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Abstract: There are many sources of point cloud data, such as the point cloud model obtained after
a bundle adjustment of aerial images, the point cloud acquired by scanning a vehicle-borne light
detection and ranging (LiDAR), the point cloud acquired by terrestrial laser scanning, etc. Different
sensors use different processing methods. They have their own advantages and disadvantages in
terms of accuracy, range and point cloud magnitude. Point cloud fusion can combine the advantages
of each point cloud to generate a point cloud with higher accuracy. Following the classic Iterative
Closest Point (ICP), a virtual namesake point multi-source point cloud data fusion based on Fast
Point Feature Histograms (FPFH) feature difference is proposed. For the multi-source point cloud
with noise, different sampling resolution and local distortion, it can acquire better registration effect
and improve the accuracy of low precision point cloud. To find the corresponding point pairs in the
ICP algorithm, we use the FPFH feature difference, which can combine surrounding neighborhood
information and have strong robustness to noise, to generate virtual points with the same name to
obtain corresponding point pairs for registration. Specifically, through the establishment of voxels,
according to the F2 distance of the FPFH of the target point cloud and the source point cloud,
the convolutional neural network is used to output a virtual and more realistic and theoretical
corresponding point to achieve multi-source Point cloud data registration. Compared with the ICP
algorithm for finding corresponding points in existing points, this method is more reasonable and
more accurate, and can accurately correct low-precision point cloud in detail. The experimental
results show that the accuracy of our method and the best algorithm is equivalent under the clean
point cloud and point cloud of different resolutions. In the case of noise and distortion in the point
cloud, our method is better than other algorithms. For low-precision point cloud, it can better match
the target point cloud in detail, with better stability and robustness.

Keywords: iterative closest point; fast point feature histograms; virtual namesake point; point
cloud registration

1. Introduction

In recent years, point cloud data have been applied to more field, such as robots and
autonomous driving, face recognition, gesture recognition, etc. In the face of autonomous
driving systems above L3, high-precision maps have become an indispensable part. A high-
precision map is a special map with centimeter-level accuracy and detailed lane information
compared to general navigation maps. It can describe road more comprehensively and in
detail and reflect the real situation of the road more accurately [1]. High-precision maps are
one of the important applications of high-precision point cloud. There are three methods
of obtaining high-precision map point cloud data: mobile surveying vehicle collection,
drone aerial survey and 1:500 topographic map [2]. The sensors utilized in each data
acquisition scheme are different due to the heterogeneity of sensors. The point cloud data
obtained are thus very different in accuracy and range from the data set. Specifically, some
sensors obtain point cloud with high accuracy but small range, and other sensors obtain
point cloud with low accuracy but large range, etc. Therefore, how to fuse the point cloud
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data obtained by different sensors and combine their respective advantages is the key
to generating high-precision maps. In the development of three-dimensional city model
reconstruction, it has undergone changes from a single data source to multi-source data
integration. There have been some studies using oblique photography, vehicle-borne light
detection and ranging (LiDAR) or multi-source point cloud data fusion to perform 3D
reconstruction [3,4].

Point cloud registration is a very important part of the point cloud fusion process. At
present, the existing research in this area mostly is implemented by reference point cloud
precision registration. There are more mature algorithms in point cloud registration. It is
iterative closest point (ICP) proposed by Besl and Mckay et al., and normal distributions
transform proposed by Biber et al. [5,6]. The ICP algorithm is to find corresponding points
in two existing point cloud data. Due to various factors such as sensors and scanning
angles, these corresponding points cannot be true corresponding points. The registration
result will have a certain error; at the same time, the ICP algorithm can only have a
rigid transformation on target point cloud as a whole but cannot correct all points in the
target point cloud. This is also the shortcoming of ICP algorithm in multi-source point
cloud registration.

Deep learning allows the machine to learn from human activities to achieve the effect
of imitation, in order to solve some complex problems [7]. Some scholars have conducted
research on point cloud registration combined with deep learning technology. Elbaz G,
Avraham T and others used convolutional neural networks to collect local features and
completed point cloud registration [8]. In 2019, Baidu unmanned vehicles proposed the
first end-to-end high-precision point cloud registration network [9].

Our main work is as follows.

• By introducing Fast Point Feature Histograms (FPFH) features, using the CNN net-
work to learn the F2 distance of FPFH features to obtain the probability, improve the
robustness to point cloud noise and point cloud resolution.

• Use voxels that use spatial information around the point to generate virtual points,
increasing the accuracy and stability of finding corresponding points.

• Show the results compared to other existing works on experimental evaluations under
clean, noisy, different resolution and distorted datasets.

The remainder of the paper is organized as follows: We begin with a review of related
work in Section 2. The main steps of our method are described in detail in Section 3. Our
experiment results are discussed in Section 4, and conclusions are drawn in Section 5.

2. Related Work

Multi-source point cloud fusion is actually the precise registration of two point clouds
with differences in accuracy, resolution and range obtained from the same scene scan. ICP is
a commonly used algorithm for precision registration, it is an optimal matching algorithm
based on the least squares. The algorithm uses the closest point as the corresponding point
in the target point cloud and the source point cloud, and takes the distance between the
closest point pair as the target, calculates the optimal rigid body transformation between
the point cloud to complete the point cloud matching

In 1992, Besl and Mckay et al. proposed the nearest point iterative algorithm to realize
free-form surface registration and automatic registration of original point cloud, which
became the basic algorithm for automatic point cloud registration [5]. ICP algorithm selects
the point with the smallest Euclidean distance as the corresponding point, calculates the
rigid transformation matrix with corresponding point pairs and iteratively obtains the
optimal transformation. Using the shortest Euclidean distance as the judgment standard
to determine the corresponding point directly can find the corresponding point simply
and quickly, but it will cause a lot of mismatches and reduce the registration accuracy. At
the same time, the ICP algorithm may easily become trapped in a local minimum when
there is no good initial position or when there is noise in the point cloud. Aiming at the
goal of improving the correct rate of corresponding points, scholars have proposed a series
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of improvements. Censi et al. proposed using the distance from the point to the line to
determine the corresponding point. Even though this method avoids the shortest distance
search and improves the search efficiency, the registration accuracy is reduced [10]. Chen
et al. added the point cloud normal vector to the original ICP algorithm and improved the
point-to-point model to the point-to-surface model [11]. On the basis of Chen, Mitra et al.
calculated the distance between the corresponding points of the two point clouds based
on the idea of geometric Euclidean distance, and used different methods for registration
by using the distance [12]. Luo et al. formed the three points closest to target point cloud
to form a triangle and took the perpendicular foot of the triangle as the corresponding
point [13]. Segal et al. proposed the G-ICP algorithm, which uses the covariance matrix to
play a role similar to weights, eliminates some bad corresponding point pairs and creatively
integrates point-to-point ICP and point-to-surface ICP [14].

With the increasing development of technology, deep learning, a subfield of machine
learning, has been applied in various fields. In point cloud registration, deep learning is
also involved. Elbaz et al. [8] used convolutional neural networks to gather local features
to complete point cloud registration. Li Danyu [15] used the convolutional neural network
structure of three orthogonal views to distinguish the target and other objects in the 3D
point cloud candidate by filtering and matching the data set. In 2019, Baidu unmanned
vehicles proposed the first end-to-end high-precision point cloud registration network that
achieves comparable registration accuracy to prior state-of-the-art geometric methods [9].
The basic idea is to match dozens of robust key points which are extracted by the module
named Weighting Layer in the target point cloud and the source point cloud. First introduce
semantic features to automatically avoid dynamic features and select key points that are
easy to match, generate grid points on key points, regenerate features for key points and
grid points and use the feature difference between key points and grid points to calculate a
matching probability, fusing the probability to generate a virtual and robust point with the
same name for optimized pose calculation.

These improved methods have a prerequisite, that is, it is assumed that the corre-
sponding point pairs found in the target point cloud and the source point cloud are exactly
the same. However, due to different sensors, different scanning angles, different scanning
resolutions and other factors, it is difficult to guarantee that the coordinates of the corre-
sponding point pairs representing a certain space in reality are exactly the same. These
corresponding point pairs have a certain coordinate error. In the literature [9], the concept
of virtual points with the same name is proposed, but the literature [9] mainly acts on the
point cloud data obtained by two pieces of the same sensor and focuses on excluding the
selection of key points on dynamic objects, which is not suitable for different sensors. For
the registration of point cloud data with different accuracy, this article proposes virtual
namesake point multi-source point cloud data fusion based on FPFH feature difference.
This method does not intend to find the corresponding point with the same name in the
existing points of the target point cloud, but directly generates a virtual corresponding
point with the same name based on the method of deep learning, which improves the
accuracy of the ICP algorithm. At the same time, it is used for overlapping areas and for
low-precision points. The cloud has been corrected to a certain extent to make it more
closely fit the high-precision point cloud.

3. Methodology

Aiming at the problem of multi-source point cloud data registration with different
accuracy, different resolution and noise, this paper proposes a virtual namesake point
multi-source point cloud data fusion based on FPFH feature difference to improve the
traditional ICP algorithm. In the ICP algorithm, the step of finding the corresponding
point is replaced with a virtual point search based on the FPFH feature difference. In
this process, a K-dimensional tree [16] search is used. The K-dimensional tree is a data
structure that divides the K-dimensional data space. It is used to represent a collection of
points in K-dimensional space. The traditional ICP algorithm consumes a lot of time in the
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process of repeated iterative search for the closest point, which reduces the computational
efficiency. Therefore, using the K-dimensional tree to search for the corresponding point
can effectively reduce the computational complexity and realize the fast search of the
neighborhood relationship. Embed the multi-core and multi-threaded OpenMP parallel
processing mode to accelerate the fast feature histogram extraction of key points while
extracting FPFH features. After performing the optimal rigid transformation, the low-
precision target point cloud is corrected in detail to obtain a better-precision corresponding
points and conversion matrix. Therefore, the low-precision point cloud is better match the
high-precision point cloud. The flowchart of this method is shown in Figure 1.
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Our method mainly includes the following key processes:

(1) Finding virtual namesake points based on FPFH feature difference: calculate the FPFH
eigenvector value FPFHpi of the current point pi(Xi, Yi, Zi)

{
pi ∈ R3, i = 1, . . . , Np

}
in

the source point cloud P, and then convert the current point pi(Xi, Yi, Zi) to the target
point cloud to acquire the point p′i(X′i , Y′i , Z′i), and construct a 2*2*2 voxel around the
point p′i(X′i , Y′i , Z′i) to acquire 8 voxel center points, the center point of each voxel
is set to point qj, j = 1, . . . , 8 the above 8 voxel center points are, respectively, inter-
polated into the target point cloud Q, and the FPFH value of the voxel center point
qj, j = 1, . . . , 8 is calculated after interpolation. This will obtain the feature vector
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value of FPFHqj , j = 1, . . . , 8 calculate the F2 distance of FPFHqj , j = 1, . . . , 8 and
FPFHpi , respectively, will acquire 8 F2 distances and input them into the constructed
CNN convolutional neural network, and output the probability wj, j = 1, . . . , 8 corre-
sponding to the center point qj of each voxel, thus according to the coordinate qj of
the prime center point and the corresponding probability wj form a virtual point q′i,
and the virtual point q′i is selected as the corresponding point of the current point in
the source point cloud.

(2) Point cloud registration algorithm based on virtual points with the same name: based
on the ICP algorithm, replace the step of using the closest point as the point with the
same name in the ICP algorithm to find the virtual point with the same name in (1),
and perform the target point cloud and the source point cloud Point cloud registration.

(3) Further correction of overlapping area point cloud: After the overall best point cloud
registration of the low-precision point cloud, further precision corrections can be
made to the details. Once again, we acquire virtual namesake points as we did in step
1, then replace the low precision points with these virtual namesake points. Correct
the accuracy of the points in the low-precision point cloud to improve the accuracy of
the low-precision point cloud.

3.1. Finding Virtual Namesake Point Based on FPFH Feature Difference

The process of finding virtual namesake point in this paper is divided into two steps.
The first step is to extract the F2 difference of FPFH features, and the second step is to
calculate the coordinates of the virtual namesake point.

In the first step of extracting the F2 difference of FPFH features, we select FPFH [17].
There are two reasons for the selection. The first reason is the advantages of FPFH’s own
features. Since the histogram is in a high-dimensional hyperspace, it provides a measurable
information space for the feature representation of the point cloud, and FPFH has good
robustness to point cloud noise. It can still work under different scanning resolutions or
scanning accuracy. The corresponding point can be found correctly. The second reason
is that the FPFH feature is a feature descriptor that combines the information of the
surrounding neighborhood points. It is necessary to refer to the difference between the
conversion point and the surrounding neighborhood while calculating the virtual namesake
point. FPFH can provide a high dimensional vector and make full use of neighborhood
spatial information to improve accuracy. Here is a brief introduction to the steps of FPFH
feature extraction:

(1) Suppose the point cloud P is known and its coordinates and r neighborhood are
known, that is, a sphere is made with point p0 as the center and r as the radius.
The points surrounded by the sphere are the neighborhood of point p0, as shown in
Figure 2. As shown, Pk1, Pk2, Pk3, Pk4, Pk5 are neighborhood points, and each point in
the neighborhood is connected in pairs, forming a point pair with each other.

(2) Construct the local coordinate system of the point pair as shown in Figure 3:
u = ns

v = (pt − ps)× u

w = u× v

(1)

where u, v, w is the coordinate axis of the coordinate system.
(3) At this time, according to the normal vector and coordinate system of the point pair,

calculate the four eigenvalues f1, f2, f3, f4 of the point pair:
f1 = 〈v, nt〉

f2 = ‖pt − ps‖
f3 = 〈u, pt − ps〉/ f2

f4 = tan−1(〈w, nt〉, 〈u, nt 〉)

(2)
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After calculating the four eigenvalues of each point pair in the neighborhood, each
eigenvalue is divided into five intervals. At this time, since there are three eigenvalues,
there are 53 = 125 intervals, so a 125-dimensional histogram will be generated. It is a
125-dimensional feature Point Feature Histogram (PFH).

The FPFH feature is the feature obtained through the integration of simplified PFH [18]
features. The neighborhood construction is shown in Figure 4, which only connects the
center point and the neighboring points compared to Figure 2. In the above eigenvalues,
only select f1, f3, f4, and divide each eigenvalue into 11 intervals according to the range,
so that there are 33 eigenvalues representing SPFH features and then weight the SPFH
features in the neighborhood to acquire FPFH feature.

FPFH = SPFH +
1
k ∑k

i=1
1

wk
·SPFH(pk) (3)

where wk is the weight, which represents the Euclidean distance between the point pairs.
The second step is to calculate the coordinates of the virtual namesake point. Deep

learning is implemented by Convolutional Neural Networks (CNN) and SoftMax. For the
input part of the CNN, the first step is to calculate it for a point pi(Xi, Yi, Zi){

pi ∈ R3, i = 1, . . . , Np
}

in the source point cloud P, the FPFH feature FPFHpi of, and
keep it. Then use the initial transformation matrix R, T to perform coordinate transforma-
tion on the point pi, and call the transformed point p′i(X′i , Y′i , Z′i) the transformation point.
Put the transformation point p′i into the target point cloud. Through the neighborhood
search method, the neighborhood is divided into

( 2r
s + 1, 2r

s + 1, 2r
s + 1

)
voxels, where r is

the width of the neighborhood, s is the size of the voxel, and each voxel in it contains some
points in the target point cloud.
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As shown in Figure 5, there are 8 voxels after the current point is divided into voxels,
where qj, j = 1, . . . , 8 is the center point of the voxel, p′i is the point converted to the
target point cloud, and the other points are the neighbors of the conversion point in the
target point cloud. Domain point. Then in each voxel, use other points in the voxel to
extract the FPFH feature of the voxel center point qj, and at this time, the FPFH feature
FPFHqj , j = 1, . . . , 8 of the 8 voxel center points will be obtained. Finally, calculate the F2
distance between the FPFH feature FPFHqj , j = 1, . . . , 8 of the 8 voxel center points and the
FPFH feature FPFHpj of the point pi in the source point cloud, respectively, which is used
as the input of 3D CNNS, and the softmax operation can complete the whole step. CNN
can learn the similarity distance measurement between the source feature and the target
feature. More importantly, it can suppress the matching noise. The SoftMax operation is
used to convert the matching cost into a probability, denoted by wj, j = 1, . . . 8. The finally
generated virtual namesake point are calculated by Formula (4), as shown in Figure 6:

q′i =
1

∑8
j=1 wj

∑8
j=1 wjqj (4)Sensors 2021, 21, x FOR PEER REVIEW 8 of 16 
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Figure 5. Construct voxel diagram.

Through CNN, you can use its powerful expression ability in similarity learning, can
automatically learn deeper and more abstract feature information and directly find the
corresponding virtual namesake point, avoiding the operation of finding the corresponding
point in the existing point. Improve the accuracy of finding corresponding points, thereby
improving the accuracy of point cloud matching.
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3.2. Point Cloud Registration Algorithm Based on Virtual Namesake Point

The entire improved point cloud registration algorithm process is similar to the classic
ICP algorithm. The biggest change is to use the virtual point search method proposed in
Section 3.1. to replace the closest point in the classic ICP algorithm as the corresponding
point process. The algorithm is summarized as follows:

(1) First select two point cloud datasets P, Q with different accuracy, take the low-
precision point cloud P as the source point cloud, the relatively high-precision point
cloud Q as the target point cloud and the points pi, pi ∈ R3, i = 1, . . . , Np in the source
point cloud as the candidate points.

(2) Use the initial conversion matrix R, T to transform all points pi in the source point
cloud and convert all points pi in the source point cloud to obtain the conversion
points p′i, p′i ∈ R3, i = 1, . . . , Np.

(3) Put all the obtained conversion points p′i into the target point cloud Q, find the
neighbor points of the conversion point in the target point cloud Q, set a threshold r
at this time, calculate the Euclidean distance d between the conversion point and the
nearest neighbor point in the target point cloud, compare the calculated distance with
the threshold. If it is greater than the threshold, it indicates that the conversion point
does not overlap in the source point cloud, delete the conversion point and keep the
conversion point qi, qi ∈ R3, i = 1, . . . , Nq less than the threshold.

(4) Perform FPFH eigenvalue calculation on the conversion point qi obtained above in
the source point cloud to obtain FPFHpi .

(5) Find the neighborhood of the conversion point qi in the target point cloud and divide
the voxel to obtain the voxel center point qi, j = 1, . . . , 8.

(6) Calculate the FPFH eigenvalue FPFHqi , j = 1, . . . , 8 of the voxel center point
qi, j = 1, . . . , 8 and calculate the F2 distance from FPFHpi .

(7) Feed the F2 distance obtained in (6) into the CNN network to obtain the probability
wj, j = 1, . . . , 8 of the voxel center point.

(8) Use the probability wj, j = 1, . . . , 8 in (7) to calculate the virtual point q′i corresponding
to the conversion point qi.

q′i =
1

∑8
j=1 wj

∑8
j=1 wjqj (5)

(9) After obtaining the corresponding points, calculate the conversion matrix R′, T′ ac-
cording to the least squares, and the calculation principle is to minimize the objective
function of Formula (6):

e(R, T) =
1
w ∑

Np

ωk‖R′qi + T′ − qi
2‖2 (6)
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(10) Repeat the above steps until the number of cycles is reached or the objective function
is basically unchanged.

3.3. Point Cloud in Overlapping Areas for Further Correction

In the previous section, the low-precision point cloud was registered with reference to
the high-precision point cloud, and the optimal rigid transformation matrix was calculated.
However, this is only a rotation and translation operation for the entire point cloud. The
geometric difference of the point cloud may be different, so the improvement of the
point cloud accuracy of the ICP algorithm is limited to the whole, which requires further
improvement in the detailed area.

For the point cloud in the overlapping area of the source point cloud and the target
point cloud, after performing the point cloud registration algorithm operation based on the
virtual namesake point, it is necessary to search for the virtual namesake point based on
the FPFH feature difference again, that is, this time in the existing Under the optimal initial
position, find the virtual namesake point in the low-precision point cloud for improvement.
The improvement steps are similar to those in Section 3.2, and the operations in Section 3.2
are performed on all candidate points marked in Section 3.3. As shown in Figure 7, the
black point in Figure 7 is the high-precision point cloud, the red point is the point cloud to
be registered and the green is the point cloud after registration. In detail, the correction
direction and size of each point can be based on the characteristics of the point itself.
Correction, this approach can not only achieve fine fitting in a small range, but also keep
the correction amount between regions without large jumps as a whole and ensure the
continuity of the entire map area.
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4. Experiment and Result Discussion
4.1. Experimental Data and Baseline Algorithms

The experimental data in this paper come from the data set WHU-TLS dataset released
by the research group of the Institute of Space Intelligence of Wuhan University and the
3D scanning repository of Stanford [19–21]. The WHU-TLS dataset contains a total of more
than 1.74 billion 3D points collected from 11 different environments of the ground station
scanning point cloud data set. We select some representative four types of point cloud data
for experimentation, including Bunny, Sign Board, Sculpture and Chair, which correspond
to the data in the result graph below. There are different point cloud resolutions, local
distortions and noise between multi-source point clouds. In order to verify the ability of
our method to deal with the differences between multi-source point clouds, we performed
Gaussian noise addition, point cloud downsampling and point cloud distortion processing
on the experimental data, respectively. We compare the performance of ours with the
following registration algorithms: ICP [5], Normal Distributions Transform (NDT) [6] and
Fast Global Registration (FGR) [22].

4.2. Evaluation Metrics

We evaluate the registration by computing the mean isotropic rotation and transla-
tion errors:

Rid = RiR−1
GT (7)
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Error(R) = cos−1
(

trace(Rid)− 1
2

)
180
π

(8)

Error(tid) = ‖tGT − ti‖2 (9)

where Rid, tid is the real rotation matrix and translation vector, and Ri, ti is the rotation
matrix and translation vector calculated by the algorithm. The error Error(R) of the rotation
matrix is calculated by Formula (8) and expressed by angle. Similarly, the translation error
Error(tid) is expressed by Formula (9).

In addition, the Chamfer Distance (CD) is used to evaluate the distance between the
point clouds. If there are two point clouds S1, S2, the Chamfer Distance (CD) is calculated
by Formula (10).

D(S1, S2) =
1
S1

∑
x∈S1

miny∈S2‖x− y‖2
2 +

1
S2

∑
y∈S2

minx∈S1‖x− y‖2
2 (10)

4.3. Experiment Analysis

Clean Data: We do not perform any processing on the four types of point cloud data
and apply a random rigid transformation matrix while keeping it in a clean state. Each type
of point cloud data has a correct corresponding relationship for the accuracy evaluation
of the algorithm. The experimental results are shown in Table 1. It can be seen that in the
clean data, the ICP algorithm is the most accurate overall, but if the data Sign Board falls
into the local optimum, FGR is the most stable. Ours is slightly worse than FGR, but FGR is
very noise-sensitive. Sensitive, overall, ours is better than NDT. The qualitative results are
shown in Figure 8. The red point cloud represents the transformed source point cloud, the
blue point cloud represents the target point cloud, because this method is mainly for the
precise registration of the test. The effect is shown here with the enlarged image in the data.

Table 1. Performance on Clean Data.

Data Method Rotation Err. (◦) Translation Err. (m) CD (m)

Bunny

ICP 0.002 0.00001 0.00000
NDT 0.105 0.01832 0.00076
FGR 0.001 0.00001 0.00000
Ours 0.015 0.00321 0.00002

Sign Board

ICP 0.448 0.04120 0.00123
NDT 0.228 0.08271 0.00227
FGR 0.094 0.04397 0.00008
Ours 0.195 0.05780 0.00025

Sculpture

ICP 0.001 0.00002 0.00000
NDT 0.337 0.07969 0.00249
FGR 0.017 0.00117 0.00000
Ours 0.008 0.00204 0.00000

Chair

ICP 0.003 0.00000 0.00000
NDT 2.373 0.09056 0.00232
FGR 0.018 0.00128 0.00000
Ours 0.022 0.00189 0.00000
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Different Resolution Data: The resolution of point cloud data from different sources
is not necessarily the same but can be dense or sparse. In order to simulate the difference
in point cloud sampling in reality, we down-sampled the experimental data to test the
registration effect at different resolutions. The simulated data are roughly down-sampled
to two-thirds of the original points. Experimental results are shown in Table 2. It can be
seen that in point cloud data with different resolutions, our algorithm is superior to other
methods, except that it is occasionally lower than ICP, but in most cases the ICP falls into
the local optimum. The qualitative results are shown in Figure 9. The red point cloud
represents the transformed source point cloud, the blue point cloud represents the target
point cloud. For better display effects, the details are enlarged. The target point cloud in
the figure is also down-sampled but note that the target point cloud used in the algorithm
is not sampled, only the source point cloud is down-sampled.

Gaussian Noise Data: In order to more accurately simulate the presence of noise in
the real point cloud and verify the ability of our algorithm to deal with noise, we added
Gaussian noise to the experimental data. When preparing the simulation experiment, first
perform a random rigid transformation on the original data, save the transformation results
and then dither the transformed data within a certain range to achieve the purpose of
Gaussian noise. The experimental results are shown in Table 3. Generally speaking, the
ICP algorithm is the most accurate. The noise added in the experiment conforms to the
normal distribution, so the expected value is 0, so the ICP effect is better, followed by our
method, which is better than NDT and FGR. In terms of CD distance, because our method
can improve the accuracy of the point cloud in detail, our method is the best overall. The
qualitative results are shown in Figure 10. The red point cloud represents the transformed
source point cloud, and the blue point cloud represents the target point cloud.
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Table 2. Performance on Different Resolution Data.

Data Method Rotation Err. (◦) Translation Err. (m) CD (m)

Bunny

ICP 0.044 0.01323 0.00316
NDT 0.201 0.01667 0.00366
FGR 0.083 0.00559 0.00315
Ours 0.032 0.00413 0.00310

Sign Board

ICP 0.111 0.02589 0.00141
NDT 0.150 0.08755 0.00178
FGR 0.414 0.27841 0.00321
Ours 0.085 0.07789 0.00148

Sculpture

ICP 0.131 0.01742 0.00044
NDT 0.448 0.06963 0.00228
FGR 0.297 0.04777 0.00052
Ours 0.201 0.01555 0.00046

Chair

ICP 0.027 0.00186 0.00002
NDT 2.076 0.09368 0.00243
FGR 0.201 0.01737 0.00243
Ours 0.039 0.00260 0.00002
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Table 3. Performance on Gaussian Noise Data.

Data Method Rotation Err. (◦) Translation Err. (m) CD (m)

Bunny

ICP 0.004 0.00024 0.00126
NDT 0.152 0.01740 0.00202
FGR 0.080 0.00101 0.00132
Ours 0.043 0.00810 0.00112

Sign Board

ICP 0.026 0.02363 0.00020
NDT 0.211 0.09656 0.00197
FGR 0.257 0.09921 0.00067
Ours 0.115 0.08282 0.00018

Sculpture

ICP 0.016 0.00025 0.00001
NDT 0.355 0.06781 0.00168
FGR 0.197 0.01182 0.00002
Ours 0.330 0.02407 0.00001

Chair

ICP 0.002 0.00003 0.00051
NDT 2.442 0.09082 0.00227
FGR 0.027 0.00197 0.00063
Ours 0.012 0.00151 0.00055
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Distorted Data: Due to the difference of each sensor, there may be a certain distortion
between the point cloud and the point cloud. Therefore, a certain distortion is manually
added to the experimental data. Since the point cloud is distorted, the true value of the
transformation relationship cannot be obtained. Only applicable for CD distance evaluation.
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The experimental results are shown in Table 4. On the whole, our method is the best because
it can adaptively correct the surrounding neighborhood of the point. The qualitative result
is shown in Figure 11. The red point cloud represents the transformed source point cloud,
and the blue Point cloud represents the target point cloud.

Table 4. Performance on Distorted Data.

Data Method CD (m)

Bunny

ICP 0.00913
NDT 0.01203
FGR 0.01077
Ours 0.00600

Sign Board

ICP 0.00007
NDT 0.00169
FGR 0.00010
Ours 0.00018

Sculpture

ICP 0.00022
NDT 0.00040
FGR 0.00025
Ours 0.00009

Chair

ICP 0.00015
NDT 0.00166
FGR 0.00016
Ours 0.00010
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5. Conclusions

A method of virtual namesake point multi-source point cloud data fusion based on
FPFH feature difference is proposed. It can synthesize the probability according to the F2
distance between the voxel center points and the existing points in the target point cloud.
Then we generate virtual namesake points for registration according to the probability. The
use of voxels, FPFH features and CNN estimation can improve the accuracy of point cloud
fusion. We have compared our algorithm with the classic ICP algorithm, NDT algorithm
and FGR algorithm. Through experiments and accuracy evaluation, in the case of clean
point cloud and point cloud with different resolutions, our method has the same accuracy
as the results of ICP and FGR algorithms and is better than the NDT algorithm. In the case
of noise and distortion in the point cloud, our method is better than other algorithms. Since
the FPFH feature is used in the calculation process, we will conduct a further study on the
operating efficiency.
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