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Abstract: In recent years, small unmanned aircraft systems (SUAS) have been used widely to monitor
animals because of their customizability, ease of operating, ability to access difficult to navigate
places, and potential to minimize disturbance to animals. Automatic identification and classification
of animals through images acquired using a sUAS may solve critical problems such as monitoring
large areas with high vehicle traffic for animals to prevent collisions, such as animal-aircraft collisions
on airports. In this research we demonstrate automated identification of four animal species using
deep learning animal classification models trained on sUAS collected images. We used a sUAS
mounted with visible spectrum cameras to capture 1288 images of four different animal species:
cattle (Bos taurus), horses (Equus caballus), Canada Geese (Branta canadensis), and white-tailed deer
(Odocoileus virginianus). We chose these animals because they were readily accessible and white-tailed
deer and Canada Geese are considered aviation hazards, as well as being easily identifiable within
aerial imagery. A four-class classification problem involving these species was developed from
the acquired data using deep learning neural networks. We studied the performance of two deep
neural network models, convolutional neural networks (CNN) and deep residual networks (ResNet).
Results indicate that the ResNet model with 18 layers, ResNet 18, may be an effective algorithm at
classifying between animals while using a relatively small number of training samples. The best
ResNet architecture produced a 99.18% overall accuracy (OA) in animal identification and a Kappa
statistic of 0.98. The highest OA and Kappa produced by CNN were 84.55% and 0.79 respectively.
These findings suggest that ResNet is effective at distinguishing among the four species tested and
shows promise for classifying larger datasets of more diverse animals.

Keywords: drone; RPA; UAV; UVS; CNN; ResNet; machine learning

1. Introduction

Animals colliding with aircraft pose significant risks for animal and human safety, as
well as serious costs for aviation when strikes occur [1,2]. Here, we define risk in its basic
form as the likelihood of a collision with the likelihood of predefined damage or negative
effects [3]. Airport biologists and personnel attempt to mitigate these risks by deterring
certain species from airports by habitat modification, fencing, translocation, auditory or
visual deterrents, and population control, but identifying animal area use and prioritizing
management actions can be difficult [4,5]. Animal monitoring is routinely conducted on
many airports, but bias varies among human observers, and frequent monitoring is some-
times unattainable due to time and funding constraints and the amount of area needing to
be covered [5,6]. We suggest that there is opportunity to couple traditional animal survey
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methodology (e.g., avian point counts) with novel animal sampling techniques to survey
airports with potentially minimal bias and effort [7].

Small unmanned aircraft systems (sUAS) have recently emerged as a potential solution
for safely conducting accurate animal surveys among multiple human observers [8-13].
They enable users to safely and easily access and cover expansive areas with fine spatial
and temporal resolutions while reducing labor costs and user bias [14-20]. Manual image
analysis by humans is one of the primary constraints of sUAS for monitoring animals
because sorting and analyzing large amounts of imagery that can be collected in minimal
time (e.g., >1000 images) without missing animals takes a large amount of time [21]. Most
biologists do not have the time or personnel resources to devote to manually analyzing
these images, so image analysis is often not even conducted.

Previous research suggests that automated classification techniques can classify cam-
era trap imagery [22,23], thus, it is reasonable to apply similar processes to imagery
obtained via sUAS [23,24]. Indeed, automated machine learning techniques have been
used to classify animals quickly and accurately from high resolution sUAS-collected im-
agery [25-28]. A previous study comparing unsupervised and supervised classification
approaches determined that a supervised learning approach using linear discriminant
analysis and a symbolic classifier outperformed unsupervised approaches like principal
component analysis and K-means clustering [29]. Supervised deep learning algorithms,
such as convolutional neural networks (CNN), outperform traditional supervised ma-
chine learning techniques such as support vector machines in learning distinctive features
from data [30]. CNNs use a series of convolutional layers to filter the input into higher
level features. While base deep learning classification algorithms have produced 60-80%
classification accuracy between objects in the past, deeper neural networks with up to
152 layers have been demonstrated recently to perform better at classification tasks [31].
These networks can extract more features and improve upon the classification generated
from CNNSs, which is especially useful for discerning animals from an aerial viewpoint as
there are less features to work with than traditional image classification problems. While
deep neural networks require immense training, a technique called residual learning can
ease the training cost. Residual learning happens through reformatting the learning layers
as learning residual functions with sequential reference to the previous layer inputs, rather
than learning unreferenced functions. This allows for deep neural networks to maintain a
relatively low complexity and demonstrates higher accuracy than traditional CNNs [32].

The objective of this study is to compare the efficacy of different deep learning frame-
works on animal imagery collected using sUAS. Based on the methods found in literature,
two deep learning frameworks were compared in order to determine best practices for
classifying animals quickly and accurately from sUAS-collected imagery in airport-like
environments. We expected the deep learning approach to be able to accurately classify be-
tween the four animal species as well as the ResNet algorithm to outperform the traditional
CNN approach in terms of classification accuracy.

2. Materials and Methods
2.1. Study Area and Image Collection

We collected images in the visible spectrum (RGB) using either a DJI Zenmuse XT2
with an 8 mm visual lens (640 x 512 25 mm lens thermal camera) or a DJI Zenmuse
X7 with a 35 mm lens mounted on a multirotor DJI Matrice 200 V2 (SZ DJI Technology
Co., Ltd., Shenzen, China, Figure 1). Flights were conducted using both manual and
autonomous flight modes with a DJI Cendence remote controller and the DJI Pilot app on
Android software with a Samsung T500 tablet. Autonomous flights were conducted using a
lawnmower pattern with 60% overlap, and in both autonomous and manual flight, images
were taken at 2 s intervals with the gimbal at nadir (90 degrees or straight down) angle.
A lawnmower pattern covers an entire survey region evenly and follows a traditional
back-and-forth path of a lawnmower [33]. All other settings were automatically applied
through the DJI Pilot app.
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Figure 1. Small, unmanned aircraft system used in this study—Quadcopter—D]I Matrice 200 V2—
equipped with visible/thermal sensor payload—Zenmuse XT2—that was used to capture imagery.

Flights were conducted at varying altitudes of less than 60 m above ground level
(AGL), but high enough to avoid disturbing animals, over Mississippi State University
properties (33.45626, —88.79421) between January and April 2021 including cattle pastures,
row crops, captive facilities, and small farm ponds (Figure 2). The total study area was
approximately 6.2 square kilometers. We selected flight altitudes based on previous re-
search [34-36] concerning animal disturbance to UAS and operational considerations in an
airport environment.
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Figure 2. Study area (shown in red wire frame)—Mississippi State University properties—Cattle pastures, row crops,

captive facilities, and small farm ponds.

The aforementioned combinations of sensors and flight parameters were chosen to
generate high resolution images among the different animals. We selected four groupings
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of domestic and wild animals for this study, horses (Equus caballus), white-tailed deer
(Odocoileus virginianus), cattle (Bos taurus), and Canada Geese (Branta canadensis). Our
selections offered us accessibility (all species) as well as opportunities to incorporate
potential hazards to aircraft (white-tailed deer and Canada Geese) [1]. There was minimal
movement among animals during the collection of imagery. All flights were conducted
during daylight hours with optimum weather conditions (e.g., partly sunny to sunny,
<35 kph average wind speed and gusts, >5 km visibility) and following all U.S. Federal
Aviation Administration Part 107 regulations.

2.2. Image Processing

On returning from the field, we transferred images from onboard SD cards to an
external hard drive for storage and then to a local hard drive for manipulation. Image
resolution (cm/pixel) or ground sample distance (GSD) was variable since it depended on
AGL and sensor specifications, but all images had GSDs < 1.4 cm/pixel. Briefly, GSD is
the distance between the center points of adjacent pixels and a smaller GSD value equals
higher resolution. The images do not have the same GSD because they were obtained
from differing altitudes and from two different lenses. No image enhancement or other
preprocessing was performed on the collected imagery because we wanted to test our
algorithms on base imagery captured from a sUAS. Because deep learning models need to
be trained on a set of square imagery, we cropped out square images from the collected
RGB aerial images as close to individual animals as possible without including shadows
using Microsoft Photos (Microsoft Corporation, Redmond, Washington, U.S.). Several
aerial images contained more than one animal per image. We cropped 100 images of
individual animals per animal class among the four species, resulting in 400 total images
of individual animals.

Despite images sometimes containing the same individual animal, each picture was
a unique posture or position (Figure 3). Only full-bodied images of animals were used
for our experiments (Figure 3). Our intention in this effort was to demonstrate automated
identification, not to move towards fully developed, bias-corrected survey methodology.
We then used a cross-validation Jacknife [37] script to separate the cropped imagery folder
into training and testing data. The script randomly selected among images using a random
number seed to split the whole image set, preventing individual bias that may occur if the
training set was manually selected. Training data were used to train the neural network
models which were then tested using the testing data to determine the accuracy of the
model. All images were then readjusted to the same size before training.

Cattle

Horses

Canada geese

White-tailed deer

Figure 3. Sample images from dataset used in study.
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2.3. Deep Learning
2.3.1. Convolutional Neural Network

The convolutional neural network (CNN) is a type of deep learning model used for
image classification tasks. The CNN transforms an input image into a feature map repre-
sentation using a cascade of modules each performing three operations, (1) convolution
filtering, (2) rectified linear unit (ReLu), and (3) pooling. The convolution operation takes
the input raw pixel map or a feature map and applies filters or kernels to compute the
convolved feature map. Kernels are functions represented by 3 x 3,5 x 5 or 7 x 7 matrices
composed of different directional filters. These filter sizes were taken from a previously
used CNN example used to classify images from a CIFAR-10 dataset [38].

During the training process, CNN learns the optimal values for kernel functions to
enable the extraction of useful features from the input map. In each module, CNN could
employ or learn more than one filter to efficiently extract the feature maps. The number
of filters is directly proportional to number of feature maps the CNN extracts from input,
the amount of computational space, and time. After convolutional filtering, CNN applies
ReLu to extracted feature maps to introduce nonlinearity into the learning. This is a simple
threshold function where ReLu(x) = max (0, x), returns an output of x when the value of
x >0, and an output of 0 when the value of x < 0. The ReLu step is always followed by the
pooling step where the CNN down samples the feature map to reduce the size and thereby
the computation in next stages. Several pooling methods are mentioned in the literature
and max pooling is commonly used [39]. In max pooling, the output map is generated by
extracting a maximum value of the feature map from extracted tiles of a specified size and
stride. The last step in the CNN is a full connected neural network to learn the feature
maps extracted through convolutional filters. Additional details on the architecture of the
CNN may be found in Table 1. The CNN configuration we used contains 61,496 training
parameters [40].

Table 1. The architecture of the convolutional neural network (CNN) used for classification of 400 sUAS images of cattle,

horses, white-tailed deer, and Canada Geese, a subsample of the 1288 images collected that contained animals.

Layer Layer Name Output Size Layer Info Processing
1 2D Convolution 28 x 28 5 x 5,6, stride 1 Input 32 x 32, ReLu
2 14 x 14 2 x 2 Max Pooling, stride 2
3 2D Convolution 10 x 10 5 x 5,16, stride 1 ReLu, stride 1
4 5x5 2 x 2 Max Pooling, stride 2 2 x 2 Max Pool, stride 1
5 Fully Connected ANN 4x1 Cross Entropy Loss, 0.9 Momentum ReLu

2.3.2. Deep Residual Learning Networks

Deep learning architectures such as CNNs could perform better by introducing more
modules of convolutional filters, ReLu, and pooling into the architecture [31].The perfor-
mance improvement in training error achieved by adding deeper layers is often eclipsed
by poor overall optimization. This degradation in training is not caused by the over-
fitting of data [31]. In traditional deep learning networks such as CNN, the number of
layers of image features is increased through convolutional filtering and the resolution
is decreased through pooling. In deep residual neural networks (e.g., ResNet), a deeper
model is constructed by adding identity mapping layers, while the other layers are copied
from traditional (shallow) deep learning architecture [31]. In this way, the deeper network
constructed by using identity layers will not produce a training error that is higher than
the error rates of the shallower architecture. Additional details on the architecture of the
two ResNet algorithms may be found in Table 2. We chose the two examples of ResNet,
ResNet 18 and ResNet 34, which have 18 and 34 layers respectively. These are two popular
implementations studied widely for the image classification problem [32,41]. Different
layer sizes and number of layers were not tested for this study. Our ResNet configurations
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contained 11,689,512 and 21,797,672 training parameters for ResNet 18 and ResNet 34
respectively [40].

Table 2. The architectures of the deep residual neural networks (ResNet 18 and ResNet 34) used for classification of on 400
sUAS images collected of cattle, horses, white-tailed deer, and Canada Geese, a subsample of the 1288 images collected that

contained animals.

Layer Output Size ResNet 18 ResNet 34 Processing
1 2D Convolution 112 x 112 7 X 7,64, stride 2
2 56 x 56 3 x 3 Max Pooling, stride 2 Input 224 > 224, ReLu
3 2D Convolution 56 x 56 3x3 64|, 3x3 64 | 4 ReLu
3x3 64 3x3 64
4 2D Convolution 28 x 28 3x3 128 |, 3x3 128 | ReLu
3x3 128 3x3 128
5 2D Convolution 14 x 14 3x3 2% |, 3x3 25 |
3x3 256 3x3 256
6 2D Convolution 7x7 3x3 512 1, 3x3 512 1 4
3x3 512 3x3 512
7 Fully Connected ANN 1x1 Cross Entropy Loss, 0.9 Momentum Average Pool, Softmax

2.4. Image Augmentation

Deep learning classifiers require large amount of training images to achieve good
performance. Sometimes, this can be solved by using image augmentation where more
training images are artificially created through rotation, and flip. In this work, to improve
the number of training samples for CNN, ResNet18 and ResNet34, we employed two
augmentation techniques. First is random rotation where the images are rotated between
0 and 180 degrees, and in second technique, half of the training samples are flipped
horizontally [42].

2.5. Experimental Setup

We used the aforementioned algorithms and varied several parameters to test the
effect of learning rates and epoch sizes on classification accuracy. Two training and testing
splits were used, 10-90 and 20-80, resulting in 10 and 20 training images paired with 90 and
80 testing images respectively. After testing various training percentages ranging from 5%
to 50% (5-50 images) in increments of 5%, we observed that 10% training samples (10 im-
ages) provided a fairly high accuracy and chose this as our default training percentage. We
also observed that increasing the number of training samples past 20% did not significantly
improve the overall accuracies of the algorithms.

Three different learning rates were compared in this set of experiments. The deep
learning neural network models used in this study were trained using the stochastic
gradient descent (SGD) algorithm [43]. SGD optimizes the current state of the model
by estimating the error gradient using the training samples and updating the weights
using backpropagation. Learning rate affects how much the model changes in response
to the estimated error from the model weights updating in each epoch. Choosing the
appropriate learning rate is crucial as too small of a learning rate may result in a longer
training process without a significant increase in accuracy. However, a value that is too
large may result in unstable training due to converging too fast to a subpar solution leading
to lower accuracy [44]. Typical learning rates used in training neural networks are between
0.0 and 1.0 [45]. The learning rate is considered one of the most important parameters
of the model and we considered this rate carefully in our approach [46]. Specifically, we
tested learning rates of 0.0001, 0.001 and 0.1. Other studies have traditionally studied these
learning rates, so we used them for our experiments [47]. A learning rate of 0.0001 was
chosen as the starting learning rate because it was the default learning rate for the PyTorch
SGD algorithm [48].

The number of epochs sets the number of times that the learning algorithm will
traverse through the training set [47]. Epochs are typically set as large numbers for the
algorithm to run until the model is sufficiently optimized [47]. Typically, higher accuracies
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are expected as the epoch sizes increase, but there is a limit where the network begins to
become over-trained and would not benefit from more training epochs [47]. We empirically
determined our epoch experiments by testing a range of epochs from 5 to 100 in increments
of 10 epochs for the ResNet algorithms. The ResNet algorithms produced a fairly high
accuracy around the 25-epoch mark but did not display much improvement after increasing
past 100 epochs. The CNN epoch size of 1000 was determined by adjusting until the run
time was comparable to the ResNet model run times.

We compared our algorithms and the various adjusted parameters using both overall
accuracy (OA) and Kappa statistic. Overall accuracy helps us understand how many
pictures were misclassified and Kappa statistic gives us a measure of how different the
observed agreement is from the expected agreement [49]. All experiments were performed
on a 64-bit Intel® Core™ i7-8550U Windows CPU with 16 GB of RAM.

3. Results
3.1. Collected Imagery

We conducted seven different flights and collected 3438 total images of which 1288 con-
tained one or more animals. We captured 183 images of horses (range 1-15 individuals per
image), 61 images of white-tailed deer (range 1-2 individuals per image), 939 images of
cattle (1-20 individuals per image), and 105 images of Canada Geese (1-12 individuals per
image). Of these aerial images collected, numerous images contained more than one animal.
We only chose 100 animals from these aerial images for the purpose of these experiments.

3.2. Deep Learning Algorithm Comparisons

No consistent learning rate was found that provided the best accuracy for the CNN
algorithm. For the 10% training, a learning rate of 0.01 produced the highest accuracy,
while for the 20% training, a learning rate of 0.001 produced the highest accuracy (Table 3).
However, the learning rate of 0.001 for both ResNet algorithms consistently provided the
highest accuracy for both training splits compared to other learning rates of 0.0001 and
0.01 (Table 3).

Table 3. Comparison of overall accuracy, Kappa statistic, and run time for CNN, ResNet 18, and ResNet 34 with three
different learning rates and two different training sizes.

10% Training Samples 20% Training Samples

Algorithm Learning Rate Run Time OA Kappa Run Time OA Kappa
CNN 0.0001 13m30s 71.27% 0.59 19m38s 74.38% 0.65
(1000 epochs) 0.001 9m2ls 66.12% 0.53 9m44s 80.54% 0.68
B 0.01 9m24s 72.62% 0.63 9m59s 78.72% 0.66
ResNet 18 0.0001 I9m8s 94.04% 0.92 9m47s 94.59% 0.93
(25 epochs) 0.001 10m8s 96.74% 0.96 9m58s 97.89% 0.97
P 0.01 8mil4s 72.89% 0.63 Im42s 85.71% 0.80
0.0001 17m17s 93.04% 0.90 17m32s 96.06% 0.96

ResNet 34 o o

(25 epochs) 0.001 15m26s 97.83% 0.97 16mb53s 98.48% 0.98
0.01 14m15s 68.56% 0.54 17m1ls 59.89% 0.45

Best accuracies are bolded.

In this set of experiments comparing the effect of varying the epoch size (Table 4),
the default learning rate of 0.0001 studied above was used as the baseline learning rate.
The CNN run on 10% training sample had the best accuracy of 71.27% when run using
the highest epochs of 1000. The best accuracy for the CNN trained on 20% of samples
had the highest accuracy of 75.53% when run for 150 epochs. For both ResNet algorithms
trained on 20% of the samples, training for the largest number of epochs resulted in the
best accuracy. However, for the 10% training samples, ResNet 34 converged at 100 epochs
and did not benefit from further training. All algorithms were run at the default learning
rate of 0.0001.
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Table 4. Comparison of overall accuracy, Kappa statistic, and run time for CNN, ResNet 18, and ResNet 34 with four
different epoch sizes, two different training sizes, and no augmentation.

10% Training Samples 20% Training Samples

Algorithm Epochs Run Time OA Kappa Run Time OA Kappa
100 1m30s 60.07% 0.50 1m30s 65.54% 0.51
CNN 150 2m1ls 58.98% 0.49 3m 75.53% 0.66
(0.0001 LR) 200 2m50s 66.67% 0.53 3m45s 72.64% 0.60
1000 13m30s 71.27% 0.59 19m38s 74.38% 0.65
25 9m38s 94.04% 0.90 9m47s 94.59% 0.93
ResNet 18 50 36m39s 94.03% 0.90 43m42s 98.48% 0.98
(0.0001 LR) 100 73m23s 95.93% 0.93 83m18s 98.17% 0.97
200 147m 8 s 96.20% 0.94 158 m 16 s 98.78% 0.98
25 17m17s 93.04% 0.92 17m32s 96.09% 0.95
ResNet 34 50 41m20s 97.87% 0.97 42m30s 96.96% 0.95
(0.0001 LR) 100 8 ml4s 98.48% 0.98 81m45s 97.26% 0.97
200 166 m42's 95.12% 0.92 167m11s 98.92% 0.98

Best accuracies are bolded.

In this set of experiments comparing the effects of varying the epoch size (Table 5), the
experiment shown in Table 4 being repeated with random rotation image augmentation.
The CNN with 10% training data showed an improvement of approximately 1.3% of OA
and 0.04 of Kappa whereas with 20% training data, random rotation image augmentation
improved OA by almost 10% and Kappa by 0.14 which is significant. With ResNet clas-
sifiers, the improvement in overall accuracy is not significant. Both ResNet algorithms
trained on 10 and 20% benefitted from training with the most epochs, peaking at 99.18%
for ResNet 18 and 98.91% for ResNet 34.

Table 5. Comparison of overall accuracy, Kappa statistic, and run time for CNN, ResNet 18, and ResNet 34 with four
different epoch sizes, two different training sizes with random rotation image augmentation.

Random o .. o ..
Rotation 10% Training Samples 20% Training Samples
Algorithm Epochs Run Time OA Kappa Run Time OA Kappa
100 1mOs 44.98% 0.26 1m8s 83.19% 0.77
CNN 150 1m29s 58.26% 0.44 1m53s 81.02% 0.73
(0.0001 LR) 200 1m58s 67.47% 0.56 2m13s 83.19% 0.77
1000 9m53s 72.64% 0.63 11m40s 84.55% 0.79
25 11m?27s 93.22% 0.91 l6m2s 96.20% 0.94
ResNet 18 50 2lm1ls 94.85% 0.93 26m1ls 97.83% 0.97
(0.0001 LR) 100 42m48s 96.74% 0.95 73m13s 99.18% 0.98
200 84m1l2s 97.56% 0.96 149m 16 99.18% 0.98
25 19m17s 89.43% 0.85 30m59s 96.47% 0.95
ResNet 34 50 37m10s 95.66% 0.94 51m50s 98.64% 0.98
(0.0001 LR) 100 74m32s 96.47% 0.95 100 m 42 s 97.56% 0.96
200 146m 24 s 97.56% 0.96 182m50s 98.91% 0.98

Best accuracies are bolded.

In this set of experiments comparing the effects of varying the epoch size (Table 6), the
experiment shown in Table 4 being repeated with horizontal flip image augmentation. The
improvement offered by horizontal flip augmentation clearly significant with the CNN
than ResNet. The CNN produced OAs of 72.64% and 84.55% for 10 and 20%. The ResNet 18
algorithm produced accuracies of 97.56% and 99.18% for 10 and 20% training percentages,
respectively. The ResNet 34 algorithm produced accuracies of 97.56 and 98.91% for the

10 and 20% training percentages.
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Table 6. Comparison of overall accuracy, Kappa statistic, and run time for CNN, ResNet 18, and ResNet 34 with four

different epoch sizes, two different training sizes with horizontal flip image augmentation.

Horizontal Flip 10% Training Samples 20% Training Samples

Algorithm Epochs Run Time OA Kappa Run Time OA Kappa

100 1m2s 68.83% 0.58 1m15s 78.31% 0.71

CNN 150 1m37s 71.00% 0.61 2m4s 84.01% 0.78

(0.0001 LR) 200 2m14s 72.35% 0.63 2m3ls 83.19% 0.77

1000 11mO0s 71.54% 0.62 12m37s 81.57% 0.75

25 11m43s 93.49% 0.91 14m4s 97.83% 0.97

ResNet 18 50 2Im29s 92.41% 0.89 28m15s 99.18% 0.98

(0.0001 LR) 100 44mls 97.56% 0.96 61m17s 98.64% 0.98

200 85m42s 95.66% 0.94 118 m41s 98.91% 0.98

25 21m35s 96.74% 0.95 23m2ls 98.10% 0.97

ResNet 34 50 41m33s 97.01% 0.96 47m33s 98.64% 0.98

(0.0001 LR) 100 80m16s 96.20% 0.94 9mb55s 98.64% 0.98

200 155m31s 97.01% 0.96 195m 39 s 99.18% 0.98

Best accuracies are bolded.

4. Discussion

Our results demonstrated that all three deep learning algorithms can accurately
classify four animal species captured from aerial imagery. Upon further comparison
between CNN and ResNet algorithms, ResNet consistently produced better OA and Kappa
compared to the plain CNN. ResNet 18 was able to train faster than the ResNet 34 due
to the smaller number of layers. Despite the faster training time and a smaller number of
layers, ResNet 18 still managed to remain comparable or favorable to ResNet 34 for this
classification problem. The larger number of neural network layers in ResNet algorithms
likely provide a more robust classification of species. However, ResNet 34 may be too
complex when training samples are scarce. ResNet with 34 layers did not converge as well
as ResNet with 18 layers when trained with 10% of samples. A base CNN is also not ideal
for this problem due to its need for many training samples [50].

From our learning rate experiments, we gathered that finding an optimized learning
rate is crucial for the ResNet algorithms. ResNet 18, increasing the learning rate by a factor
of 10 from 0.0001 to 0.001, improved accuracy by 2.7%. This is relatively insignificant
when compared to the 23.85% decrease in accuracy when the learning rate is further
increased by a factor of 10 to 0.01 for ResNet 18. Having a 0.01 learning rate, which
changes the weights 100 x the rate of 0.0001, led both ResNet networks to misclassify more
animals. Due to the limited number of training samples used, smaller learning rates are
favorable for the ResNet algorithm rather than larger, which is supported by previous
research [51]. The CNN network did not converge as much with smaller learning rates, but
the largest learning rate caused the network to overshoot the weights and reduce accuracy.
Other studies have found similar trends where smaller learning rates memorizes easy-to-
generalize patterns well and outperform larger learning rates [52]. While this classification
problem was relatively easy due to the many visible distinctions among the four animal
species studied, future studies involving classification of subtly different species, such as
Great Egrets (Ardea alba) compared to Snowy Egrets (Egretta thula), may prove difficult for
the CNN with smaller learning rates due to the lack of generalization in patterns.

Increasing training data improved the overall accuracies of most of our algorithms
drastically, by upwards of 5%. Several other studies have demonstrated the need for
larger training samples [53-55], with some suggesting data augmentation to solve data
deficiency issue [53,54]. We chose to test the performance of our models on a low number of
training samples along with two different augmentation techniques in order to determine
the efficacy of the algorithms. Despite the relatively low number of training samples, our
algorithms were able to produce fairly high accuracies, ranging from 71% to 98% between
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the CNN and ResNet algorithms. With the use of random rotation and horizontal flip
augmentation the accuracies were improved significantly (Tables 5 and 6).

For the CNN algorithm, increasing the epochs resulted in higher accuracy by allowing
the model to learn the general pattern [56]. A drastic improvement in accuracy was seen
for the CNN algorithm trained on 20% samples with only a 50 epochs increase from 100 to
150, but accuracy decreased when epochs increased further past 150. This is likely due to
the increased number of training samples providing additional valuable information to
the network, allowing the model to converge much earlier. However, the model becomes
overfit when the epochs are increased past 150, which occurs when the network is too
optimized on the training data and misses a more general trend [57]. For the ResNet
algorithms, increasing the epoch sizes did not result in significant accuracy improvements,
(<5%). The high classification accuracy demonstrated by the ResNet algorithm indicates
that the model is fairly well optimized to the classification problem within 25 epochs.

The majority of misclassifications produced by algorithms were between animals
with similar body types. Notably cows, horses, and deer occasionally show similar body
structure (Figure 4). The misclassifications may be most alleviated by increasing the
number of training samples. While learning rates and epoch sizes are important, in our
case, the amount of training samples consistently led to improved accuracies. In addi-
tion to more training samples, approaches involving thermal imagery or pre-filtering
images to improve feature extraction before feeding into the network may also decrease
misclassifications [53,54,58]. Another consideration for misclassifications involves sensitiv-
ity to body positions as well as animal movements. Our deep learning algorithms are both
rotation and scale invariant as they were trained on images with a variety of different body
rotations and postures. Bias due to movement of animals was also not considered due to the
still imagery being captured with high shutter speeds. Despite our best efforts to remove
shadows from imagery, shadows still remained a factor in some of the misclassifications.
As shown above in Figure 3a, the black shadow of the horse may have caused the network
to classify the overall image as a black cow. In addition, the background of the photo may
have also impacted the accuracy of these classifications. For our experiments, this was
unavoidable as the network models required square images.

predicted: cows predicted: horses predicted: cows

AR

(@) (b) (©

Figure 4. Examples of misclassified images of (a) a horse, (b) cattle, and (c) a white-tailed deer.

The algorithms tested in these experiments took minimal time to run, with 2 h being
the longest run time. The number of training parameters for the CNN is significantly
smaller than either ResNet algorithms, around 60,000 compared to 11 and 21 million
parameters for ResNet 18 and 34 respectively. This drastic difference in the number of
training parameters led to a large difference in run time between the two types of algorithms.
Increasing the sample sizes would also increase the run time as the model needs more time
to train on a higher number of samples.

Our results comparing algorithms, learning rates, and epoch sizes demonstrates the
utility of CNN and ResNet algorithms for animal classification and sets a foundation for
future studies to classify among different animals. As evidenced in all the experiments,
having more training samples leads to higher classification accuracies. As researchers
collect more imagery using sUAS and build aerial imagery repositories, neural network
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algorithms will benefit from having a more robust set of images to provide accurate weight
adjustments to the model [53-55]. This high level of accuracy compliments traditional
wildlife surveys by accurately classifying animal species and has the potential to assist
in estimating relative abundance in airport land covers [7]. Automated classification will
then aid wildlife managers and airport personnel by decreasing the workload and time
required to sort through large amounts of sUAS collected imagery, contributing data to
strike risk assessments [6], and better informing prioritization of animal management
actions to reduce animal strikes with aircraft [8-13].

5. Conclusions

Our study demonstrates that visible imagery collected at 60 m or less is adequate for
accurately classifying four animal species. We used two readily accessible species and two
species ranked as airport hazards. We demonstrated that CNN and ResNet both offer high
classification accuracies even with small amounts of training samples. Increasing training
sample sizes improves the networks, but training sizes between 10 to 20 images per class
are adequate for learning animals in our study from an aerial perspective. Future studies
using larger datasets with more species along with more deep learning algorithms will
improve automated classification of animals from aerial imagery.
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