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Abstract: The paper develops the adaptive dynamic programming toolbox (ADPT), which is
a MATLAB-based software package and computationally solves optimal control problems for
continuous-time control-affine systems. The ADPT produces approximate optimal feedback controls
by employing the adaptive dynamic programming technique and solving the Hamilton–Jacobi–
Bellman equation approximately. A novel implementation method is derived to optimize the mem-
ory consumption by the ADPT throughout its execution. The ADPT supports two working modes:
model-based mode and model-free mode. In the former mode, the ADPT computes optimal feedback
controls provided the system dynamics. In the latter mode, optimal feedback controls are gener-
ated from the measurements of system trajectories, without the requirement of knowledge of the
system model. Multiple setting options are provided in the ADPT, such that various customized
circumstances can be accommodated. Compared to other popular software toolboxes for optimal
control, the ADPT features computational precision and time efficiency, which is illustrated with its
applications to a highly non-linear satellite attitude control problem.

Keywords: adaptive dynamic programming; optimal control; software package

1. Introduction

Optimal control is an important branch in control engineering. For continuous-
time dynamical systems, finding an optimal feedback control involves solving the so-
called Hamilton–Jacobi–Bellman (HJB) equation [1]. For linear systems, however, the HJB
equation simplifies to the well-known Riccati equation which results in the linear quadratic
regulator [2]. For non-linear systems, solving the HJB equation is generally a formidable
task due to its inherently non-linear nature. As a result, there has been a great deal of
research devoted to approximately solving the HJB equation. Al’brekht proposed a power
series method for smooth systems to solve the HJB equation [3]. Under the assumption
that the optimal control and the optimal cost function can be represented in Taylor series,
by plugging the series expansions of the dynamics, the cost integrand function, the optimal
control and the optimal cost function into the HJB equation and collecting terms degree
by degree, the Taylor expansions of the optimal control and the optimal cost function
can be recursively obtained. Similar ideas can be found in [4,5]. A recursive algorithm is
developed to sequentially improve the control law which converges to the optimal one
by starting with an admissible control [6]. This recursive algorithm is commonly referred
to as policy iteration (PI) and can be also found in [7–9]. The common limitation of these
methods is that the complete knowledge of the system is required.

In the past few decades, reinforcement learning (RL) [10] has provided a means to
design optimal controllers in an adaptive manner from the viewpoint of learning. Adaptive
or approximate dynamic programming (ADP), which is an iterative RL-based adaptive
optimal control design method, has been proposed in [11–15]. An approach that employs
ADP is proposed in [11] for linear systems without requiring the priori knowledge of
the system matrices. An ADP strategy is presented for non-linear systems with partially
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unknown dynamics in [12], and the necessity of the knowledge of system model is fully
relaxed in [13–15].

Together with the growth of optimal control theory and methods, several software
tools for optimal control have been developed. Notable examples are non-linear systems
toolbox [16], control toolbox [17], ACADO [18], its successor ACADOS [19], and GPOPS-
II [20]. A common feature of these packages is that system equations are used in them. In
addition, optimal controls generated by [17–20] are open-loop, such that an optimal control
is computed for each initial state. Therefore, if the initial state changes, optimal controls
need to be computed again. In contrast, the non-linear systems toolbox [16] produces an
optimal feedback control by solving the HJB equation.

The primary objective of this paper is to develop a MATLAB-based toolbox that
solves optimal feedback control problems computationally for control-affine systems in the
continuous-time domain. More specifically, employing the adaptive dynamic programming
technique, we derive a computational methodology to compute approximate optimal
feedback controls, based on which we develop the adaptive dynamic programming toolbox
(ADPT). In the derivation, the Kronecker product used in [11,14] is replaced by Euclidean
inner product for the purpose of memory saving during execution of the ADPT. The ADPT
supports two working modes: the model-based mode and the model-free mode. The
knowledge of system equations is required in the model-based mode. In the model-free
mode, the ADPT produces the approximate optimal feedback control from measurements
of system trajectories, removing the requirement of the knowledge of system equations.
Moreover, multiple options are provided, such that the user can use the toolbox with
much flexibility.

The remainder of the paper is organized as follows. Section 2 reviews the standard
optimal control problem for a class of continuous-time non-linear systems and the model-
free adaptive dynamic programming technique. Section 3 provides implementation details
and software features of the ADPT. In Section 4, the ADPT is applied to a satellite attitude
control problem in both the model-based mode and the model-free mode. Conclusions
and potential future directions are given in Section 5. The codes of the ADPT are available
at https://github.com/Everglow0214/The_Adaptive_Dynamic_Programming_Toolbox,
accessed on 10 August 2021.

2. Review of Adaptive Dynamic Programming

We review the adaptive dynamic programming (ADP) technique to solve optimal
control problems [13,14]. Consider a continuous-time control-affine system given by

ẋ = f (x) + g(x)u, (1)

where x ∈ Rn is the state, u ∈ Rm is the control, f : Rn → Rn and g : Rn → Rn×m are
locally Lipschitz mappings with f (0) = 0. It is assumed that (1) is stabilizable at x = 0 in
the sense that the system can be locally asymptotically stabilized by a continuous feedback
control. To quantify the performance of a control, an integral cost associated with (1) is
given by

J(x0, u) =
∫ ∞

0
(q(x(t)) + u(t)T Ru(t)) dt, (2)

where x0 = x(0) is the initial state, q : Rn → R≥0 is a positive definite function and
R ∈ Rm×m is a symmetric, positive definite matrix. A feedback control u : Rn → Rm is said
to be admissible if it stabilizes (1) at the origin, and makes the cost J(x0, u) finite for all x0
in a neighborhood of x = 0.

The objective is to find a control policy u that minimizes J(x0, u) given x0. Define the
optimal cost function V∗ : Rn → R by

V∗(x) = min
u

J(x, u)

https://github.com/Everglow0214/The_Adaptive_Dynamic_Programming_Toolbox
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for x ∈ Rn. Then, V∗ satisfies the HJB equation

0 = min
u
{∇V∗(x)T( f (x) + g(x)u) + q(x) + uT Ru},

and the minimizer in the HJB equation is the optimal control which is expressed in terms
of V∗ as

u∗(x) = −1
2

R−1g(x)T∇V∗(x).

Moreover, the state feedback u∗ locally asymptotically stabilizes (1) at the origin
and minimizes (2) over all admissible controls [2]. Solving the HJB equation analytically
is extremely difficult in general except for linear cases. Hence, approximate or iterative
methods are needed to solve the HJB, and the well-known policy iteration (PI) technique [6]
is reviewed in Algorithm 1. Let {Vi(x)}i≥0 and {ui+1(x)}i≥0 be the sequences of functions
generated by PI in Algorithm 1. It is shown in [6] that Vi+1(x) ≤ Vi(x) for i ≥ 0, and the
limit functions V(x) = limi→∞ Vi(x) and u(x) = limi→∞ ui(x) are equal to the optimal cost
function V∗ and the optimal control u∗.

Algorithm 1 Policy iteration

Input: An initial admissible control u0(x), and a threshold ε > 0.
Output: The approximate optimal control ui+1(x) and the approximate optimal cost func-

tion Vi(x).
1: Set i← 0.
2: while i ≥ 0 do
3: Policy evaluation: solve for the continuously differentiable cost function Vi(x) with

Vi(0) = 0 using

∇Vi(x)T( f (x) + g(x)ui(x)) + q(x) + ui(x)T Rui(x) = 0. (3)

4: Policy improvement: update the control policy by

ui+1(x) = −1
2

R−1g(x)T∇Vi(x). (4)

5: if ‖ui+1(x)− ui(x)‖ ≤ ε for all x then
6: break
7: end if
8: Set i← i + 1.
9: end while

As proposed in [13,14], consider approximating the solutions to (3) and (4) by ADP
instead of obtaining them exactly. For this purpose, choose an admissible feedback control
u0 : Rn → Rm for (1) and let {Vi(x)}i≥0 and {ui+1(x)}i≥0 be the sequences of functions
generated by PI in Algorithm 1 starting with the control u0(x). Following [13,14], choose
a bounded time-varying exploration signal η : R→ Rm, and apply the sum u0(x) + η(t)
to (1) as follows:

ẋ = f (x) + g(x)(u0(x) + η(t)). (5)

Assume that solutions to (5) are well defined for all positive time. Let T (x, u0, η, [r, s]) =
{(x(t), u0(x(t)), η(t)) | r ≤ t ≤ s} denote the trajectory x(t) of the system (5) with the
input u0 + η over the time interval [r, s] with 0 ≤ r < s. The system (5) can be rewritten as

ẋ = f (x) + g(x)ui(x) + g(x)νi(x, t), (6)

where
νi(x, t) = u0(x)− ui(x) + η(t).
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Combined with (3) and (4), the time derivative of Vi(x) along the trajectory x(t) of (6)
is obtained as

V̇i(x) = −q(x)− ui(x)T Rui(x)− 2ui+1(x)T Rνi(x, t) (7)

for i ≥ 0. By integrating both sides of (7) over any time interval [r, s] with 0 ≤ r < s,
one gets

Vi(x(s))−Vi(x(r)) = −
∫ s

r
(q(x) + ui(x)T Rui(x) + 2ui+1(x)T Rνi(x, τ)) dτ. (8)

Let φj : Rn → R and ϕj : Rn → Rm, with j = 1, 2, . . . , be two infinite sequences of
continuous basis functions on a compact set in Rn containing the origin as an interior point
that vanish at the origin [13,14]. Then, Vi(x) and ui+1(x) for each i ≥ 0 can be expressed as
infinite series of the basis functions. For each i ≥ 0 let V̂i(x) and ûi+1(x) be approximations
of Vi(x) and ui+1(x) given by

V̂i(x) =
N1

∑
j=1

ci,jφj(x), (9)

ûi+1(x) =
N2

∑
j=1

wi,j ϕj(x), (10)

where N1 > 0 and N2 > 0 are integers and ci,j, wi,j ∈ R are coefficients to be found for each
i ≥ 0. Then, Equation (8) is approximated by V̂i(x) and ûi+1(x) as follows:

N1

∑
j=1

ci,j(φj(x(s))− φj(x(r))) +
∫ s

r
(2

N2

∑
j=1

wi,j ϕj(x)T Rν̂i) dτ

= −
∫ s

r
(q(x) + ûi(x)T Rûi(x)) dτ,

(11)

where
û0 = u0, ν̂i = u0 − ûi + η. (12)

Suppose that we have K trajectories T (x, u0, η, [rk, sk]) available, k = 1, . . . , K, where
x(t), u0(t), and η(t) satisfy (6) over the K time intervals [rk, sk], k = 1, . . . , K. Then, we have
K equations of the form (11) for each i ≥ 0, which can be written as

ei,k = 0, k = 1, . . . , K, (13)

where

ei,k :=
N1

∑
j=1

ci,j(φj(x(sk))− φj(x(rk))) +
∫ sk

rk

(2
N2

∑
j=1

wi,j ϕj(x)T Rν̂i) dτ

+
∫ sk

rk

(q(x) + ûi(x)T Rûi(x)) dτ.

Then, the coefficients {ci,j}N1
j=1 and {wi,j}N2

j=1 are obtained by minimizing

K

∑
k=1
‖ei,k‖2.

In other words, the K equations in (13) are solved in the least squares sense for the
coefficients, {ci,j}N1

j=1 and {wi,j}N2
j=1. Thus two sequences {V̂i(x)}∞

i=0 and {ûi+1(x)}∞
i=0 can
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be generated from (11). According to ([14], Cor. 3.2.4), for any arbitrary ε > 0, there exist
integers i∗ > 0, N∗∗1 > 0 and N∗∗2 > 0, such that∥∥∥∥∥ N1

∑
j=1

ci∗ ,jφj(x)−V∗(x)

∥∥∥∥∥ ≤ ε,∥∥∥∥∥ N2

∑
j=1

wi∗ ,j ϕj(x)− u∗(x)

∥∥∥∥∥ ≤ ε

for all x in a neighborhood of the origin, if N1 > N∗∗1 and N2 > N∗∗2 .

Remark 1. The ADP algorithm relies only on the measurements of states, the initial control policy
and the exploration signal, lifting the requirement of knowing the precise system model, while the
conventional policy iteration algorithm in Algorithm 1 requires the knowledge of the exact system
model. Hence, the ADP algorithm is 100% data-based and model-free.

Remark 2. Equation (11) depends on the initial control u0, the exploration signal η, the time
interval [r, s] as well as the index i, where the first three u0, η, and [r, s] are together equivalent to
the trajectory T (x, u0, η, [r, s]) if the initial state x(r) at t = r is given. Hence, we can generate
more diverse trajectories by changing η and [r, s], as well as the initial state, and enrich the ADP al-
gorithm accordingly, as follows. Suppose that we have available K trajectories T (xk, u0, ηk, [rk, sk]),
1 ≤ k ≤ K, where xk, u0 and ηk satisfy (6), i.e.,

ẋk(t) = f (xk(t)) + g(xk(t))(u0(xk(t)) + ηk(t))

for rk ≤ t ≤ sk. Then, we have K equations of the form (11) for each i ≥ 0, which can be written as
ei,k = 0, k = 1, . . . , K, where

ei,k :=
N1

∑
j=1

ci,j(φj(xk(sk))− φj(xk(rk))) +
∫ sk

rk

(2
N2

∑
j=1

wi,j ϕj(xk)T Rν̂k
i ) dτ

+
∫ sk

rk

(q(xk) + ûi(xk)T Rûi(xk)) dτ

with û0 = u0 and ν̂k
i = u0 + ηk − ûi. Then, the coefficients {ci,j}N1

j=1 and {wi,j}N2
j=1 are obtained

by minimizing ∑K
k=1 ‖ei,k‖2. For the sake of simplicity of presentation, however, in this paper we

will fix η and the initial states and vary only the time intervals to generate trajectory data.

3. Implementation Details and Software Features

We now discuss implementation details and features of the adaptive dynamic program-
ming toolbox (ADPT). We provide two modes to generate approximate optimal feedback
controls; one mode requires the knowledge of system model, but the other eliminates this
requirement, giving rise to the ADPT’s unique capability of handling model-free cases.

3.1. Implementation of Computational Adaptive Dynamic Programming

To approximate Vi(x) and ui+1(x) in (3) and (4), monomials composed of state vari-
ables are selected as basis functions. For a pre-fixed number d ≥ 1, define a column vector
Φd(x) by ordering monomials in graded reverse lexicographic order [21] as

Φd(x) = (x1, . . . , xn, x2
1, x1x2, . . . , x2

n, . . . , xd
n) ∈ RN×1,

where x = (x1, x2, . . . , xn) ∈ Rn is the state, d ≥ 1 is the highest degree of the monomials,
and N is given by

N =
d

∑
i=1

(
i + n− 1

n− 1

)
.
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For example, if n = 3 and d = 3, the corresponding ordered monomials are

x1, x2, x3;

x2
1, x1x2, x1x3, x2

2, x2x3, x2
3;

x3
1, x2

1x2, x2
1x3, x1x2

2, x1x2x3, x1x2
3, x3

2, x2
2x3, x2x2

3, x3
3.

According to (9) and (10), the cost function Vi(x) and the control ui+1(x) are approxi-
mated by V̂i(x) and ûi+1(x), which are defined as

V̂i(x) = ciΦd+1(x), (14)

ûi+1(x) = WiΦd(x), (15)

where d ≥ 1 is the approximation degree, and ci ∈ R1×N1 and Wi ∈ Rm×N2 are composed
of coefficients corresponding to the monomials in Φd+1(x) and Φd(x) with

N1 =
d+1

∑
i=1

(
i + n− 1

n− 1

)
, N2 =

d

∑
i=1

(
i + n− 1

n− 1

)
.

We take the highest degree of monomials to approximate Vi greater by one than the
approximation degree since ui+1 is obtained by taking the gradient of Vi in (4) and g(x) is
constant in most cases.

Theorem 1. Let a set of trajectories be defined as ST = {T (x, u0, η, [rk, sk]), k = 1, 2, . . . , K}
with K ≥ 1, and let

α(x) = RηΦd(x)T ,

β(x) = R(u0(x) + η)Φd(x)T ,

γ(x) = Φd(x)Φd(x)T .

Then the coefficients ci and Wi satisfy

Ai

[
cT

i
vec(Wi)

]
= bi, (16)

where

A0 =


Φ[r1,s1]

d+1 (x) 2vec(
∫ s1

r1
α(x) dt)T

...
...

Φ[rK ,sK ]
d+1 (x) 2vec(

∫ sK
rK

α(x) dt)T

 ∈ RK×(N1+mN2),

b0 =


−
∫ s1

r1
(q(x) + u0(x)T Ru0(x)) dt

...
−
∫ sK

rK
(q(x) + u0(x)T Ru0(x)) dt

 ∈ RK×1,

and for i = 1, 2, . . . ,

Ai =


Φ[r1,s1]

d+1 (x) 2vec(
∫ s1

r1
(β(x)− RWi−1γ(x)) dt)T

...
...

Φ[rK ,sK ]
d+1 (x) 2vec(

∫ sK
rK

(β(x)− RWi−1γ(x)) dt)T

 ∈ RK×(N1+mN2),

bi =


−
∫ s1

r1
q(x) dt− 〈WT

i−1RWi−1,
∫ s1

r1
γ(x) dt〉

...
−
∫ sK

rK
q(x) dt− 〈WT

i−1RWi−1,
∫ sK

rK
γ(x) dt〉

 ∈ RK×1,
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where

Φ[rk ,sk ]
d+1 (x) = Φd+1(x(sk))

T −Φd+1(x(rk))
T

for k = 1, 2, . . . , K, the operator 〈·, ·〉 denotes the Euclidean inner product with 〈E, F〉 = ∑ij EijFij
for matrices E = [Eij] and F = [Fij] of equal size, and the operator vec(·) is defined as

vec(Z) =


z1
z2
...

zn

 ∈ Rmn×1

with zj ∈ Rm×1 being the jth column of a matrix Z ∈ Rm×n for j = 1, . . . , n.

Proof. Combining (11), (14) and (15), one has

c0(Φd+1(x(sk))−Φd+1(x(rk))) + 2
∫ sk

rk

Φd(x)TWT
0 Rη dt

= −
∫ sk

rk

(q(x) + u0(x)T Ru0(x)) dt,
(17)

and for i = 1, 2, . . . ,

ci(Φd+1(x(sk))−Φd+1(x(rk))) + 2
∫ sk

rk

Φd(x)TWT
i R(u0(x) + η) dt

− 2
∫ sk

rk

Φd(x)TWT
i RWi−1Φd(x) dt

= −
∫ sk

rk

(q(x) + Φd(x)TWT
i−1RWi−1Φd(x)) dt.

(18)

By applying the property

〈A, BC〉 = 〈ACT , B〉 = 〈BT A, C〉

of the Euclidean inner product, one may rewrite (17) and (18) as

c0(Φd+1(x(sk))−Φd+1(x(rk))) + 2
〈

W0,
∫ sk

rk

RηΦd(x)T dt
〉

= −
∫ sk

rk

(q(x) + u0(x)T Ru0(x)) dt,
(19)

and for i = 1, 2, . . . ,

ci(Φd+1(x(sk))−Φd+1(x(rk))) + 2
〈

Wi,
∫ sk

rk

R(u0(x) + η)Φd(x)T dt
〉

− 2
〈

Wi, RWi−1

∫ sk

rk

Φd(x)Φd(x)T dt
〉

= −
〈

WT
i−1RWi−1,

∫ sk

rk

Φd(x)Φd(x)T dt
〉
−
∫ sk

rk

q(x) dt.

(20)

Then, the system of linear equations in (16) readily follows from (19) and (20).

We now give the computational adaptive dynamic programming algorithm in
Algorithm 2 for practical implementation. To solve the least squares problem in line
5 in the algorithm, we need to have a sufficiently large number K of trajectories, such that
the minimization problem can be solved well numerically. Then the approximate optimal
feedback control is generated by the algorithm as ûi+1 = WiΦd(x).
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Algorithm 2 Computational adaptive dynamic programming

Input: An approximation degree d ≥ 1, an initial admissible control u0(x), an exploration
signal η(t), and a threshold ε > 0.

Output: The approximate optimal control ûi+1(x) and the approximate optimal cost func-
tion V̂i(x).

1: Apply u = u0 + η as the input during a sufficiently long period and collect necessary
data.

2: Set i← 0.
3: while i ≥ 0 do
4: Generate Ai and bi.
5: Obtain ci and Wi by solving the minimization problem

min
ci ,Wi

∥∥∥∥Ai

[
cT

i
vec(Wi)

]
− bi

∥∥∥∥2

.

6: if i ≥ 1 and ‖ci − ci−1‖2 + ‖Wi −Wi−1‖2 ≤ ε2 then
7: break
8: end if
9: Set i← i + 1.

10: end while
11: return ûi+1(x) = WiΦd(x) and V̂i(x) = ciΦd+1(x)

Remark 3. As in the statement of Theorem 1, several integral terms are included in Ai and bi for
i ≥ 0. As in (12), u0 does not get approximated by the basis functions, so the matrices A0 and b0
in Theorem 1 are obtained with x(rk), x(sk),

∫ sk
rk

q(x) dt,
∫ sk

rk
u0(x)T Ru0(x) dt and

∫ sk
rk

α(x) dt,
1 ≤ k ≤ K. For i ≥ 1, the matrices Ai and bi in Theorem 1 need, in addition,

∫ sk
rk

β(x) dt and∫ sk
rk

γ(x) dt, 1 ≤ k ≤ K, as well as Wi−1.

Remark 4. In Theorem 1, the Kronecker product that is used in [11,14] for practical implemen-
tation is replaced by Euclidean inner product. Notice that

∫ sk
rk

γ(x) dt ∈ RN2×N2 is symmetric,
k = 1, . . . , K. Thus, only upper triangular elements of these matrices are required to be stored. On
the other hand, by using Kronecker product, one has to save all the elements of these matrices. As a
result, less memory space of the processor is occupied by Theorem 1 especially when the number of
basis functions to represent the approximate optimal control is large.

Remark 5. In the situation where the system dynamic equations are known, the ADPT uses
the Runge–Kutta method to simultaneously compute the trajectory points x(rk) and x(sk) and
the integral terms that appear in Ai and bi. In the case when system equations are not known
but trajectory data are available, the ADPT applies the trapezoidal method to evaluate these in-
tegrals numerically. In this case, each trajectory T (x, u0, η, [rk, sk]) is represented by a set of
its sample points {x(tk,`), u0(tk,`), η(tk,`)}

Lk
`=1, where {tk,`}

Lk
`=1 is a finite sequence that satisfies

rk = tk,1 < tk,2 < . . . < tk,Lk−1 < tk,Lk
= sk, and then the trapezoidal method is applied on these

sample points to numerically evaluate the integrals over the time interval [rk, sk]. If intermediate
points in the interval [rk, sk] are not available so that partitioning the interval [rk, sk] is impossible,
then we use the two end points rk and sk to evaluate the integral by the trapezoidal method as∫ sk

rk

h(t) dt ≈ (sk − rk)(h(sk) + h(rk))

2
(21)

for a function h(t).

3.2. Software Features

The codes of the ADPT are available at https://github.com/Everglow0214/The_
Adaptive_Dynamic_Programming_Toolbox, accessed on 10 August 2021.

https://github.com/Everglow0214/The_Adaptive_Dynamic_Programming_Toolbox
https://github.com/Everglow0214/The_Adaptive_Dynamic_Programming_Toolbox
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3.2.1. Symbolic Expressions

It is of great importance for an optimal control package that the user can describe
functions, such as system equations, cost functions, etc., in a convenient manner. The idea
of the ADPT is to use symbolic expressions. Consider an optimal control problem, where
the system model is in the form (1) with

f (x) =

 x2
−k1x1 − k2x3

1 − k3x2

k4

, g(x) =

 0
1
k4

, (22)

where x = (x1, x2) ∈ R2 is the state, u ∈ R is the control, and k1, k2, k3, k4 ∈ R are system
parameters. The cost function is in the form (2) with

q(x) = 5x2
1 + 3x2

2, R = 2. (23)

Then in the ADPT the system dynamics and the cost function can be defined in
lines 1–17 in Listing A1 provided in the Appendix A.

3.2.2. Working Modes

Two working modes are provided in the ADPT; the model-based mode and the model-
free mode. The model-based mode deals with the situation where the system model is
given, while the model-free mode addresses the situation where the system model is not
known but only trajectory data are available. An example of the model-based mode is
given in Listing A1, where after defining the system model (22), the cost function (23)
and the approximation degree d in lines 1–20, the function, adpModelBased, returns the
coefficients Wi and ci for the control ûi+1 and the cost function V̂i, respectively, in line 21.

An example of the model-free mode is shown in Listing A2 in the Appendix A, where
the system model (22) is assumed to be unknown. The initial control u0 is in the form
of u0(x) = −Fx with the feedback control gain F defined in line 18. The exploration
signal η is composed of four sinusoidal signals, as shown in lines 21–22. A list of two
initial states x(0) = (−3, 2) and x(0) = (2.2, 3) is given in lines 28–29, and a list of the
corresponding total time span for simulation is given in lines 30–31, where the time interval
[0, 6] is divided into sub-intervals of size 0.002 so that trajectory data are recorded every
0.002 second in lines 36–41. The time stamps are saved in the column vector t_save in
line 39, and the values of states are saved in the matrix x_save in line 40, with each row in
x_save corresponding to the same row in t_save. Similarly, the values of the initial control
u0 and the exploration signal η are saved in vectors u0_save and eta_save in lines 43–44.
These measurements are passed to the function, adpModelFree, in lines 48–49 to compute
the optimal control and the optimal cost function approximately.

In both the model-based and model-free modes the approximate control is saved in
the file, uAdp.m, that is generated automatically and can be applied by calling u=uAdp(x)
without dependence on other files. Similarly, the user may also check the approximate cost
through the file, VAdp.m.

3.2.3. Options

Multiple options are provided such that the user may customize optimal control
problems in a convenient way. We here illustrate usage of some of the options, referring the
reader for the other options to the user manual available at https://github.com/Everglow0
214/The_Adaptive_Dynamic_Programming_Toolbox, accessed on 10 August 2021.

In the model-based mode, the user may set option values through the function,
adpSetModelBased, in a name-value manner before calling adpModelBased. That is, the
specified values may be assigned to the named options. An example is shown in Listing A3
in the Appendix A, where two sets of initial states, time intervals and exploration signals
are specified in lines 1–9. Then, in line 15 the output of adpSetModelBased should be

https://github.com/Everglow0214/The_Adaptive_Dynamic_Programming_Toolbox
https://github.com/Everglow0214/The_Adaptive_Dynamic_Programming_Toolbox
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passed to adpModelBased for the options to take effect. Otherwise, the default values
would be used for the options as in line 21 in Listing A1.

For the command, adpModelFree, option values can be modified with the function,
adpSetModelFree, in the name-value manner. Among the options, ‘stride’ enables the user
to record values of states, initial controls and exploration signals in a high frequency for a
long time, while using only a portion of them in the iteration process inside adpModelFree.
To illustrate it, let each trajectory in the set ST of trajectories in the statement of Theorem 1
be represented by two sample points at time rk and sk, that is, the trapezoidal method
evaluates integrals over [rk, sk] by taking values at rk and sk as in (21). Suppose that
trajectories in ST are consecutive, that is, sk = rk+1 for k = 1, 2, . . . , K − 1. By setting
‘stride’ to a positive integer δ, the data used to generate Ai and bi in Algorithm 2 become
{T (x, u0, η, [r1+iδ, s(i+1)δ]), i ∈ N, (i + 1)δ ≤ K}. For example, consider 3 consecutive
trajectories T (x, u0, η, [rk, rk+1]) with k = 1, 2, 3. If ‘stride’ is set to 1, one will have three
equations from (11) as follows:

N1

∑
j=1

ci,j(φj(x(rk+1))− φj(x(rk))) +
∫ rk+1

rk

(2
N2

∑
j=1

wi,j ϕj(x)T Rν̂i) dτ

= −
∫ rk+1

rk

(q(x) + ûi(x)T Rûi(x)) dτ

for k = 1, 2, 3. These three equations contribute to three rows of Ai and three rows of bi as in
Theorem 1. If ‘stride’ is set to 3, then one will have only one equation from (11) as follows:

N1

∑
j=1

ci,j(φj(x(r4))− φj(x(r1))) +
∫ r4

r1

(2
N2

∑
j=1

wi,j ϕj(x)T Rν̂i) dτ

= −
∫ r4

r1

(q(x) + ûi(x)T Rûi(x)) dτ,

(24)

where the integrals over [r1, r4] are evaluated by the trapezoidal method with the interval
[r1, r4] partitioned into the three sub-intervals [r1, r2] ∪ [r2, r3] ∪ [r3, r4], i.e, with the points
at r1, r2, r3, and r4. Equation (24) will contribute to one row of Ai and one row of bi as
in Theorem 1. With the assumption that Ai has full rank with ‘stride’ set to 3, by setting
‘stride’ to 3, the number of equations in the minimization problem in Algorithm 2 is two
thirds less than that with ‘stride’ set to 1, and as a result, the computation load is reduced
in the numerical minimization. It is remarked that with ‘stride’ equal to 3, all the four
points at r1, . . . , r4 are used by the trapezoidal method to evaluate the integrals over the
interval [r1, r4] in (24), producing a more precise value of integral than the one that would be
obtained with the two end points at r1 and r4 only. An example of calling adpSetModelFree
is shown in Listing A4 in the Appendix A. Similarly, adpModelFree takes the output of
adpSetModelFree as an argument to validate the options specified.

4. Applications to the Satellite Attitude Stabilizing Problem

In this section, we apply the ADPT to the satellite attitude stabilizing problem because
a stabilization problem can be formulated as an optimal control problem. In the first
example, the system model is known and the controller is computed by the function
adpModelBased. The same problem is solved again in the second example by the function
adpModelFree when the system dynamics is unknown. The source codes for these two
examples are available at https://github.com/Everglow0214/The_Adaptive_Dynamic_
Programming_Toolbox (accessed on 10 August 2021), where more applications of the
toolbox can be found.

https://github.com/Everglow0214/The_Adaptive_Dynamic_Programming_Toolbox
https://github.com/Everglow0214/The_Adaptive_Dynamic_Programming_Toolbox
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4.1. Model-Based Case

Let H denote the set of quaternions and S3 = {q ∈ H | ‖q‖ = 1}. The equations of
motion of the continuous-time fully-actuated satellite system are given by

q̇ =
1
2

qΩ, (25)

Ω̇ = I−1((IΩ)×Ω) + I−1u, (26)

where q ∈ S3 represents the attitude of the satellite, Ω ∈ R3 is the body angular velocity
vector, I ∈ R3×3 is the moment of inertia matrix and u ∈ R3 is the control input. The
quaternion multiplication is carried out for qΩ on the right-hand side of (25) where Ω
is treated as a pure quaternion. By the stable embedding technique [22], the system (25)
and (26) defined on S3 ×R3 is extended to the Euclidean space H×R3 [23,24] as

q̇ =
1
2

qΩ− α(|q|2 − 1)q, (27)

Ω̇ = I−1((IΩ)×Ω) + I−1u, (28)

where q ∈ H, Ω ∈ R3 and α > 0.
Consider the problem of stabilizing the system (27) and (28) at the equilibrium point

(qe, Ωe) = ((1, 0, 0, 0), (0, 0, 0)). The error dynamics is given by

ėq =
1
2
(eq + qe)eΩ − α(|eq + qe|2 − 1)(eq + qe),

ėΩ = I−1((IeΩ)× eΩ) + I−1u,

where eq = q− qe and eΩ = Ω−Ωe are state errors. Since the problem of designing a
stabilizing controller can be solved by designing an optimal controller, we pose an optimal
control problem with the cost integral (2) with q(x) = xTQx, where x = (eq, eΩ) ∈ R7 and
Q = 2I7×7, and R = I3×3. The inertia matrix I is set to I = diag(0.1029, 0.1263, 0.0292). The
parameter α that appears in the above error dynamics is set to α = 1.

We set the option ‘xInit’ with three different initial states. For each initial state, the
option ‘tSpan’ is set to [0, 15]. We use the option ‘explSymb’ to set exploration signals;
refer, for the usage of the option ‘explSysb’, to the user manual available at https://
github.com/Everglow0214/The_Adaptive_Dynamic_Programming_Toolbox (accessed
on 10 August 2021). For the initial control u0, the default initial control is used, which
is an LQR controller computed for the linearization of the error dynamics around the
origin with the weight matrices Q = 2I7×7 and R = I3×3. We then call the function,
adpModelBased, to generate controllers of degree d = 1, 2, 3. The computation time taken
by the function, adpModelBased, to produce the controllers are recorded in Table 1. For the
purpose of comparison, we also apply Al’brekht’s method with the non-linear systems
toolbox (NST) [16] to produce controllers of degree d = 1, 2, 3 for the same optimal control
problem, and record their respective computation time in Table 1. For comparison in
terms of optimality, we apply the controllers to the system (27) and (28) for the initial error
state x0 = ((cos(θ/2)− 1, sin(θ/2), 0, 0), (0, 0, 0)) with θ = 1.99999π and compute their
corresponding values of the cost integral in Table 1. Since we do not know the exact optimal
value of the cost integral J(x0, u) for this initial state, we employ the software package
called ACADO [18] to numerically produce the optimal control for this optimal control
problem with the given initial state. We note that both NST and ACADO are model-based.

We can see in Table 1 that ADPT in the model-based mode is superior to NST in
terms of optimality, and ADPT (model-based) for d = 2, 3 is on par with ACADO in terms
of optimality. Notice however that ACADO produces an open-loop optimal control for
each given initial state, which is a drawback of ACADO, while ADPT produces a feedback
optimal control that is independent of initial states. Moreover, even for the given initial
state ACADO takes a tremendous amount of time to compute the open-loop optimal

https://github.com/Everglow0214/The_Adaptive_Dynamic_Programming_Toolbox
https://github.com/Everglow0214/The_Adaptive_Dynamic_Programming_Toolbox
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controller. From these observations, we can say that ADPT in the model-based mode
is superior to NST and ACADO in terms of optimality, speed, and usefulness all taken
into account.

Table 1. Costs at x0 and computation time by ADPT, NST, and ACADO. J(x0, u) denotes the integral
cost of the corresponding control u for initial state x0. ‘Time [s]’ denotes the computation time taken
by the method to obtain the controller.

J(x0, u) Time [s]

ADPT
(model-based)

d = 1 37.8259 1.5994
d = 2 33.6035 3.2586
d = 3 33.4986 13.1021

ADPT
(model-free)

d = 1 43.8308 0.9707
d = 2 36.8319 3.3120
d = 3 37.4111 64.8562

NST
d = 1 208.9259 0.2702
d = 2 94.6868 0.6211
d = 3 64.0721 3.6201

ACADO - 32.6000 2359.67

4.2. Model-Free Case

Consider solving the same optimal problem as in Section 4.1, but the system dynamics
in (25) and (26), or equivalently the error dynamics are not available. Since we do not
have real trajectory data available, for the purpose of demonstration we generate some
trajectories with four initial states for the error dynamics, where the same initial control
u0 and exploration signals η are used as the model-based case in Section 4.1. The sim-
ulation for data collection is run over the time interval [0, 20] with the recording period
being 0.002 s, producing 10,000 = 20/0.002 sampled points for each run. For the function
adpModelFree, the option of ‘stride’ is set to 4. Then, the function, adpModelFree, is called
to generate controllers of degree d = 1, 2, 3, the computation time taken for each of which is
recorded in Table 1. For the purpose of comparison in terms of optimality, we apply the con-
trollers generated by adpModelFree to the system (27) and (28) with the initial error state
x0 = ((cos(θ/2)− 1, sin(θ/2), 0, 0), (0, 0, 0)) with θ = 1.99999π and compute the corre-
sponding values of the cost integral; see Table 1 for the values.

From Table 1, we can see that ADPT in the model-free mode takes more computation
time than ADPT in the model-based mode, and the cost integrals by ADPT in the model-
free working mode is slightly higher than those in the model-based working mode, since
the integrals in the iteration process are evaluated less accurately. However, ADPT in the
model-free mode is superior to NST in terms of optimality and to ACADO in terms of
computation time. More importantly, it is noticeable that the result by model-free ADPT
is comparable to model-based ADPT, which shows the power of data-based adaptive
dynamic programming and the ADP toolbox.

To see how the computed optimal controller works in terms of stabilization, the norm
of the state error under the control with d = 3 generated by ADPT in the model-free mode
is plotted in Figure 1 together with the norm of state error by the NST controller with
degree 3. We can see that the convergence to the origin is faster with the model-free ADP
controller than with the controller by NST that is model-based. This comparison result is
consistent with the comparison of the two in terms of optimality.
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Figure 1. The state errors ‖x(t)‖with the controllers of degree 3 generated by ADPT in the model-free
working mode and by NST.

4.3. Discussion

To compare with other toolboxes on ADP or RL, we investigate MATLAB reinforce-
ment learning toolbox with the same control problem. Equations (27) and (28) are dis-
cretized using the 4th order Runge–Kutta method to construct the environment in rein-
forcement learning toolbox. The integrand in (2) is taken as the reward function. The
deep deterministic policy gradient (DDPG) algorithm [25] is selected to train the RL agent
since the control input in (26) is continuous. However, it is found in simulations that
the parameters of the agent generally diverge even after a long training time and the
system cannot be stabilized. The reason probably is that by setting only parameters of
the exploration signal of standard normal distribution such as mean and deviation rather
than choosing an exploration signal of a specific form, the system states may go to infinity
in some episodes. Although one may stop the episode before all steps run out in such a
situation, the experiences saved in the replay buffer may be detrimental to the training. On
the other hand, the options provided by ADPT allow the user to determine what kind of
trajectories to be used so that the optimal feedback control may be found quickly.

5. Conclusions and Future Work

The adaptive dynamic programming toolbox, a MATLAB-based package for optimal
control for continuous-time control-affine systems, has been presented. By employing the
adaptive dynamic programming technique, we propose a computational methodology
to approximately produce the optimal control and the optimal cost function, where the
Kronecker product used in previous literature is replaced by Euclidean inner product for
less memory consumption at runtime. The ADPT can work in the model-based mode
or in the model-free mode. The model-based mode deals with the situation where the
system model is given while the model-free mode handles the situation where the system
dynamics are unknown but only system trajectory data are available. Multiple options are
provided, such that the ADPT can be easily customized. The optimality, the running speed,
and the utility of the ADPT are illustrated with a satellite attitude stabilizing problem.

Currently control policies and cost functions are approximated by polynomials in
the ADPT. As mathematical principles of neural networks are being revealed [26,27], we
plan to use deep neural networks in addition to polynomials in the ADPT to approxi-
mately represent optimal controls and optimal cost functions to provide users of the ADPT
more options.
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Appendix A

Listing A1. An example of the model-based mode.

1 n = 2; % state dimension
2 m = 1; % control dimension
3 %% Symbolic variables.
4 syms x [n,1] real
5 syms u [m,1] real
6 syms t real
7
8 %% Define the system.
9 k1 = 3; k2 = 2; k3 = 2; k4 = 5;

10 f = [x2;
11 (-k1*x1 -k2*x1^3-k3*x2)/k4];
12 g = [0;
13 1/k4];
14
15 %% Define the cost function.
16 q = 5*x1^2 + 3*x2^2;
17 R = 2;
18
19 %% Execute ADP iterations.
20 d = 3; % approximation degree
21 [w,c] = adpModelBased(f,g,x,n,u,m,q,R,t,d);
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Listing A2. An example of the model-free mode.

1 n = 2; % state dimension
2 m = 1; % control dimension
3
4 %% Define the cost function.
5 q = @(x) 5*x(1)^2 + 3*x(2)^2;
6 R = 2;
7
8 %% Generate data.
9 syms x [n,1] real

10 syms t real
11 k1 = 3; k2 = 2; k3 = 2; k4 = 5;
12 % System dynamics.
13 f = [x2;
14 (-k1*x1 -k2*x1^3-k3*x2)/k4];
15 g = [0;
16 1/k4];
17
18 F = [1, 1] % feedback gain
19
20 % Exploration signal.
21 eta = 0.8*( sin(7*t)+sin (1.1*t)+sin(sqrt (3)*t)+...
22 sin(sqrt (6)*t));
23 e = matlabFunction(eta ,’Vars’,t);
24
25 % To be used in the function ode45.
26 dx = matlabFunction(f+g*(-F*x+eta),’Vars’,{t,x});
27
28 xInit = [-3, 2;
29 2.2, 3];
30 tSpan = [0:0.002:6;
31 0:0.002:6];
32 odeOpts = odeSet(’RelTol ’,1e-6,’AbsTol ’,1e-6);
33
34 t_save = [];
35 x_save = [];
36 for i = 1:size(xInit ,1)
37 [time , states] = ode45(@(t,x)dx(t,x),tSpan(i,:) ,...
38 xInit(i,:), odeOpts );
39 t_save = [t_save; time];
40 x_save = [x_save; states ];
41 end
42
43 u0_save = -x_save * F;
44 eta_save = e(t_save );
45
46 %% Execute ADP iterations.
47 d = 3; % approximation degree
48 [w,c] = adpModelFree(t_save ,x_save ,n,u0_save ,m,...
49 eta_save ,d,q,R);
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Listing A3. A demonstration of calling the function adpSetModelBased.

1 %% The user may specify settings.
2 xInit = [-3, 2;
3 2.2, 3];
4 tSpan = [0, 10;
5 0, 8];
6
7 syms t real
8 eta = [0.8* sin(7*t)+sin (3*t);
9 sin (1.1*t)+sin(pi*t)];

10
11 adpOpt = adpSetModelBased(’xInit’,xInit ,’tSpan ’,tSpan ,...
12 ’explSymb ’,eta);
13
14 %% Execute ADP iterations.
15 [w,c] = adpModelBased(f,g,x,n,u,m,q,R,t,d,adpOpt );

Listing A4. A demonstration of calling the function adpSetModelFree.

1 %% The user may specify settings.
2 adpOpt = adpSetModelFree(’stride ’ ,2);
3
4 %% Execute ADP iterations.
5 [w,c] = adpModelFree(t_save ,x_save ,n,u0_save ,m,...
6 eta_save ,d,q,R,adpOpt );
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