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Abstract: The vibrational behavior of an underwater structure in the free field is different from that
in bounded noisy environments because the fluid–structure interaction is strong in the water and the
vibration of the structure caused by disturbing fields (the reflections by boundaries and the fields
radiated by sources of disturbances) cannot be ignored. The conventional free field recovery (FFR)
technique can only be used to eliminate disturbing fields without considering the difference in the
vibrational behavior of the structure in the free field and the complex environment. To recover the
free-field acoustic characteristics of a structure from bounded noisy underwater environments, a
method combining the boundary element method (BEM) with the vibro-acoustic coupling method
is presented. First, the pressures on the measurement surface are obtained. Second, the outgoing
sound field and the rigid body scattered sound field are calculated by BEM. Then, the vibro-acoustic
coupling method is employed to calculate the elastically radiated scattered sound field. Finally, the
sound field radiated by the structure in the free field is recovered by subtracting the rigid body
scattered sound field and the elastically radiated scattered sound field from the outgoing sound field.
The effectiveness of the proposed method is validated by simulation results.

Keywords: free field recovery; free-field acoustic characteristics; bounded noisy underwater environ-
ment; boundary element method; vibro-acoustic coupling method

1. Introduction

It is important to characterize a target in an intrinsic way for target identification and
control [1]. To acquire the intrinsic acoustic characteristics of the target, the measurement
must be carried out in the free field. However, there is no ideal free field in nature or
laboratory. Although the sound field radiated by a target in a large lake or anechoic tank
can be approximated as a free sound field, the measurement is susceptible to bio-acoustic
background noise and climate change in the large lake [2], and it is difficult to satisfy the
free-field condition in the anechoic tank at low frequencies. To recover the free-field acoustic
characteristics in the non-anechoic environment, the FFR techniques have been developed.

Pachner [3] initially showed a method separating the traveling and standing compo-
nents on the surfaces of two spheres surrounding the source. The outgoing and incoming
components of the sound field were separated based on spherical harmonics for two concen-
tric spheres when the sound source is located inside the inner sphere [4]. Tsukernikov [5]
combined the Helmholtz integral equation and spherical wave expansion method to realize
the sound field calculation in a closed space. Williams [6] showed an approach to remove
the disturbing fields based on spatial Fourier transform. This method has been widely
applied to nearfield acoustic holography (NAH) [7,8]. However, this method can only be
used for regular measurement surfaces and sound sources such as planes, cylinders, and
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spheres. The statistically optimized nearfield acoustic holography (SONAH) was devel-
oped to predict the pressure and velocity in complex environments [9,10]. However, this
technique cannot accurately reconstruct the local sound field. To identify source velocities
in complex environments, the inverse patch transfer functions method (iPTF) suitable for
three-dimensional structures was proposed [11–14]. However, the problem of inversion of
the ill-conditioned matrix needs to be solved when this method is used. The effects of both
scattering (due to incident excitation) and radiation (due to interior noise sources) were
removed throughout a “virtual” volumetric sonar array projected within the structure [15].
However, the capability to determine the range of near-field sources or scatterers needs
to be improved. The supersonic intensity in a reverberant environment (SIRE) technique,
which made use of an underwater vector sensor to obtain narrow-band sound power
and directivity of a target in a reverberation environment was proposed [2]. However,
the scattered sound field was not removed in this method. Langrenne et al. [16] presented
a method based on BEM to recover the free sound field of a structure in a complex environ-
ment by considering the scattering effects on the machine. The equivalent source method
(ESM)-based FFR technique combined with the NAH was used to reconstruct the sound
field radiated by a target source from the measured mixed field [17–20]. An improved
double-layer BEM was proposed to recover the half-space acoustic characteristics of a
target source sitting on the boundaries in a bounded noisy environment by combining
it with the image-source method [21]. Wu et al. [22] presented a BEM-based NAH in
conjunction with the FFR technique to reconstruct the free sound field in a non-anechoic
environment. However, the interaction between the structure and the fluid medium is
not considered in these four methods. Although Sternini et al. [23] presented a method
taking into account the vibrational response of an elastic object caused by incident wave,
this method was used to calculate the bistatic scattered and needed to solve the problem of
singular matrix inversion.

The conventional FFR technique does not take care of the difference between the
vibrational behaviors of the structure in the free field and in the bounded noisy underwater
environment. A method combining the BEM with the vibro-acoustic coupling method is
proposed to recover the free-field acoustic characteristics in a bounded noisy underwater
environment by considering the fluid–structure interaction. The goal of this article is
to recover the free-field acoustic characteristics of the vibrating structure rather than
to reconstruct the surface vibration of the structure. Thus, the NAH is not required.
The theory of the proposed method is described in detail in Section 2. Section 3 validates
the effectiveness of the proposed method through numerical simulations. Conclusions and
suggestions for future research efforts are given in Section 4.

2. Theory

Figure 1 shows a structure vibrating in the free field and in a bounded noisy environ-
ment. As shown in Figure 1, the vibration of the structure is only caused by the force in the
free field. However, the structural vibration in the bounded noisy environment is caused
not only by the force but also by the disturbing fields (the reflections by boundaries and
the fields radiated by sources of disturbances) [24]. For clarity, the vibrational behavior of
the structure in the free field is defined as V1 and the vibrational behavior of the structure
in the bounded noisy environment is defined as V2 in this paper. The elastic vibration of
the structure caused by disturbing fields might be ignored in the air because the interaction
between the structure and the air is weak. In this case, V1 is the same as V2. However, the
elastic vibration of the structure caused by disturbing fields is not ignorable in the water
due to the strong interaction between the structure and the water. This means that V1 is
different from V2 in the water, and the sound field radiated by the structure in the free field
is different from that in the bounded noisy environment. Thus, to recover the free-field
acoustic characteristics radiated by the structure in the bounded noisy underwater envi-
ronment, the vibration of the structure caused by disturbing fields must be considered,
especially when the structure is a kind of thin-shell structure.
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(a) In the free field (b) In a bounded noisy environment

Figure 1. The vibrational behavior of the structure.

2.1. Sound Field Separation

For a vibrating structure in a complex underwater environment, as shown in Figure 2,
Γ1 is the surface of structure S0; Γ2 represents a boundary of the sound field; S is the
measurement surface; the space between Γ1 and S is A1, and the other space is A2;
Q(r) represents the source of disturbance; and nΓ1 , nΓ2 , and nS are the normals to Γ1,
Γ2, and S, respectively.

Figure 2. Geometry of a vibrating structure in a complex underwater environment.

The sound pressure p(r) in a sound field is composed of incoming sound pressure
pi(r) and outgoing sound pressure po(r). It can be written as follows [16]:

p(r) = pi(r) + po(r) = pi(r) + p f (r) + ps(r), (1)

It should be noted that pi(r) is composed of the sound pressure radiated by all sources
of disturbances and reflected by the boundaries and that po(r) consists of the free sound
pressure p f (r) and the scattered sound pressure ps(r).

The scattered field is the superposition of an elastic contribution and a rigid contri-
bution from the structure when sound waves are incident on the structure [23]. Thus, the
scattered sound pressure ps(r) can be written as

ps(r) = psr(r) + pse(r), (2)

where psr is the pressure scattered from an infinitely rigid body (rigid body scattered sound
pressure) and pse is the scattered component due to the elasticity of the structure (elastically
radiated sound pressure) [23]. In the double-layer BEM [16], pse can be ignored due to
industrial sources have much lower admittances than air. However, pse is not ignorable in
the water because of the strong interaction between the structure and the water.

When the field points in the A1, this is an interior problem. The outgoing sound
pressure po(r) can be calculated from [16]

po(r)−
∫

S
[p(s′)∂nG(r, s′) + iρωvn(s′)G(r, s′)]dS

=


p(r) f or r ∈ A1

c(r)p(r) f or r ∈ S
0 f or r ∈ A2,

(3)
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where i, ρ, ω, and G(r, s′) are the imaginary unit, the fluid density, the circular frequency,
and the three-dimensional free-space Green’s function for Helmholtz equation, respectively.
c(r) is solid angle coefficient and is given by [25]

c(r) = −
∫

S

∂

∂n
(

1
4πr

)dS, (4)

The sound pressure p(s′) and normal velocity vn(s′) on the measurement surface S
can be calculated from the sound pressures on two parallel closed surfaces surrounding
the structure [16]. Then, the po(s′) on the S can be obtained from the Equation (3).

When the po(s′) is known, only ps(s′) needs to be calculated to obtain p f (s′). To cal-
culate the scattered field, the incident field on the Γ1 is necessary. When the field points in
the A2, this is an exterior problem. For the exterior problem, the incoming sound pressure
on the Γ1 can be solved by [16]

pi(r) +
∫

S
[p(s′)∂nG(r, s′) + iρωvn(s′)G(r, s′)]dS

=


0 f or r ∈ A1

(1− C0(p))p(r) f or r ∈ S
p(r) f or r ∈ A2.

(5)

2.2. Subtraction of the Scattered Field

The Helmholtz integral equation for a scattered problem can be expressed as [25]

(1− c′(s))p′(s) = pi(s)−
∫

Γ1

[p′(s)∂nG(r, s) + iρωv′n(s)G(r, s)]dS, r ∈ A1, A2, (6)

where p′(s) and v′n(s) are respectively correspondent with the sound pressure and normal
velocity on the Γ1 at s and where c′(s) is coefficient on the Γ1.

According to the definition of the rigid body scattered sound pressure, vn equals zero.
Then, the Equation (6) can be simplified as [16]

(1− c′(s))pb(s) = pi(s)−
∫

Γ1

[pb(s)∂nG(r, s)]dS, r ∈ Γ1, (7)

where pb is the blocked pressure, which is the sum of psr and pi [23]. When pi is known,
pb can be calculated by Equation (7). Furthermore, psr on the S radiated from Γ1 can be
computed by

psr(r) = −
∫

Γ1

[pb(s)∂nG(r, s)]dS, r ∈ S, (8)

The remaining problem is to calculate pse since psr is obtained. As mentioned before,
pse is radiated from elastic vibration of the structure caused by the incoming field. It is
found that the elastic term pse is the elastically radiated component of the pressure field
related to the elastic surface velocity vse

n , and together, they represent a radiation problem
only, with no incident field involved [23]. In other words, pse and vse

n can be expressed as

(1− c′(s))pse(s) = −
∫

Γ1

[pse(s)∂nG(r, s) + iρωvse
n (s)G(r, s)]dS. (9)

When vse
n is given, pse can be acquired. Then, the problem is converted to calculate vse

n .
In order to compute vse

n , the fluid–structure coupling problem must be solved. The BEM
has advantages in calculating the far-field sound pressure and can be used for fluid mod-
eling [26]. In addition, the BEM can be coupled with the finite element method (FEM) to
solve the fluid–structure coupling problem [27]. The coupled method is the vibro-acoustic
coupling method. Considering that the indirect boundary element method (IBEM) can be
used to calculate the internal and external sound fields at the same time, IBEM is coupled
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with FEM. First, the structure is discretized by FEM, and the corresponding finite element
equation is [27] [

Ks + iωCs −ω2Ms
][

u
]
=
[

Fs
]
, (10)

where u is the displacement of structural node; Ms, Cs, and Ks are the mass matrix,
the damping matrix, and the stiffness matrix of the structure, respectively; Fs is the me-
chanical load acting on the structure; and the time component is eiωt, where t is the time.

Then, the displacement and the sound field of the structure are solved simultaneously
considering the continuity of the velocity at the coupling boundary. Ignoring the damping
effect and satisfying the single layer potential, the Equation (10) coupled with IBEM can be
expressed as [27] [

Ks + iωCs −ω2Ms LC

LT
C

D(ω)
ρω2

][
u
µ

]
=

[
Fs
Fa

]
, (11)

where µ is the double-layer potential, that is, the sound pressure difference on the structure
surface; LC is the vibro-acoustic coupling matrix; the superscript letter T stands for the
transpose of matrix; D(ω) is the IBEM influence matrix; and Fa is the acoustic load.

The mechanical load is equal zero when solving the scattered problem of the incident
field on the elastic body. Additionally, it is noted that the acoustic load is approximated as
pb(r) rather than pi(r). Equation (11) can be solved when the properties of structure are
known before the sound field is recovered. Then, the surface velocity vse

n can be obtained
from u. The pse(r) on the S can be calculated by the Helmholtz integral equation:

−
∫

Γ1

[pse(s)∂nG(r, s) + iρωvse
n (s)G(r, s)]dS

=

{
pse(r) , r ∈ A1, A2

(1− c′(s))pse(s) , s ∈ Γ1

. (12)

Using pressure fields po(r), psr(r), and pse(r) computed from Equations (3), (8), and (12),
respectively, the p f (r) is calculated from Equation (1):

p f (r) = po(r)− psr(r)− pse(r) = p f
V2
(r)− pse(r), r ∈ S (13)

where p f
V2
(r) is the sound field radiated by the structure for which the vibrational behavior

is V2, and it is clear that p f
V2
(r) is the sound field recovered by the double-layer BEM.

2.3. Discretization

To calculate the integral equations, the sufaces are discretized into elements. Then, the
outgoing and incoming sound fields can be rewritten as

Po
S = [CS − HS

S ]PS − iρω[GS
S ]VS, (14)

Pi
Γ1

= −[HΓ1
S ]PS − iρω[GΓ1

S ]VS, (15)

where C, H, and G are the solid angle coefficient matrix, the sound pressure, and the
particle velocity transfer matrices, respectively. The subscript letter and the superscript
letter stands for the integration surface and the target surface, respectively. Subsequently,
the Pb on the Γ1 can be obtained from Equation (7):

Pb
Γ1

= [I − C′Γ1
+ HΓ1

Γ1
]−1Pi

Γ1
, (16)

where I is the identity matrix and C′ is the coefficient matrix.
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The combined Helmholtz integral equation formulation (CHIEF) method is used to
overcome the non-uniqueness difficulty [28,29]. According to Equation (8), the sound
pressure scattered from an infinitely rigid body on the S can be given by

Psg
S = −[HS

Γ1
]Pb

Γ1
. (17)

In order to calculate the response of the structure caused by the incoming field,
the mechanical load is zero and the acoustic load is pb. The properties including mass,
the damping, and the stiffness of structure have to be known in advance. Then, the
Equation (11) can be rewritten as[

Ks + iωCs −ω2Ms LC

LT
C

D(ω)
ρω2

][
U
Φ

]
=

[
0

Pb
Γ1

]
. (18)

where U is the displacement vector and Φ is the vector of the double-layer potential.
When the Equation (18) is solved, the normal velocity of structural surface Vse

Γ1
can be

achieved by
Vse

Γ1
= [G][U], (19)

where G is the transformation matrix, the function of which is to convert the displace-
ment vector U of the structural node into the normal velocity of the structure surface Vse

Γ1
.

Furthermore, the Pse
Γ1

can be achieved by

Pse
Γ1

= −iρω[I − C′Γ1
+ HΓ1

Γ1
]−1[GΓ1

Γ1
]Vse

Γ1
, (20)

Then, the Pse
S on the S can be calculated from Equation (12)

Pse
S = −[HS

Γ1
]Pse

Γ1
− iρω[GS

Γ1
]Vse

Γ1
, (21)

Finally, the free sound field recovered by the proposed method in the bounded noisy
underwater environment is obtained using

P f
S = Po

S − Psr
S − Pse

S . (22)

3. Numerical Simulations
3.1. In a Bounded Noisy Air Environment

The numerical model is shown in Figure 3. The structure is a 1× 1× 1 m3 cubic shell
and the side length a = 1. The properties of the shell are shown in Table 1. The coordinate
origin is at the centre of the shell. The structure is excited by a point force with amplitude
10 N and located at (0 m, 0 m, −0.5 m), which is the centre of the upper surface. The
upper surface of the structure is simply supported. The fluid medium is air. The sound
speed in the air and the fluid density are 340 m/s and 1.225 kg/m3, respectively. In the air,
the reference sound pressure is 2× 10−5 Pa, and the reference sound power is 1× 10−12 W.
There is an infinite rigid plane at z = 1 m to simulate the rigid boundary such as the
ground. A monopole located at (0.75 m, 0.75 m, 0.75 m) is used as a source of disturbance
to influence the sound field. At 100 Hz, the strength of the monopole is −0.016i m3/s.

As the structure is a cubic shell, the strength of the fluid–structure coupling can be
judged by the characteristic quantity λ [30]:

λ =
ρc

ρshω
, (23)

where c, h, and ρs are the sound speed in the fluid, the thickness of the plate, and the
density of the plate, respectively. When λ < 1, the coupling between the structure and the
fluid is very weak; when λ > 1, the coupling between the structure and the fluid is strong.
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When the cubic shell vibrates in the air, λ is less than 0.1 in the studied frequency range.
Thus, the coupling between the cubic shell and the air is very weak.

Figure 3. Geometry of the numerical model.

Table 1. The property of shell.

Thickness Young Modulus Poisson’s Ratio Density Damping

0.005 m 7× 1010 N/m2 0.346 2710 kg/m3 0

The dimensions of the measurement surface S are 1.2× 1.2× 1.2 m3. The distance
between the two simulated layers located on each side of S is 0.06 m, which satisfies the
convergence condition [20]. The measurement surface is discretized by 3456 linear quadri-
lateral elements with 3458 nodes. The structure is discretized by 2400 linear quadrilateral
shell elements with 2402 nodes. The maximum frequency allowed by the mesh is 1133 Hz,
which corresponds to ka = 21 (k is the wavenumber) based on the well-known 1/6 criterion
in the air. The maximum frequency allowed by the mesh is 5000 Hz, which corresponds to
ka = 21 based on the 1/6 criterion in underwater environments. It should be noted that,
in the following numerical simulation, the sound pressure on the measurement surface is
obtained from computation, not from real experimental testing.

First, the sound pressures on the measurement surface are calculated by the vibro-
acoustic coupling method in the free field when the structure is excited by the point force.
The sound field in this case is defined as the V1 free sound field. Second, the sound
pressures on the two simulated layers are calculated by the vibro-acoustic coupling method
when the structure is excited by the force in the bounded noisy environment. In this
case, the directly obtained sound field is defined as the total sound field. Furthermore,
the normal velocities on the surface of the structure that vibrate in the bounded noisy
environment are taken as a boundary condition to compute sound field in the free field.
Then, the calculated sound field is defined as the V2 free sound field. Finally, the sound
field recovered by the double-layer BEM and the sound field recovered by the proposed
method are defined as the conventional recovered sound field labeled as c_recovered sound
field and the new recovered sound field labeled as n_recovered sound field, respectively.

The power estimator is defined as [16]:

Ie =
∫

S

|pe(s)|2
ρc

dS (24)

where pe(s) is sound pressure in the sound field. When calculating the power estimator in
V1 free sound field, pe(s) is equal to p f (s).

The mean quadratic error is used to compare the differences of sound fields. It is
defined as [16]

E =

√∫
S |pe(s)− pF(s)|2dS∫

S |pF(s)|2dS
(25)
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where pF(s) is equal to p f (s), when calculating the mean quadratic error of sound field
to V1 free sound field. pF(s) is equal to p f

V2
when calculating the mean quadratic error of

sound field to V2 free sound field.
The power estimator levels directly obtained and recovered are shown in Figure 4.

The power estimator level in the total sound field is very different from the power estimator
level in the V1 free sound field. The differences are more than 7 dB at most frequencies.
This means that boundaries and sources of disturbances have a great influence on the
acquisition of the free-field acoustic characteristics of the vibrating structure. However, the
power estimator levels in the V1 free sound field, in the V2 free sound field, and in the
conventional recovered sound field are the same, and the differences are less than 1 dB.
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Figure 4. Sound power level on the measurement surface.

Figure 5 shows the contour map of sound pressure in the V1 free sound field, the total
sound field, the conventional recovered sound field, and the V2 free sound field on the S.
The sound pressure distribution of the V1 free sound field is different from that of the total
sound field. However, the sound pressure distributions of the V1 free sound field, the V2
free sound field, and the conventional recovered sound field are almost the same.

(a) V1 free sound field (b) total sound field

(c) c_recovered sound field (d) V2 free sound field

Figure 5. Contour map of sound pressure level (SPL) on the measurement surface at 450 Hz (ka = 8.3).
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The mean quadratic errors of the conventional recovered sound field, and the total
sound field to the V1 free sound field and the V2 free sound field are shown in Figure 6. It
shows that, at most frequencies, the mean quadratic errors of the total sound field to the V1
free sound field and the V2 free sound field are over 100%. Meanwhile, the mean quadratic
errors of the conventional recovered sound field to the V1 free sound field and the V2 free
sound field are mostly below 10%.

1 2 3 4 5 6 7 8 9 10111213141516171819

1

10

100

M
ea

n 
qu

ad
ra

tic
 e

rro
r(%

)

ka

 total-V1 free  c_recovered-V 1 free
 total-V2 free  c_recovered-V 2 free

Figure 6. Mean quadratic errors on the measurement surface.

It is clear that the V1 free sound field and the V2 free sound field are the same in the
air because of the weak fluid–structure interaction.

3.2. In a Bounded Noisy Underwater Environment

The underwater numerical model is the same as that in the air, but the fluid medium
becomes water. The fluid density is 1000 kg/m3, and the sound speed is 1500 m/s.
The reference sound pressure and reference sound power are 1× 10−6 Pa and 1× 10−18 W,
respectively. When the cubic shell vibrates in the water, the characteristic quantity λ is
greater than 8 in the studied frequency range. Thus, the coupling between the cubic shell
and the water is very strong. Considering that the sound pressure radiated by the same
vibrating structure in the water is much greater than that radiated in the air with the same
vibrational velocity, the strength of the monopole is reduced to −0.002i m3/s at 100 Hz,
which is more reasonable. The position of the monopole is unchanged, and the infinite
rigid plane can be simply taken as the bottom of the sea.

The power estimator levels directly obtained and recovered are shown in Figure 7.
As mentioned above, the power estimator level in the total sound field is very different
from in the V1 free sound field. The differences are more than 14 dB at most frequencies.
The power estimator level in the conventional recovered sound field is significantly dif-
ferent from that in the V1 free sound field because the interaction between the vibrating
structure and the water cannot be ignored. However, the power estimator levels in the
conventional recovered sound field separated by the conventional double-layer method
and in the V2 free sound field are almost the same. The power estimator level in the new
recovered sound field recovered by the proposed method agrees well with that in the V1
free sound field.

Figure 8 shows the contour map of sound pressure in the V1 free sound field, the to-
tal sound field, the conventional recovered sound field, the V2 free sound field, and the
new recovered sound field on S. There are obvious differences between the sound pres-
sure distributions of the V1 free sound field, the total sound field, and the conventional
recovered sound field. However, the sound pressure distributions of the conventional
recovered sound field and the V2 free sound field are almost identical. The sound pres-
sure distributions of the new recovered sound field and the V1 free sound field share the
same distributions.
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Figure 7. Sound power level on the measurement surface.

(a) V1 free sound field (b) total sound field (c) c_recovered sound field

(d) V2 free sound field

X
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155
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140
135
130
125
120
115
110

(e) n_recovered sound field

Figure 8. Contour map of sound pressure level (SPL) on the measurement surface at 700 Hz (ka = 2.9).

Figure 9 shows the mean quadratic errors of the conventional recovered sound field,
the new recovered sound field, and the total sound field to the V1 free sound field and
the V2 free sound field. The mean quadratic errors of the total sound field to the V1 free
sound field and the V2 free sound field are both over 100%. Influenced by the strong
fluid–structure interaction, the conventional recovered sound field to the V1 free sound
field is also over 100%. However, the mean quadratic errors of the conventional recovered
sound field to the V2 free sound field are mostly less than 10%. Additionally, the mean
quadratic errors of the new recovered sound field to the V1 free sound field are mostly less
than 40%.
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Figure 9. Mean quadratic errors on the measurement surface.

In order to evaluate the robustness of the presented method, the signal-to-noise ratio
(SNR) on the S is defined as [22]

SNR = 20log10
||P f ||2
||Pt||2

(26)

where || · || represents the 2-norm of a vector; P f and Pt represent the free-field and total
sound pressure on S, respectively.

The relative error is defined as [22]

Error =
||Prec − P f ||2
||P f ||2

(27)

where Prec represents the sound pressure recovered by the proposed method on the S.
The relative errors at ka = 0.2, ka = 4.0, and ka = 8.4 when the strengths of the monopole

are −0.0008i m3/s, −0.0032i m3/s, −0.0064i m3/s, −0.0096i m3/s, −0.0128i m3/s, and
−0.016i m3/s at 100 Hz are shown in Figure 10. It can be seen from Figure 10 that the
relative error decays with increasing SNR and increases with increasing ka. However, the
relative error is always less than 11%. This means that the acoustic characteristics radiated
by the structure in the free field could be accurately recovered by the proposed method,
even for the SNR up to −29.5 dB.
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Figure 10. The relative errors of the recovered sound pressure for different frequencies and the SNR.
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In conclusion, the acquisition of the free-field acoustic characteristics of a vibrating
structure is more susceptible to the boundaries and the sources of disturbances in under-
water environments. Although the strength of the source of disturbance in the water is
nearly ten times smaller than that in the air, the source of disturbance has a more signifi-
cant influence on the vibration of the structure in underwater environments because the
interaction between the vibrating structure and the water cannot be ignored. This means
that the V1 free sound field and the V2 free sound field are quite different. The conventional
double-layer BEM can only be used to recover the V2 free sound field. However, the
proposed method can be used to recover the V1 free sound field in a bounded noisy
underwater environment.

4. Conclusions

The double-layer BEM can only be used to eliminate the incoming sound field and
the rigid body scattered sound field. This means that the sound field recovered by this
method is the superposition of the free sound field and the elastically radiated sound field.
The free-field acoustic characteristics of a structure can be recovered by the double-layer
BEM only when the elastically radiated sound field can be ignored such as in the air.
However, the elastically radiated sound field cannot be ignored in the water because of
the strong fluid–structure interaction. To recover the free-field acoustic characteristics of
a vibrating structure in a bounded noisy underwater environment, a method combining
the BEM with the vibro-acoustic coupling method was presented. Numerical results show
that the acoustic characteristics recovered by the presented method in the bounded noisy
underwater environment are the same as those radiated by the underwater vibrating struc-
ture in the free field. Meanwhile, the proposed method has good robustness and can be
used to accurately recover the free-field acoustic characteristics even for the negative SNR.
The realization of this method can break through the limitations of the measurement envi-
ronment to obtain the free-field acoustic characteristics of underwater vibrating structures.
However, it should be pointed out that the presented method only can be used with known
structural properties. To remedy this, the method [23] based on pressure measurements for
constructing the structural impedance should be introduced into the proposed method. It
will be studied to reduce the amount of calculation in the future [31–33].
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References
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