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Abstract: Passive sonar systems are used to detect the acoustic signals that are radiated from marine
objects (e.g., surface ships, submarines, etc.), and an accurate estimation of the frequency components
is crucial to the target detection. In this paper, we introduce sparse Bayesian learning (SBL) for the
frequency analysis after the corresponding linear system is established. Many algorithms, such as fast
Fourier transform (FFT), estimate signal parameters via rotational invariance techniques (ESPRIT),
and multiple signal classification (RMUSIC) has been proposed for frequency detection. However,
these algorithms have limitations of low estimation resolution by insufficient signal length (FFT),
required knowledge of the signal frequency component number, and performance degradation at
low signal to noise ratio (ESPRIT and RMUSIC). The SBL, which reconstructs a sparse solution from
the linear system using the Bayesian framework, has an advantage in frequency detection owing
to high resolution from the solution sparsity. Furthermore, in order to improve the robustness of
the SBL-based frequency analysis, we exploit multiple measurements over time and space domains
that share common frequency components. We compare the estimation results from FFT, ESPRIT,
RMUSIC, and SBL using synthetic data, which displays the superior performance of the SBL that has
lower estimation errors with a higher recovery ratio. We also apply the SBL to the in-situ data with
other schemes and the frequency components from the SBL are revealed as the most effective. In
particular, the SBL estimation is remarkably enhanced by the multiple measurements from both space
and time domains owing to remaining consistent signal frequency components while diminishing
random noise frequency components.

Keywords: frequency analysis; sparse Bayesian learning; in-situ multiple measurements

1. Introduction

The passive sonar system receives underwater acoustic signals that include marine
objects, such as surface ships and submarines. The signals are typically composed of
narrowband and broadband components. In particular, the frequency estimation of the
tonal components (extremely narrowband components) is an important issue for detecting
and identifying marine objects [1–3].

The traditional methods for frequency estimation are based on discrete Fourier trans-
form (DFT). Practically, a fast version DFT of fast Fourier transform (FFT) is used for rapid
calculations. The FFT has a limitation of frequency resolution by a limited signal length. To
enhance the resolution, various frequency estimation algorithms including the estimation
of signal parameters via rotational invariance techniques (ESPRIT) [4], multiple signal
classification (RMUSIC) [5], and compressive sensing (CS) [6] have been proposed.

The ESPRIT and RMUSIC estimate frequency components using a signal subspace
from the correlation matrix of the acoustic signal and display super-resolution frequency
detection results. However, to obtain the signal subspace reliably, a large number of
observations are required. Furthermore, these algorithms have the prerequisite condition
of the signal component number in the observations for accurate frequency estimation and
their performances significantly deteriorate at low signal to noise ratio (SNR) [7–10].
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The CS solves a linear system (generally, undetermined linear system) via sparse
representation using limited observations [6]. In underwater acoustics, the CS has predom-
inantly been applied to high-resolution beamforming and line spectral estimation [11–18].
Meanwhile, the conventional CS has a basis mismatch problem because the true values in
the continuous domain are expressed using the sparse representation in the discrete domain.
Atomic norm minimization (ANM) is adopted in order to mitigate the problem [19–21].
However, it requires a computational burden with respect to the linear system size.

Both conventional and advanced CS suffers from manually determined regularization
parameters controlling the sparsity of the solution [6,11–21]. In order to circumvent the
limitation of CS, sparse Bayesian learning (SBL) has been applied in underwater acoustics.
The SBL proposed by Tipping [22] for the classification and regression is one of the sparse
signal recovery approaches using Bayesian inference [23]. The hyperparameters of source
and noise variances in the SBL are automatically obtained via its iterative optimization
processing and this makes the SBL more useful.

Recently, the SBL has been used in finding the direction of arrivals (DOAs) [24–35],
localizing acoustic sources [35–38], and mode extraction [39]. Similar to CS, the SBL suffers
from the basis mismatch arising from the discrete representation in the linear system,
and the off-grid SBL models using approximations are proposed in order to relieve the
problem [25–30]. On the other hand, noise in the measurements degrades the SBL based
beamforming performance and the SBL is expanded to enhance the performance by using
multiple measurements [24–39]. In the SBL using multiple measurements, the commonality
of the source signals over the multiple measurements is exploited, and it increases the
robustness of the SBL to the noise. Besides, the SBL using multiple measurements has a
similar computational time to that for the SBL using a single measurement [24].

Here, based on the properties demonstrated in the previous works [24–39], the SBL
using multiple measurements is used for detecting frequency components corresponding
to the tonal signals in the passive sonar system after the linear system for the frequency
analysis is established. The sparse tonal signals and the multiple measurements along the
sensors in the sonar system should allow the SBL to have obvious frequency detections.
However, to the best of the authors’ knowledge, the SBL has not been applied for frequency
detection. Thus, in the current study, the detection results from the SBL are investigated
by comparing them to those from FFT, ESPRIT, and RMUSIC. The paper is organized
as follows. Section 2 provides the signal model of the frequency analysis for the linear
system. Section 3 introduces the SBL and its extension for the multiple measurements.
The frequency detection results using synthetic data and in-situ data are displayed in
Sections 4 and 5, respectively, and the performances of the frequency analysis schemes are
analyzed by comparison. In Section 6, a brief discussion is given. Section 7 summarizes the
present study.

2. Signal Model for the Frequency Analysis

The signal that is received by the passive sonar system can be classified into four
signal types as follows: tonal signals, propeller noise, hydrodynamic noise, and ambient
noise [21,40]. The tonal signals, which are generated by the machinery component of
marine objects, are generally present at low-frequency bands. The propeller noise from
the cavitation is produced by the propeller rotation, and the corresponding frequency
components are widely located at high-frequency bands. Hydrodynamic noise is generated
by the friction between a marine object and the surrounding medium. Ambient noise
includes surface noise, turbulence, and noise from the tectonic activity at the sea bottom,
etc. In the current study, the tonal signals are prominent components in the passive signal
after applying an analog filter (or low-pass filter) suppressing other signal types to the raw
data at the passive sonar system as in the conventional digital system and are used in order
to detect the marine objects [41–43]. The filtered signal is expressed as:

y(t) = s(t) + n(t), (1)
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where s(t) is the tonal signal and n(t) is the remaining ambient noise after the low-pass
filtering. The tonal signal s(t) is decomposed using Fourier transform (FT) as follows:

s(t) =
∫ ∞

−∞
S( f )e+j2π f td f , (2)

where S( f ) is the frequency response of s(t) at a frequency f . Since the raw acoustic data
passes through the analog filter that suppresses the signals at high frequencies and prevents
aliasing, low-frequency components between − fs/2 and + fs/2 dominantly remain, and
the infinite integral can be replaced by the finite integral in the range including the remain-
ing frequency band ( fs is a sampling frequency of the given digital sonar system). After
sampling both in time and frequency domains, Equation (2) is expressed in the discretized
domains as follows:

s(n∆t) = s[n] ≈
M−1

∑
m=0

Sme+j2π(m∆ f )(n∆t)∆ f , (3)

where Sm = S(m∆ f ), ∆ f = fs/M, and ∆t = 1/ fs. M is an integer that determines the frequency
resolution ∆ f , which must be greater than or equal to the number of the discrete-time signal N [40,41].
The summation corresponds to the integral from 0 to fs, which is equivalent to the previously
mentioned finite integral after the filtering owing to the periodicity fs of the FT of the discretized
signal s(n∆t). Then, the discrete-time signal including the noise is represented in the form of vector
and matrix as follows: y[0]

...
y[N − 1]

 =


e+j2π 0·0

M · · · e+j2π (M−1)·1
M

...
. . .

...

e+j2π 0·(N−1)
M · · · e+j2π (M−1)·(N−1)

M


 S0∆ f

...
SM−1∆ f

+

 n[0]
...

n[N − 1]

. (4)

Equation (4) is rearranged by y = Ax+n, where y, A, x, and n are the measured data (the vector
on the left side of the equation), the dictionary matrix (the matrix on the right side of the equation),
the unknown which is relevant to the frequency component amplitude (the vector multiplied by the
dictionary matrix), and the noise (the last term in the equation), respectively.

The time and frequency resolutions determine the numbers of rows (N) and columns (M) in the
dictionary matrix, respectively. Particularly, when M equals N, the dictionary matrix turns into a
DFT matrix, and the frequency components can be obtained by multiplying the inverse of the DFT
matrix to Equation (4), which is equivalent to the frequency analysis using the FFT. When using
the FFT, a large signal length from a long-time signal is required in order to increase the frequency
resolution, and the frequency detection results are inevitably contaminated by the noise.

In order to enhance the frequency resolution without a longer measurement, M must be much
larger than N, and Equation (4) becomes an underdetermined linear system, which should have
infinite solutions. In the passive sonar system, the tonal signals have sparse frequency components,
and the underdetermined linear system can be solved by exploiting the sparsity of the unknown
comprising the frequency components. Thus, we apply the SBL (described in the following section),
which recovers the sparse solution from the linear system using the Bayesian framework.

3. Introduction of Sparse Bayesian Learning
CS is one of the representative signal processing techniques that solves the underdetermined

linear system using sparse signal reconstruction. The sparsity condition is explicitly imposed on un-
known x in the CS [6,11,12]. Since the tonal signals are composed of the sparse frequency components
at low-frequency bands, CS can be applied to the filtered signal in order to estimate the frequency
components. However, when using CS, a regularization parameter, which simultaneously influences
the fitness of the solution to measurement and the sparsity of the solution, is determined manually,
and computational burden is relative to the number of multiple measurements. In the current study,
in order to overcome the problems in the CS, we apply the SBL [22] using the Bayesian inference to
the passive sonar frequency analysis, which results in high-resolution frequency estimations with
less noise due to the sparsity of the SBL solution (shown in Sections 4 and 5).
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3.1. Single-Measurement SBL
In the SBL framework, unknown x and noise n are treated as random variables and are assumed

to follow zero-mean Gaussian distributions, and the SBL solves the linear system of Equation (4)
using the given measurement y by finding x̂ which maximizes the probability as follows:

x̂ = argmax
x

p
(

x, γ, σ2
∣∣∣y) (5)

= argmax
x

p
(

x
∣∣∣y, γ, σ2

)
p(γ, σ2

∣∣∣∣y), (6)

where γ is the variance of the unknown, and σ2 is the variances of noise, and they are obtained from
y via maximizing p

(
γ, σ2

∣∣y) (the second term of Equation (6)), which is equivalent to p
(
y
∣∣γ, σ2 )

when the variances follow uniform distributions as in the current study [22–24]. Subsequently, the
solution x̂ is derived with a maximum a posteriori (MAP) estimate of p

(
x
∣∣y, γ, σ2 ) (the first term of

Equation (6)) using previously estimated γ and σ2 with y.
Probability models in the SBL, which are used for the estimations, are introduced as fol-

lows. The posterior probability distribution p
(
x
∣∣y, γ, σ2 ) can be denoted as in Equation (7) using

Bayes’ theorem:

p
(

x
∣∣∣y, γ, σ2

)
=

p
(
y
∣∣x, σ2 )p(x|γ)
p(y|γ, σ2)

, (7)

where p
(
y
∣∣x, σ2 ) and p(x|γ) are the likelihood function and prior function, respectively. The de-

nominator p
(
y
∣∣γ, σ2 ) is the evidence (marginal likelihood) used to evaluate the hidden variables (or

hyperparameters) of the variances.
The likelihood function p

(
y
∣∣x, σ2 ) is a Gaussian probability distribution, which arises from

the linear system, whose noise following the zero-mean Gaussian distribution having the constant
variance of σ2 is expressed as follows:

p
(

y
∣∣∣x, σ2

)
=

1

(πσ2)
N exp

(
−σ−2‖ y−Ax ‖2

)
. (8)

The unknown x is composed of an element xm following the zero-mean Gaussian distribution
with the variance γm (element of γ), and the prior probability is denoted as follows:

p(x|γ) =
M

∏
m=1

p(xm; 0, γm) =
1

πN ∏M
m=1 γm

exp
(
−ΣM

m=1γ−1
m x2

m

)
. (9)

In the SBL, the components of x are activated when the corresponding components of γ have
non-zero values. During the iterative estimation in the SBL, γ turns into a sparse vector, which is an
advantage for the high-resolution estimation as well as the denoising.

The evidence is the integration of the product of the likelihood function and the prior probability
distribution over x, and is expressed as follows:

p
(

y
∣∣∣γ, σ2

)
=
∫

p
(

y
∣∣∣x, σ2

)
p(x|γ)dx =

1
πNdetΣy

exp
(
−yHΣ−1

y y
)

, (10)

where Σy = σ2IN + AΓAH (Γ = diag(γ)).
By inserting Equations (8)–(10) into Equation (7), we can get the posterior probability distribu-

tion as follows:
p
(

x
∣∣∣y, γ, σ2

)
=

1
πNΣx

exp
(
(x− µx)

HΣ−1
x (x− µx)

)
, (11)

where µx = ΓAHΣ−1
y y and Σx =

(
σ−2AHA + Γ−1

)−1
. Note that the posterior probability distribu-

tion has a maximum at µx, which is the solution of the linear system, such as x̂ = µx.
In order to derive the solution, the variances (γ and σ2) are required with the measurement y,

which are obtained using the probability model p
(
y
∣∣γ, σ2 ) that was previously mentioned.(

γ̂, σ̂2
)
= argmax

γ,σ2
p
(

y
∣∣∣γ, σ2

)
. (12)

That means that we estimate the hyperparameters of γ̂ and σ̂2 using a type-II maximum likelihood.
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A log-likelihood form is employed for the hyperparameter estimation. γ̂ is the vector that
satisfies Equation (13).

γ̂ = argmax
γ

log p(y|γ, σ2) ∝ argmax
γ

(
−yHΣ−1

y y− log detΣy

)
. (13)

The derivative of Equation (13) for finding the maximum provides the update rule for γm
during the iterative estimation in the SBL as follows [24]:

γnew
m = γold

m
‖ yHΣ−1

y am ‖2
2

aH
m Σ−1

y am
, (14)

where γnew
m and γold

m are present and previous values for γm, and am is the mth column of the
dictionary matrix A. (m)H is the Hermitian transpose of vector m.

In order to estimate the noise variance σ̂2, the expectation-maximization (EM) algorithm has
been used [22,23]. Meanwhile, in [24], the authors applied a stochastic maximum likelihood, which
estimates the noise variance asymptotically and efficiently, and the update rule for σ2 using the
stochastic maximum likelihood is denoted as follows:(

σ2
)new

=
1

N − K
(
IN −AMA+

M
)
yyH (15)

Here, Equation (15) is used for the noise variance evaluation when a single measurement is
given. The active setM = {m ∈ N|K largest peaks in γnew}. AM is the matrix that is formed by K
columns of A, which are indexed byM, and A+

M is the Moore-Penrose pseudo-inverse of AM [24,44].
While K must be predefined manually before the iteration, it is insensitive to the solution x̂.

3.2. Multiple-Measurement SBL
During capturing passive sonar data, multiple sensors composed of an array in the sonar system

are used and are kept for recording the passive sounds. Thus, the multiple measurements from two
different domains (space and time) are available for frequency analysis. Basically, an average of the
separate estimations according to a single measurement belonging to the multiple measurements can
be used as the final evaluation of frequency components. However, here, common signal frequency
components over the multiple measurements are exploited for the SBL estimation, where signal and
noise variances are consistent with the measurements, to increase robustness to noise as in [24,33,34].

The multiple measurements posterior probability distribution p
(
X
∣∣Y, γ, σ2 ) can be denoted

as follows:

p
(

X
∣∣∣Y, γ, σ2

)
=

p
(
Y
∣∣X, σ2 )p(X|γ)
p(Y|γ, σ2)

, (16)

where Y is the N × L measurement matrix comprising measurements (yl) as its columns, X is the
M× L unknown matrix (lth column is the unknown vector (xl) relevant to yl), and N is the N × L
noise matrix (lth column is noise (nl) in yl). L is the total number of multiple measurements.

In the SBL using multiple measurements, xl and nl are assumed independent across snapshots
and sensors. Then, the posterior probability can be represented by p

(
X
∣∣Y, γ, σ2 ) = p

(
x1
∣∣y1, γ, σ2)

p
(
x2
∣∣y2, γ, σ2) · · · p(xL

∣∣yL, γ, σ2). Then, we can express the likelihood function, prior probability, and
evidence for the multiple measurements using the product of each single measurement probability
as follows:

p
(

Y
∣∣∣X, σ2

)
=

L

∏
l=1

1

(πσ2)
N exp

(
−σ−2‖ yl −Axl ‖2

)
. (17)

p(X|γ) =
L

∏
l=1

1
πN ∏M

m=1(γm)l
exp

(
−ΣM

m=1

(
γ−1

m

)
l

(
(xm)

2
)

l

)
. (18)

p
(

Y
∣∣∣γ, σ2

)
=

L

∏
l=1

1
πNdetΣyl

exp
(
−yH

l Σ−1
yl

yl

)
. (19)

By inserting Equations (17)–(19) into Equation (16), the posterior probability for the multiple
measurements is expressed by Equation (20).

p
(

X
∣∣∣Y, γ, σ2

)
=

L

∏
l=1

exp
(
(xl − µxl )

HΣ−1
xl

(xl − µxl )
)

πNΣxl

, (20)
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where µxl is the lth column of µX, and µX = ΓAHΣ−1
y Y. µX is the solution of the linear system

Y = AX + N (i.e., X̂ = µX), which are averaged over the columns (or measurements) for the
final estimation.

For the solution, we estimate the hyperparameter γ̂ and σ̂2 by the type-II maximum likelihood.
Through the same process as in the single-measurement SBL, the update rules for the common
variances along the measurements are derived as follows:

γnew
m =

γold
m
L

L

∑
l=1
‖ yH

l Σ−1
y am ‖2

2/aH
m Σ−1

y am. (21)

(
σ2
)new

=
1

L(N − K)

L

∑
l=1

(
IN −AMA+

M
)
yly

H
l . (22)

As shown in Equations (21) and (22), the averages of source and noise variances along the
multiple measurements are used for the update during the iterative process in the SBL. The multiple-
measurement SBL has advantages in robust estimation owing to the averages enhancing the common
signal components while diminishing the random noise components.

4. Frequency Analysis Using Synthetic Data
In this section, we present the frequency detection results using synthetic data, which allows

performance analysis of the SBL according to various SNRs and frequency component numbers.
For the comparison, we applied FFT, ESPRIT, and RMUSIC, which are the representative frequency
analysis algorithms, along with the SBL. The frequency detection performance is compared in terms
of the recovery ratio (Rc), which is defined as the ratio of restored frequency component number to
the total frequency component number (see Equation (23)).

We generate K tonal signals for the synthetic data, where the tonal frequency components
are chosen randomly in the range from 0–500 Hz, and the corresponding amplitudes are from
the Gaussian distribution of N(1, 0.1). For the frequency analysis, 25 multiple measurements of
0.2 s-length signals sampled with 1 kHz (twice the highest frequency) are used. The signal length
determines the FFT frequency resolution, and the signal frequency components within 5 Hz (inverse
of 0.2 s) cannot be resolved by the FFT owing to the insufficient signal length. When using the
SBL for the frequency estimation, the frequency difference between adjacent columns is set as
1 Hz in order to improve the frequency resolution with the same measurements, and it induces
the underdetermined linear system of Equation (4) as expected. The zero-mean white Gaussian
noise nl is added to clean signal s, and the corresponding SNR is computed as follows [21,24,33,34]:

SNR = 10 log
(
‖ s ‖2

2/ 1
L ∑L

l=1 ‖ nl ‖2
2

)
.

Figure 1 displays an example of the frequency detection results for signals including ten tonal
frequency components at an SNR of 15 dB; the results are normalized by the corresponding maxima
for the convenient comparison. Here, the built-in functions of rootmusic and esprit in MATLAB are
used for RMUSIC and ESPRIT (Figure 1c,d), respectively, and their prerequisite condition of signal
frequency component number is exactly determined in the simulation. The FFT merges the two
frequency components in close proximity owing to its low resolution arising from the short signal
length. While the advanced schemes of ESPRIT and RMUSIC demonstrate a better distinction of the
close frequency components (frequency components around 50 Hz), they not only overlook some
frequency components (frequency components around 125 Hz) but also divide a single frequency
component into two (frequency component around 260 Hz). The problems are remarkably mitigated
by the SBL, which reconstructs all of the signal components near the corresponding frequencies from
the measurements. This is attributed to its sparse solution directly derived from the linear system
and the multiple measurements which remain as consistent signal components while suppressing
random noise components during the iterative process in the SBL. Meanwhile, the SBL estimations
slightly deviate from the true values because the off-grid true frequency components are represented
by their neighbor on-grid columns in the matrix of the linear system (basis mismatch) [18,25–30].
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For the simulation in Figure 1, the FFT, RMUSIC, ESPRIT, and SBL require computa-
tional times of 0.0005 s, 0.1344 s, 0.0970 s, and 1.896 s, respectively, under the computa-
tional environment of Intel(R) Core (TM) i9-9900K CPU. Meanwhile, the modified CS of 
ANM recovers the frequency components from the linear system with a computational 
time of 544 s (not shown in the current study). Although the SBL has more computational 
complexity than the classical approaches because of solving the linear system directly, it 
is still useful in the frequency analysis owing to its ability to recover signal frequencies in 
high resolution and reduce false detections with moderate computational time (much less 
than that for CS). 

We examine the frequency analysis schemes according to SNRs at a fixed frequency 
component number and frequency component numbers at a fixed SNR, and compare their 
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resolution of the FFT. Here, for a strict calculation of the recovery ratio, the Kth strongest 
components from the estimation are used. That is, the refined frequency components are 
used to calculate the recovery ratios in trials for a specific case (e.g., certain SNR at a fixed 
frequency component number or certain frequency component numbers at a fixed SNR), 
and their mean is the represented recovery ratio at the corresponding case. The recovery 
ratio increases as estimated dominant peaks locate near the true frequency components, 
and the opposite happens when peaks from noise are significant in the estimation and 
those corresponding to the true frequency components are excluded in calculating the 
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ten) are displayed in Figure 2a, where the SBL demonstrates the best performance for the 
overall SNRs. The noise in signals directly contaminates the frequency detections from the 

Figure 1. The frequency estimation results using (a) fast Fourier transform (FFT); (b) sparse Bayesian learning (SBL);
(c) estimation of signal parameter via rotational invariance techniques (ESPRIT); (d) root multiple signal classification
(RMUSIC). The signal includes ten frequency components (marked by x) at an SNR of 15 dB.

For the simulation in Figure 1, the FFT, RMUSIC, ESPRIT, and SBL require computa-
tional times of 0.0005 s, 0.1344 s, 0.0970 s, and 1.896 s, respectively, under the computational
environment of Intel(R) Core (TM) i9-9900K CPU. Meanwhile, the modified CS of ANM
recovers the frequency components from the linear system with a computational time
of 544 s (not shown in the current study). Although the SBL has more computational
complexity than the classical approaches because of solving the linear system directly, it is
still useful in the frequency analysis owing to its ability to recover signal frequencies in
high resolution and reduce false detections with moderate computational time (much less
than that for CS).

We examine the frequency analysis schemes according to SNRs at a fixed frequency
component number and frequency component numbers at a fixed SNR, and compare their
performances in terms of the recovery ratio defined as follows:

Rc =
1
C ∑C

c=1
∑K

i=1(ri)c
K

where ri =

{
1,

∣∣∣ fi − f̂i

∣∣∣ ≤ ∆ f /2
0, else

, (23)

where C is the number of trials (here, trials, where K tonal frequency components are
randomly selected from 0 Hz to 500 Hz, are repeated 1000 times for each case), fi is the ith
true frequency component, and f̂i is the estimated frequency component corresponding
to fi. In the current study, ∆ f is fixed at 5 Hz, which corresponds to the frequency
resolution of the FFT. Here, for a strict calculation of the recovery ratio, the Kth strongest
components from the estimation are used. That is, the refined frequency components are
used to calculate the recovery ratios in trials for a specific case (e.g., certain SNR at a fixed
frequency component number or certain frequency component numbers at a fixed SNR),
and their mean is the represented recovery ratio at the corresponding case. The recovery
ratio increases as estimated dominant peaks locate near the true frequency components,
and the opposite happens when peaks from noise are significant in the estimation and
those corresponding to the true frequency components are excluded in calculating the
recovery ratio.
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The recovery ratios according to SNRs (the frequency component number is fixed
at ten) are displayed in Figure 2a, where the SBL demonstrates the best performance for
the overall SNRs. The noise in signals directly contaminates the frequency detections
from the FFT, which deteriorate with the decrement of SNRs. While the RMUSIC and
ESPRIT ameliorate the FFT detection results, their performances (in particular, ESPRIT) are
significantly diminished by the intensive noise such as the beamforming [7–10]. However,
the SBL has an acceptable recovery ratio of 0.88 even at the lowest SNR of −15 dB by
exploiting the commonality over the multiple measurements (i.e., sharing the frequency
components across the measurements). Figure 2b shows an example of frequency detections
at the worst case (SNR of −15 dB), which allows a qualitative inspection of the schemes;
for the comparison convenience, a 2-D contour plot with grayscale is used. In the FFT
result, the intensive noise smears the true frequency components and makes the frequency
analysis ambiguous. While the ESPRIT estimates the frequency components in a higher
resolution, a significant number of incorrect detections across the frequency are induced
by the noise. The RMUSIC diminishes the false estimations at the cost of true signal
component loss. As in the high SNR simulation of Figure 1, the problems in the classical
approaches for frequency analysis are alleviated by the SBL. Whereas the SBL detections
have deviations from the true values by the basis mismatch and the noise lessens estimation
amplitudes (in particular, those corresponding to weak frequency components), all of the
tonal signals are recovered near the true values owing to the sparse evaluation using the
sufficient measurements.
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frequency components from the schemes.

Subsequently, the recovery ratios from the schemes are investigated along with the
frequency component numbers at the lowest SNR of −15 dB as shown in Figure 3a.
As expected, a lesser frequency component number is beneficial for accurate frequency
detections, and the recovery ratios decrease with the increment of the component number
except for the ESPRIT with poor performance at low SNR as in [7–10]. As shown in
Figure 3b, where 25 tonal components are included, the contaminated result from the
FFT with the low resolution cannot accurately resolve the true components owing to
the closer components. The denser frequency components are also detrimental to the



Sensors 2021, 21, 5827 9 of 17

frequency detections from ESPRIT and RMUSIC. Particularly, the number of correctly
detected components from RMUSIC is reduced and the corresponding components appear
faintly. Although the SBL displays the best detections among the schemes utilizing the
component numbers, the sparse solution from SBL degrades the estimations relative to the
component numbers. The false detections and the true component loss are improved by
extra measurements holding longer signal lengths, as shown in Figure 3c, where 50 multiple
measurements of 0.5 s-length signals are used for detecting 25 frequency components in
Figure 3b. The SBL performance is noticeably enhanced because the longer observations
provide additional equations for the underdetermined linear system (N gets bigger) and
enable the SBL solution to accommodate more frequency components. Furthermore, the
extra measurements reduce the previous false detections. This fact is also confirmed by the
in-situ data in the following section.
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length and measurement number are 0.2 s and 25, respectively; (c) the detection results for data including 25 frequency
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5. Frequency Analysis Using the Underwater In-Situ Data
5.1. Signals in the Experiment

We present frequency analysis results for the in-situ data measured near the Korean
peninsula. Tonal signals consisting of 21 frequency components including one pilot signal
are transmitted from a transducer towed by an experimental ship at a speed of approx-
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imately 1 m/s–1.5 m/s. The acoustic data are recorded for 66 min by a horizontal line
array (HLA) on the sea bottom, which is composed of 120 sensors; it is not allowed to
disclose the operating frequency range as well as sampling frequency owing to the sonar
system developed for defense, and the detection results are normalized by the maximum
frequency of fs/2.

The pilot signal has a 10 dB to 45 dB higher amplitude than the others, and the weak
signals are masked by the ocean ambient noise even when multiple measurements along
time and space are used. Beamforming using the strongest signal (i.e., beamforming at
the frequency corresponding to the pilot signal) indicates the track of the experimental
ship (Figure 4a), which approaches the array from its broadside and gets further away
after 33 min; the path is confirmed by the GPS of the experimental ship. During the
measurements, several fishing boats are near the array and low-frequency tonal sounds
from the boats are inevitably in the recording. In Figure 4b, broadband beamforming using
some passive signal components from the fishing boats and the experimental ship (marked
with black circles in Figure 5), which are identified by the SBL in the following subsection,
display regular tracks including the experimental ship. Thus, in the current study, the
tonal signals from the transducer and the ships are referred to as signals, which should be
detected using frequency analysis algorithms.
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5.2. Frequency Analysis Using a Single Measurement

We use a single measurement with a signal length of 0.5 s for frequency detection.
The signals are captured by the sensor in the middle of the HLA when the experiment
ship is near the sonar system (see the white box around 33 min in Figure 4). The detection
results from the FFT and SBL are displayed in Figure 5; the single measurement restricts
applications of ESPRIT and RMUSIC. The frequency components are detected along the
observation time. That is, the frequency analysis is conducted repeatedly (100 times in
this study). Here, the time window has the same size signal length (0.5 s) strides of 0.05 s
for the next frequency analysis, and each result is stacked vertically in order to observe
the frequency variation over time. For a convenient comparison, overall detection results
are normalized with their maximum value. When using the FFT, the stacked results are
equivalent to the spectrogram. As previously mentioned, besides the tonal components
from the transducer (marked by the red triangles and the green square for normal and
pilot components, respectively), the narrowband signals from the ships are constantly
detected, which are dominant from the experimental ship (refer to the track from passive
signals near the measurement). The frequency analysis using the FFT (Figure 5a) is smeared
by the overall noise, which masks the true frequency components and prevents a clear
frequency detection although the acoustic signals are measured by the HLA in close
proximity to the experimental ship. The SBL improves the detection result in terms of
the resolution and denoising as displayed in Figure 5b; the overall noise is significantly
reduced by the sparse estimation, which is beneficial to the detection clarity. However, the
insufficient measurement for the estimation induces intermittently emerged false detections
(in particular, the lower part of Figure 5b). In order to improve the performance, multiple
measurements along space and time can be exploited.

5.3. Frequency Analysis Using Multiple Measurements

Since the passive sonar system is composed of multiple sensors and measures under-
water sounds for sufficient time, three types of multiple measurements (time domain, space
domain, and time and space domain) are used for the frequency analysis. Correspondingly,
the multiple measurements data Y in the SBL is defined for each case as follows:

• Case 1: Y =
[
ys

1, ys
2, . . . , ys

Lt

]
;

• Case 2: Y =
[
y1

t , y2
t , . . . , yLs

t

]
;

• Case 3: Y =
[
y1

1, y2
1, . . . , yLs

1 , y1
2, y2

2, . . . , yLs
2 , . . . , y1

Lt
, y2

Lt
, . . . , yLs

Lt

]
.

Here, Lt and Ls are the numbers of snapshots (in the time domain) and sensors (in the
space domain), respectively. ys

t represents the tth snapshot at the sth sensor; the subscript
and superscript indicate dependences of the measurement on time and space, respectively.
The first (or the second) case uses multiple measurements at a fixed sensor s (or at a fixed
time t) whereas all of the measurements (Lt × Ls) are exploited for the frequency detections
in the last case.

The frequency analysis schemes are applied to 120 multiple measurements along time
(case 1), which are captured by the central sensor around 33 min, and each measurement
has a signal length of 0.5 s. Figure 6 displays the detection results according to the schemes
including RMUSIC and ESPRIT, where the prerequisite condition of signal component
number, which significantly affects the detection performances, is empirically determined
as 32 (the best performances) for the in-situ data. As in the previous case, the frequency
variation is observed via 100 times repeated applications of the schemes.
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By using the multiple measurements, the FFT removes scattered blurs and recovers
lost signal components (e.g., those between 0.3–0.4) whereas it cannot distinct adjacent
signal components owing to low resolution merging the components (e.g., those around 0.2
and 0.6). While RMUSIC and ESPRIT have superior frequency resolutions, they overlook
a significant number of components including those between 0.3–0.4. On the other hand,
owing to exploiting the common frequency components over the measurements in the SBL,
the frequency components are revealed most obviously without losing the signals, and
the false detections by the noise are cleared (compare Figure 6b to Figure 5b). Estimation
results using space multiple measurements (case 2) are similar to those using the temporal
multiple measurements.

Figure 7 displays the averaged detection results of Figure 6 over time according to the
SBL, RMUSIC, ESPRIT, and FFT; for comparitive convenience, the 2-D contour is plotted
in the same form as Figure 2b. The signal from the in-situ data has 42 frequency compo-
nents (21 tonal components from the transducer and the rest from the ships). While the
signal components have different amplitudes according to the corresponding frequencies,
we purposely set their amplitudes as 0 dB to highlight the locations of true frequency
components. As in the simulation, the FFT suffers from overall residing blurs from the
ocean noise and low resolution by the limited observation time of 0.5 s (in particular, the
estimations between 0.5 and 0.6 and around 0.8). The frequency components are estimated
with fewer blurs and higher resolution using the RMUSIC and ESPRIT. However, in the
averaged detection results from RMUSIC and ESPRIT, significant numbers of false alarms
are induced by their wobbling frequency components over time (see Figure 6c,d); that is,
the inconsistent estimations over time affect the distributed estimations average. Although
some frequency components from the SBL are revealed faintly or overlooked by the corre-
sponding weak signal strengths, the consistent sparse frequency components over time
remarkedly reduce the false alarms as well as the blurs. For a quantitative inspection of
the performance, detected peaks within 1 Hz (the half of FFT frequency resolution) are
counted for calculating the recovery ratios after selecting dominant components (here, the
42nd largest peaks of the estimations), and the numbers of perfectly matched components
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to the true ones are also counted according to the schemes. The recovery ratios (perfectly
matched component numbers) of SBL, RMUSIC, ESPRIT, and FFT are 0.64 (23), 0.48 (7),
0.6 (13), and 0.64 (15), respectively. While the SBL has the same recovery ratio as that of the
FFT, most of the components from SBL are recovered perfectly with the least false alarms,
which results in the clearest frequency detection.
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Subsequently, the acoustic data captured farther from the experimental ship (the green
box around 41 min in Figure 4) are used for the frequency analysis. Here, the FFT and
SBL are applied to the multiple measurements in time and space domains (case 1 and
case 2), separately, and the detection results are shown in Figure 8. In particular, all the
acoustic signals at the sensors in the HLA are used for the spatial multiple measurements
(120 multiple measurements). The frequency detections from RMUSIC and ESPRIT are too
sensitive for the prior condition of the frequency component number, and they are omitted
from Figure 8.

Regardless of the measurement domains, the multiple measurements reduce the
ambient ocean noise. When comparing Figure 8a with Figure 8c, the measurements at
the fixed sensor overlook some signal components (e.g., the components between 0.3–0.4),
which might be attributed to the sensitivity of the sensor and/or the propagation loss for
the sensor. Signal components missed by the sensor can be captured by other sensors
in the HLA, and thus the frequency analysis using the multiple measurements along
the sensors has advantages in detecting the lost signal components. However, the peak
signal components from the FFT are not the same across the sensors owing to the different
measurement conditions, and they induce the jitters between 0.4–0.5. As in the previous
case, the SBL remarkably diminishes the ocean noise and separates the merged components
in the FFT via sparse estimation using multiple measurements in time or space. The SBL
result using the multiple measurements reflects the characteristics of the corresponding FFT
results. While the SBL using the spatial measurements is better for detecting the frequency
components, which slightly differ along the observation times and are smeared by the
noise. On the other hand, the SBL using the temporal measurements achieve clean and
consistent frequency components at the cost of overlooking some components.
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In order to obtain the properties of both detection results, multiple measurements
over both time and space domains are exploited (case 3), and 14,400 (120 × 120) multiple
measurements are used for the frequency analysis. Figure 8e,f) displays the detection
results using the FFT and SBL, respectively. While overall signal components (in particular,
the components around 0.3 and 0.6) from the FFT appear more clearly owing to the sup-
plement measurements, intensive components leaked from the true signals (in particular,
the components between 0.4 and 0.5), as well as the low-resolution from the limited signal
length, induce ambiguities in the detection. The additional measurements enhance the SBL
based frequency detection more effectively. In the SBL detection results (Figure 8f), the over-
looked components in Figure 8b are recovered, and the wiggling components in Figure 8d
turn into the streaks with less noise. This enables the SBL with all the measurements to
have the most confident frequency detection among the previously mentioned schemes.

Figure 9 displays the averaged frequency detection results of Figure 8e,f. As seen
in Figure 9a, some frequency components from the FFT provide vague detection results
because they are hidden by their neighbor noise (in particular, estimations between 0.1 and
0.2). Additionally, a minor component around 0.8 is masked by the sidelobe of the near
major component, which arises from the low resolution of FFT. The lost frequency compo-
nents are recovered by the SBL owing to its sparse estimations with effective exploitation
of the multiple measurements (Figure 9b). The recovery ratios of FFT and SBL are the same
as 0.71, respectively. However, the number of perfectly matched components from SBL



Sensors 2021, 21, 5827 15 of 17

(28) is much larger than that of FFT (15). Thus, the SBL is better in detecting the frequency
components owing to the higher resolution with fewer false alarms.
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Figure 9. Averaged frequency detection results of Figure 8e,f over time according to (a) FFT and (b) SBL. Sparse estimations
from the SBL reveal the frequency components more clearly.

6. Discussion

Here, to improve the frequency detection for the passive sonar system, the SBL is
applied to the frequency analysis after establishing the corresponding linear system. The
detection results using the synthetic and in-situ data are compared with those from the
FFT, ESPRIT, and RMUSIC; the synthetic data are used to investigate the SBL performance
in various situations, and the in-situ data allows the feasibility test of SBL. As expected, the
FFT suffers from the low resolution of the limited signal length and overall blurs by the
noise. Signal subspace schemes such as RMUSIC and ESPRIT recover the frequency com-
ponents with higher resolution. However, their applications are limited by the prerequisite
condition of signal frequency component number as well as the intensive noise [7–10].

The SBL solves the linear system of Equation (4) while exploiting common frequency
components across multiple measurements. As demonstrated in studies using the sparse
representation [24–39], the sparse estimations from the SBL using the multiple measure-
ments have advantages for frequency detection in terms of enhancing resolution and
reducing noise, which is supported by the comparison results of Sections 4 and 5. It is
noteworthy that the feasibility of SBL in detecting low-frequency components in passive
sonar signals is examined using the in-situ data by the current study.

Meanwhile, the SBL has more computational complexity than those for the FFT,
RMUSIC, and ESPRIT because of solving the linear system directly. Still, it is useful in
frequency analysis owing to its ability of high-resolution frequency recovery and denoising
with moderate computational time (much less than that for CS).

7. Summary

For detecting tonal signals received by the passive sonar system, we established the
linear system for the frequency analysis and applied the SBL algorithm which reconstructs
a sparse solution from the linear system using the Bayesian framework. The sparse estima-
tion from the SBL enables clear frequency detections with high resolution using limited
observations. In order to enhance the SBL robustness, three types of multiple measurements
(time, space, and time and space) can be exploited in the passive sonar system.

We compared the frequency detection results from FFT, ESPRIT, RMUSIC, and SBL
using synthetic data according to SNRs at a fixed frequency component number and fre-
quency component numbers at a fixed SNR. The SBL displays a superior performance with
lower estimation errors with a higher recovery ratio. Furthermore, the advantages of the
SBL, which are recapitulated as follows, are demonstrated using the in-situ data measured
near the Korean peninsula (particularly, when multiple measurements were available).
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1. The overall noise is significantly reduced by the sparse estimation of the SBL, which
enables a higher resolution and recovery performance than other frequency analysis
algorithms such as FFT, ESPRIT, and RMUSIC;

2. The SBL using temporal multiple measurements has clean and consistent frequency
component results, but it overlooked some signal components;

3. The SBL using spatial multiple measurements has advantages in detecting the lost
signal components at the cost of vaguer detection results having wiggling frequency
components smeared by the adjacent noise.

4. The SBL using both temporal and spatial multiple measurements has high recovery
performance (advantage of the SBL using spatial multiple measurements) as well
as clean and consistent frequency detections (advantage of the SBL using temporal
multiple measurements).
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