Model Application

The visual inspection of the GPS data of the two free-ranging male coalitions for
clusters and the checking of these spots in the field resulted in nine GPS clusters that we
confirmed to be kill sites of the cheetah males because we found in all cases prey remains
at the sites.

We successfully identified in the unknown ACC data set of the two coalitions all
nine kill sites and 17 of the 18 feeding events (Table 3). The time ranges of these feeding
events fitted into the timespans of the feeding events deduced from the confirmed kill sites.
Differences in the durations of GPS clusters between the feeding events detected visually
and the model application was based on the different approaches of determining the GPS
clusters, i.e., visual vs. automated approach (Table 3). We identified bursts with high ACC
variation in the hour before the respective feeding event in eight out of 17 cases (47.1%)
and in seven out of nine kill sites (77.8%, Table 3). We also identified one feeding event that
was not confirmed in the field with prey remains, although a GPS cluster was identified
(Table 3, Figure 2).

Figure 2 illustrates nine days of GPS coordinates of two males of coalition 2 with GPS
intervals of 3 min and 15 min, respectively. Both males revealed almost an identical move-
ment path, and the same feeding and resting clusters were detected in the corresponding
ACC data. While two feeding events (marked red in Figure 2) were previously confirmed in
the field with prey remains, the third one (marked orange in Figure 2) was not confirmed in
the field, but was identified in both males. Walking events were only detected in the male
with the 3-min GPS schedule. All walking clusters corresponded with lacking stationarity,
i.e., no GPS clusters, indicating that the animal was indeed on the move. The calculation of
resting and walking clusters is described in Appendix A Text A2.
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Table 3. GPS-informed feeding events based on the 3-min schedule from the field study in 2015, results of the model application for each detected feeding event with the corresponding
GPS cluster, information on whether bursts with high acceleration (ACC) variation were detected one hour before the feeding event and whether the two data sets matched in the identified
feeding events. Matches are indicated by a check mark in the respective column, a cross indicates no match between the results. A minus indicates that the model did not detect a feeding
event and an asterisk * indicates that the model detected a feeding event, but no prey remains were detected at the GPS cluster. The symbol # indicates instances for which 3-min GPS data
were not available for male 3 and the 15-min GPS data of the coalition partner were used.

GPS-Informed Feeding Events Model Application Match

Date Start End Duration
[min] Male Date Start End Duration

[min]
GPS

Schedule
[min]

Start GPS
Cluster

End GPS
Cluster

Duration
GPS Cluster

[min]
High ACC

before

COALITION 1

7 February 19:03 22:06 183 1 7 February 19:28 21:08 100 3 19:03 22:06 183 no
√

2 7 February 19:30 20:44 73 15 19:15 22:00 165 yes
√

11 February 05:00 07:30 150 1 11 February 05:02 07:34 152 3 05:03 07:54 171 yes
√

2 11 February 05:46 07:16 90 15 05:00 07:45 165 no
√

14 February 19:30 22:30 180 1 14 February 19:40 22:18 158 3 19:27 22:33 186 yes
√

2 14 February 19:52 22:04 132 15 19:30 22:30 180 no
√

17 February 18:39 20:03 84 1 17 February 18:30 20:00 90 3 18:30 20:00 90 no
√

2 17 February 18:45 19:44 59 15 18:45 20:00 75 no
√

21 March 07:46 09:24 98 1 21 March 07:38 08:58 80 3 07:39 09:24 105 no
√

2 21 March 00:15 09:10 55 15 08:15 09:15 60 yes
√

COALITION 2

13 March 17:06 19:27 141 3 13 March 17:06 19:20 134 3 17:06 19:30 144 no
√

4 13 March 18:04 18:56 52 15 17:15 19:30 135 yes
√

16/17 March * 22:48 * 01:25 * 157 * 3 16/17 March 22:54 01:18 144 3 22:48 01:21 153 no x
4 17 March 00:50 01:28 38 15 23:00 01:15 135 no x

19 March 20:15 00:00 225 3 19 March 20:16 23:20 184 3 20:15 00:06 231 yes
√

4 19 March 20:26 21:42 76 15 20:15 00:00 225 yes
√

29/30 April 23:30 01:15 105 3 # 29/30 April 23:20 01:34 134 360 23:30 01:30 120 yes
√

4 - - - - 15 - - - - x
6 May 02:00 05:00 180 3 # 6 May 02:00 05:02 182 360 02:00 05:00 180 no

√
4 6 May 03:18 04:24 66 15 02:00 05:00 180 no

√
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confirmed in the field. Orange stars mark the centre of a feeding event that was not confirmed in the field. 
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Figure 2. Movement paths from both males of coalition 2 for the same nine days of continuous GPS data with (a) collar
taking a position every 3 min and (b) collar taking a position every 15 min. Blue stars mark the centre of a resting cluster.
Green circles mark GPS coordinates representing walking events which could only be calculated for (a) since the GPS
interval of 15 min in (b) was too long to detect these events. Red stars mark the centre of a feeding event that was also
confirmed in the field. Orange stars mark the centre of a feeding event that was not confirmed in the field.
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4. Discussion

In this study, we validated a method to remotely and automatically detect with MLAs
feeding events/kill sites of free-ranging cheetahs by using ACC and GPS data (Figure 3).
We used a two-step process by demonstrating in a first step the applicability of ACC
data to predict basic behaviours in five captive cheetahs by using six supervised MLAs.
To improve prediction accuracy, we introduced two ensemble learning methods and a
probability threshold. In a second step, we successfully used the trained model to predict
behaviour in free-ranging cheetahs with the specific intention to detect feeding behaviour
and, by adding GPS cluster analysis, identify feeding events. Such feeding events were
verified by previously confirmed kill sites in the field (Figure 3).
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4.1. Data Validation

Observing captive animals inherently goes along with a reduced range of behaviour.
In our study, the missing behaviours were mainly hunting, killing, fighting and mating.
Nevertheless, our ground-truthed dataset mirrored the natural activity budget of cheetahs,
with resting (and observing), walking (moving) and feeding (hunting and eating) making
up by far the largest proportion of their daily activities [33,60].
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While the six MLAs (LDA, QDA, KNN, CART, SVM, RF) differed in their success
in predicting each behaviour, we found the two ensemble learning approaches to be the
most promising ones to overall improve precision and recall and a good compromise for
the successful identification of the six behaviours. On the other hand, the performance
differences of the MLAs allow for a specific use of the best performing algorithm when
concentrating on a particular behaviour, as we did in the model application: We found
the SVM algorithm to work best in identifying feeding behaviour and used it to deter-
mine instances of ‘true feeding’. To account for unverified and mixed behaviour bursts,
we implemented a probability threshold of 0.5 [31,61]. This further improved precision
and recall.

The results of the LOOCV and the PACV with overall precisions ranging from 57.5%
to 91.4% and 69.9% to 92.5%, respectively, are similar to other studies that examined
cheetah behaviour predictions: Campbell et al. [30] achieved with the SVM algorithm
precision and recall values of >90% for correctly classifying sitting and standing behaviour
in tri-axial ACC data of one cheetah. Using the cheetah dataset provided by Campbell
et al. [30], Bidder et al. [31] reached precision and recall values of 90% and 97% using
the KNN algorithm to predict sitting and standing behaviour. Grünewälder et al. [29]
predicted stationary, mobile and feeding behaviour in bi-axial ACC data from six free-
ranging cheetahs, for which both training and testing data originated from the same
individuals. They achieved overall accuracy between 83.9% and 94.0%, while feeding
behaviour had a larger range and was correctly identified in 22.6% to 100.0% of cases [29].
Our precision for feeding behaviour with the uni-axial ACC data using the LOOCV were
also high and ranged between 74.4% and 81.6% at a recall between 54.8% and 82.4%.
The PACV, i.e., a model trained with n-1 animals and applied to the remaining animal
for which the model was not trained, generally leads to a reduction in the prediction
accuracy [62,63]. Nevertheless, our precision for the prediction of feeding behaviour were
between 65.6% and 91.4% at a recall between 47.0% and 81.1%. Thus, performed in the
upper range compared with the results of Grünewälder et al. [29].

Behaviours that were not very variable in their movements and lasted relatively long
such as resting, walking and trotting (Appendix A Figure A1) reached highest values
for precision and recall, whereas more variable and shorter lasting behaviours such as
grooming and drinking (Appendix A Figure A1) performed least. The latter two behaviours
are highly flexible concerning body postures and duration, thus inter-individual differences
are expected to be most pronounced for these behaviours [61]. Feeding behaviour reached
intermediate to high precision and recall. Previous studies on other species also had low
predictive performance for behaviours that had either structural similarities in movements
and/or a high variance within each behaviour (cattle [54], cougar [44], African elephant
(Loxodonta Africana) [25], roe deer (Capreolus capreolus) [28]).

A reduction in the prediction accuracy of inter-individual models such as LOOCV
and PACV might also be caused by different sensor tags, variations in individual-specific
behaviours, sex or changing environmental conditions [28]. The female cheetah had
lower prediction accuracy for walking behaviour and a lower overall prediction accuracy
compared to the males. This might be due to having predicted her behaviours by a model
trained with only male data or having worn a tag firmware with slightly different ACC
setting (10.54 Hz frequency, 3.8 s burst length) from the ones worn by the males (10.0 Hz
frequency, 4.0 s burst length). In addition, this female had a higher body mass index and
shorter legs than the males (pers. observation), which might have affected gait and/or
head movements and amplitudes.
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4.2. Model Application

We applied our behavioural model to data from free-ranging cheetah. Similar to
other studies combining GPS cluster analysis with ACC data [44–46], we used the GPS
data corresponding to particular behaviour in the ACC data as additional information
to support the model predictions. We used the occurrence of GPS clusters to confirm
the predicted feeding events because cheetahs that feed on a typical prey animal of 14 to
56 kg [64] are stationary for approximately one to three hours, resulting in GPS clusters [40].

We successfully identified all nine kill sites and 17 of 18 feeding events of the two male
coalitions, which we previously verified in the field by using GPS clusters and checking for
prey remains. In addition, we detected a feeding event in both members of one coalition
that was not confirmed in the field (Figure 2). Perhaps there was a feeding event and kill
site in the field, but the prey remains were carried away by other sympatric carnivores such
as leopards, brown hyenas (Parahyaena brunnea) or black-backed jackals (Canis mesomelas).

There might be several reasons for a reduced model performance on free-living
conspecifics such as behaviours that do not occur in captivity and thus are not in the
training data set or recordings with mixed behaviours within one burst. Nevertheless,
we assess our model using the SVM algorithm and the two ensemble learning approaches
as sufficiently successful to detect feeding events in free-ranging cheetahs.

The detection of the chasing part of a hunt before a feeding event would increase the
reliability of the identified feeding event [44]. Such chasing behaviour, which in our model
was represented by the trotting/running behaviour, would be indicated by bursts with high
ACC data variation. The chances to identify bursts during chasing behaviour are limited
since bursts only cover 3.0% of the time (3.6 s per 120 s), and the time for a chase only lasts
on average 37.9 s [65]. Nevertheless, we detected bursts of high ACC variation in 47.1% of
the feeding events in the hour before the feeding event started, which represented 77.8%
of the kill sites. To avoid missing bursts during chasing time periods, continuous ACC
data recordings or the implementation of additional sensors might be useful. For example,
Hetem et al. [66] used a combination of body temperature and activity patterns to identify
hunting in cheetahs.

Since there are trade-offs between ACC sampling rate, behaviour predictability, mem-
ory usage, battery capacity, and data download duration, these parameters need to be
considered in the specific context the study is performed in. Setting a low sampling
frequency might result in aliasing effects when patterns of higher frequencies occur. Our re-
sults on the data validation and the model application using ACC data at approximately
10 Hz sampling frequency at only one axis, however, are particularly promising and im-
portant for future applications on free-ranging cheetahs when low sampling frequencies
are necessary to ensure long battery and storage lifetime. Similarly, behaviour model
accuracies in free-ranging cougars were not affected significantly when decreasing sam-
pling frequency from 65 Hz to 16 Hz, and only a 2% reduction in model accuracy was
noted when down-sampling further to 8 Hz [44]. A higher sampling frequency would
have disadvantageous practical implications in the field in that the increased data volume
would reduce the time period to reach the memory capacity. It would also increase the
time needed to download the data from the collars, which is typically done during costly
aerial tracking flights. Additionally, our study demonstrated that the use of only one ACC
axis was sufficient to reliably identify feeding, resting, trotting/running and walking.
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4.3. Method Application

Understanding the behaviour of carnivore species is pivotal to their management [67].
Thus, including accelerometry in ecological studies is providing novel insights into car-
nivore behaviour, with conservation implications. For example, a study on African li-
ons (Panthera leo) in a human-dominated landscape in Kenya demonstrated that lions
adopted flexible feeding patterns to avoid conflicts with humans, enabling co-existence [68].
Another study showed how human housing density negatively affected the movement
and energetics of cougars in the USA, with cougars increasing their kill rate to compensate
for anthropogenic disturbance [69]. In the context of human–wildlife conflict, collaring and
tracking of conflict species already provided successful conflict mitigation solutions such
as adapting livestock management to avoid livestock grazing in high activity areas of car-
nivores [35] and using geofencing for early warning systems that facilitate quick responses
of livestock herders or owners to an approaching carnivore [70]. With human–carnivore
conflicts posing one of the greatest challenges in conservation [71], it is essential to develop
tools that help improve our understanding of carnivore behaviour and can be applied in
conservation to safeguard their future.

5. Conclusions

In this study, we demonstrated that MLAs are a useful approach that provide detailed
information on the behaviour, particularly the feeding behaviour of cheetahs. We demon-
strated the strong potential and practical applicability of ACC data and MLAs for continu-
ous, automated, and high-resolution behaviour monitoring of cheetahs and showed that
their feeding behaviour is reliably detectable. Such information can be used to give new
insights into the human–wildlife conflict in Namibia and elsewhere in the cheetah range.
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Table A1. Output of the leave-one-out cross-validations (LOOCV) with probability thresholds for behaviour classification
ranging from 0.3 to 0.8. Percentage points of performance change were determined by calculating the difference between
precision and recall reached without and with the threshold. Percentage points of bursts below the probability threshold for
each behaviour were calculated by dividing the number of bursts below the threshold by the total number of observed
counts. Performance change and bursts below the threshold are presented as the range over all six algorithms for all ACC
data (i.e., linear discriminant analysis, quadratic discriminant analysis, the k-nearest neighbour algorithm, the classification
and regression tree algorithm, support vector machine algorithm and the Support Vector Machine (SVM), the range over
all six algorithms for only feeding (F) data and the result for the SVM algorithm for only feeding data. The probability
threshold with the best trade-off between precision increase and recall decrease and the percentage of bursts that did not
exceed the probability threshold was used for the analyses. This was assessed to be the probability threshold 0.5 (bold).

Probability Threshold Metric Range All Algorithms,
All ACC Data

Range All Algorithms,
only F Data

SVM Algorithm,
only F Data

0.3

Precision 0.1–0.8 −0.2–0.9 0.1

Recall −0.3–0.1 −0.2–0.8 0.0

Below threshold bursts 0.0–1.1 0.0–0.8 0.1

0.4

Precision 0.0–4.4 0.0–6.1 0.5

Recall −2.2–0.0 −3.3–0.0 −0.7

Below threshold bursts 0.0–6.3 0.0–5.5 1.1

0.5

Precision 0.0–4.0 0.0–13.0 2.7

Recall −14.7–−0.2 −14.2–0.0 −2.3

Below threshold bursts 2.4–15.4 4.2–24.5 5.4

0.6

Precision 0.0–7.7 0.0–19.8 5.1

Recall −21.7–−0.4 −27.7–0.0 −9.5

Below threshold bursts 5.8–24.5 6.4–45.6 16.8

0.7

Precision 0.0–11.5 0.0–24.5 14.4

Recall −27.3–−0.8 −40–0 −32.6

Below threshold bursts 5.8–33.7 6.4–64.3 28.0

0.8

Precision 0.0–7.7 −74.5–28.1 17.7

Recall −43.8–−1.2 −75.4–−25.3 −43.5

Below threshold bursts 17.7–47.2 37.4–81.8 44.3

By adding the probability threshold ranging from 0.3 to 0.8 to the model, precision
increased for most behaviours. Drinking behaviour was never classified correctly by the
LDA and CART which is why calculating changes in all algorithms was not possible
resulting in 0.0 change. There was also an improvement for precision for feeding behaviour,
except for the ones with a threshold of 0.3 and 0.8. The SVM algorithm performed best
in correctly identifying feeding behaviour and therefore played an essential role in the
determination of ‘true feeding’ in the model application. The probability threshold of
0.5 best trade-off between precision increase and recall decrease and the percentage of
bursts that did not exceed the probability threshold, particularly in predicting feeding
behaviour by the SVM algorithm (performance increase 2.7%) by simultaneously only
missing 5.4% of true feeding bursts by labeling them as “not conclusive”. While higher
thresholds showed higher precision improvements, we assessed the lower recall and
percentage of feeding bursts below the probability threshold to be too high to compensate
for the improvement. As a useful compromise, we decided to conduct all analyses with a
probability threshold of 0.5.
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Table A2. Confusion matrix for the LDA algorithm with a probability threshold of 0.5. The diagonal
shows all correctly predicted behaviour classes. All predictions that were below the probability
threshold were labeled as unknown.

LDA Expected

Predicted Resting Walking Trotting Drinking Feeding Grooming

resting 2372 1 0 13 53 85
walking 12 1583 28 73 217 19
trotting 0 0 232 0 0 0

drinking 0 0 0 0 0 0
feeding 13 30 0 7 723 113

grooming 7 3 0 0 3 33
unknown 313 56 0 92 323 237

Table A3. Confusion matrix for the QDA algorithm with a probability threshold of 0.5. The diagonal
shows all correctly predicted behaviour classes. All predictions that were below the probability
threshold were labeled as unknown.

QDA Expected

Predicted Resting Walking Trotting Drinking Feeding Grooming

resting 2464 0 0 11 6 9
walking 1 1588 0 27 205 23
trotting 0 0 258 0 6 0

drinking 79 4 0 104 25 37
feeding 27 66 1 17 941 150

grooming 124 6 1 7 80 217
unknown 22 9 0 19 56 51

Table A4. Confusion matrix for the KNN algorithm with a probability threshold of 0.5. The diagonal
shows all correctly predicted behaviour classes. All predictions that were below the probability
threshold were labeled as unknown.

KNN Expected

Predicted Resting Walking Trotting Drinking Feeding Grooming

resting 2575 4 0 25 40 68
walking 3 1567 0 50 113 10
trotting 0 0 258 0 0 0

drinking 4 0 0 23 1 0
feeding 14 66 0 16 981 127

grooming 3 2 1 1 23 97
unknown 118 34 1 70 161 185

Table A5. Confusion matrix for the CART algorithm with a probability threshold of 0.5. The diagonal
shows all correctly predicted behaviour classes. All predictions that were below the probability
threshold were labeled as unknown.

CART Expected

Predicted Resting Walking Trotting Drinking Feeding Grooming

resting 2533 1 0 77 51 89
walking 72 1538 1 77 187 34
trotting 0 1 254 0 2 2

drinking 0 0 0 0 0 0
feeding 25 116 3 20 995 177

grooming 1 0 0 0 0 0
unknown 86 17 2 11 84 185
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Table A6. Confusion matrix for the RF algorithm with a probability threshold of 0.5. The diagonal
shows all correctly predicted behaviour classes. All predictions that were below the probability
threshold were labeled as unknown.

RF Expected

Predicted Resting Walking Trotting Drinking Feeding Grooming

resting 2630 0 0 27 15 24
walking 1 1527 0 14 78 2
trotting 0 1 256 0 2 0

drinking 5 3 0 70 2 5
feeding 7 99 0 15 1027 129

grooming 12 5 0 9 63 216
unknown 62 38 4 50 132 111

Table A7. Confusion matrix for the SVM algorithm with a probability threshold of 0.5. The diagonal
shows all correctly predicted behaviour classes. All predictions that were below the probability
threshold were labeled as unknown.

SVM Expected

Predicted Resting Walking Trotting Drinking Feeding Grooming

resting 2653 0 0 32 26 35
walking 1 1542 0 22 92 4
trotting 0 0 258 0 0 0

drinking 3 3 0 68 2 10
feeding 8 96 0 16 1087 173

grooming 14 3 1 7 41 188
unknown 38 29 1 40 71 77

Table A8. Confusion matrix for the ensemble learning method “mean” with a probabillity threshold
of 0.5. The diagonal shows all correctly predicted behaviour classes. All predictions that were below
the probability threshold were labeled as unknown.

Mean Expected

Predicted Resting Walking Trotting Drinking Feeding Grooming

resting 2631 0 0 21 11 25
walking 1 1564 0 29 103 4
trotting 0 0 255 0 1 0

drinking 1 0 0 33 0 0
feeding 7 60 0 13 988 144

grooming 6 5 0 0 19 125
unknown 71 44 5 89 197 189

Table A9. Confusion matrix for the ensemble learning method “majority” with a probability threshold
of 0.5. The diagonal shows all correctly predicted behaviour classes. All predictions that were below
the probability threshold were labeled as unknown.

Majority Expected

Predicted Resting Walking Trotting Drinking Feeding Grooming

resting 2650 0 0 30 28 39
walking 2 1572 0 39 124 9
trotting 0 1 258 0 0 0

drinking 4 1 0 49 1 3
feeding 9 79 1 17 1047 166

grooming 8 4 1 2 26 141
unknown 44 16 0 48 93 129
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Table A10. Results of the leave-one-out cross-validations (LOOCV) without (no) and with (yes) a probability threshold (PT) of 0.5 for behaviour classification for each of the six machine
learning algorithms (MLA), i.e., linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), the the k-nearest neighbour (KNN) algorithm, the classification and regression
tree (CART) algorithm, support vector machine (SVM) algorithm and the random forest (RF) algorithm, and the two ensemble-learning approaches, i.e., the majority and mean voting.
Precision (PR) across all acceleration data and for the behaviours drinking (D), feeding (F), grooming (G), resting (R), trotting/running (T) and walking (W), and recall (RE) for all
behaviours are shown. PR and RE were calculated using the respective confusion matrices, with PR = TP/(TP+FP) and RE = TP/(TP+FN). TP = true positive, FP = false positive, FN = false
negative.

MLA PT
Overall D F G R T W

PR RE PR RE PR RE PR RE PR RE PR RE PR RE

LDA
no 63.1 60.8 <0.01 0.0 68.6 69.0 43.6 18.9 92.2 91.7 100.0 89.2 74.2 96.2
yes 71.5 55.5 <0.1 0.0 81.6 54.8 71.7 6.8 94.0 87.3 100 89.2 82.0 94.6

QDA
no 74.9 78.2 40.4 60.5 77.1 73.3 49.7 49.9 98.9 90.9 97.7 99.2 85.6 95.1
yes 75.5 76.2 41.8 56.2 78.2 71.3 50.0 44.6 99.0 90.7 97.8 99.2 86.1 94.9

KNN
no 81.8 72.1 68.1 26.5 76.2 80.3 67.2 34.5 92.5 97.1 100.0 99.2 87.0 94.7
yes 87.5 65.7 12.4 12.4 78.3 74.4 76.4 19.9 94.9 94.8 100 99.2 95.0 93.7

CART
no 65.5 66.0 <0.01 0.0 74.5 75.4 47.9 38.0 92.1 93.2 98.1 97.7 80.6 91.9
yes 57.5 59.7 <0.1 0.0 74.4 75.4 0.0 0.0 92.1 93.2 98.0 97.7 80.1 91.9

RF
no 83.0 79.1 69.4 46.5 77.3 83.0 62.8 55.9 96.4 97.8 98.5 99.2 93.4 92.1
yes 87.4 74.4 82.4 37.8 80.4 77.9 70.8 44.4 97.6 96.8 98.8 98.5 94.1 91.3

SVM
no 83.9 77.5 72.2 44.9 76.0 84.7 67.7 45.2 96.0 98.2 100.0 99.2 91.7 92.8
yes 86.9 74.5 79.1 36.8 78.8 82.4 74.0 38.6 96.6 97.6 100 99.2 92.8 92.2

Mean
no 84.1 75.5 73.1 36.8 76.8 82.3 71.2 41.1 95.7 98.5 99.2 99.2 88.5 95.1
yes 91.4 67.8 97.1 17.8 81.5 74.9 80.6 25.7 97.9 96.8 99.6 98.1 91.9 93.5

Majority no 84.5 75.6 76.1 36.2 77.1 82.3 70.8 42.9 95.7 98.5 99.2 99.2 88.3 94.7
yes 87.9 70.9 84.4 26.5 79.4 79.4 77.5 29.0 96.5 97.5 99.6 99.2 90.0 94.0
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Table A11. Results of the per-animal cross-validations (PACV) with a probability threshold of 0.5 for the five cheetahs (M1, M2, M3, M4 and F1). Precision (PR) of the two ensemble-learning
approaches (ELA), mean and majority voting, across all acceleration data and for the behaviours drinking (D), feeding (F), grooming (G), resting (R), trotting/running (T) and walking (W),
and recall (RE) for all behaviours. PR and RE were calculated using the respective confusion matrices, with PR = TP/(TP + FP) and RE = TP/(TP + FN). TP = true positive, FP = false
positive, FN = false negative.

Test
Dataset ELA

Overall D F G R T W

PR RE PR RE PR RE PR RE PR RE PR RE PR RE

M1
Mean 80.3 59.4 33.3 2.5 86.3 47.0 69.4 39.1 97.8 95.5 97.4 86.0 97.4 86.5

Majority 77.7 66.6 52.9 22.5 80.3 49.7 49.1 49.1 90.7 98.5 97.5 90.7 95.7 89.2

M2
Mean 74.1 60.5 <0.1 0.0 82.7 72.4 70.0 6.3 99.7 94.3 100.0 97.8 92.4 92.6

Majority 82.6 64.5 75.0 6.0 80.5 75.5 57.1 14.4 97.6 97.8 97.8 97.8 87.3 95.3

M3
Mean 80.3 61.5 <0.1 0.0 91.4 65.6 100.0 17.2 99.4 93.4 100.0 100.0 90.8 92.5

Majority 92.5 70.0 100.0 1.6 84.4 81.1 91.2 44.8 97.8 98.2 100.0 100.0 81.5 94.1

M4
Mean 76.1 61.5 <0.1 0.0 72.7 78.4 100.0 5.7 97.7 97.4 100.0 100.0 86.0 87.8

Majority 73.0 65.2 <0.1 0.0 72.1 79.9 94.7 20.5 93.6 99.0 100.0 100.0 77.6 91.8

F1
Mean 75.2 57.7 <0.1 0.0 69.0 79.5 100.0 1.6 98.7 80.8 100.0 100.0 83.6 84.3

Majority 69.9 62.4 0.0 0.0 65.6 80.8 77.8 11.3 98.1 91.8 100.0 100.0 78.2 90.4
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Discussion of Table A11: The PACV with a probability threshold of 0.5 reached, similar
to POCCV, high overall precision but lower overall recall. They ranged from 69.9% to
92.5% and from 57.5% and 70.0% for precision and recall respectively for the two ensemble
learning approaches. Resting and trotting/running behaviours were predicted with very
high precision and recall of up to 100%. Feeding behaviour reached precision and recall
ranging from 65.6% to 91.4% and from 47.0% to 81.1% respectively. Precision for feeding
was lowest in the female F1 while the M1 showed the lowest recall for feeding behaviour.
Drinking and grooming showed low recall scores in all cheetahs. High precision values
result from a very low rate of these behaviours being assigned to a burst at all.

Text A1: Details on data analyses
Supervised machine learning algorithms (MLAs) use feature characteristics of pre-

dictor variables calculated from a ground-truthed dataset (training dataset) with different
states/behaviours, to construct a model (=training process). The model is then used for
predicting the different states on another ground-truthed dataset (=testing or validating
process) or on data with unknown states/behaviours (=application). References and R pack-
ages for the six supervised MLAs were as follows: linear discriminant analysis (LDA) [51],
quadratic discriminant analysis (QDA) [16], the KNN algorithm [31] using the R package
kknn v. 1.3.1 [52], the classification and regression tree (CART) algorithm [16] using the
package rpart v. 4.1-13 [53], SVM algorithm [54] using the package e1071 v. 1.6-8 [55],
and the random forest (RF) algorithm [56] using package randomForest v. 4.6-14 [57].

The two ensemble-learning approaches were used to improve performance classifica-
tion since the six MLAs showed differences in prediction accuracy per behaviour. For the
mean voting, the burst gets assigned the behaviour that has the highest mean probability
of all six MLAs. For the majority voting, each burst gets assigned the behaviour which
is classified most by the six MLAs. In case of no majority, i.e., a draw, the behaviour gets
assigned randomly to the most classified ones.

Text A2: Calculation of resting and walking clusters
The detection of resting and walking clusters was conducted very similarly to the

procedure described for the detection of feeding clusters, again using the chronological
order of behaviour predictions paired with the calculated GPS clusters (see Section 2.3).
We started by determining all bursts that were identified as resting/walking by either one or
both of the ensemble approaches to be bursts of ‘true resting’/’true walking’. We then again
used a sliding window approach to find clusters of ‘true resting’/’true walking’ instances
on the condition that the majority of bursts (at least 12 of 15) per sliding window were
voted to be ‘true resting’/’true walking’. We then determined start and end time of these
resting/walking clusters. Detected clusters that were at least 30 min long were then paired
with their respective GPS coordinates via the timestamp. In case of the resting clusters we
again assume overlaps with the already determined GPS clusters, while walking clusters
are expected to be associated with missing GPS clusters, e.g., at least 2–3 coordinates that
are more than 50 m apart from each other.
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