Automatic Measurement of the Carotid Blood Flow for Wearable Sensors: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Probe Geometry
2.2. Echograph Integration
2.3. Operation Sequence
2.4. Automatic Detection of the Vessel Center
2.5. Flow Assessment
3. Experiments
3.1. In Vitro Experiments Set-Up
3.2. Experiments on Volunteers
3.3. Data Analysis
CCA Segmentation
4. Results
4.1. In Vitro Channel Segmentation
4.2. CCA Segmentation on Volunteers
4.3. In Vitro Accuracy and Repeatability
4.4. Repeatability on Volunteers
5. Discussion
Limitations | Workarounds/Notes |
---|---|
Analysis in transversal position only | none |
Beams cross at a fixed depth | Experiments show that the method works in a relatively wide depth-range |
Measurement of peak velocity only | Peak velocity has medical interest [33] |
Possibility to erroneously intercept the jugular vein | Measurement automatically discarded |
Cumbersome probe | Replaced by an integrated PMUT array |
Strengths | Notes |
---|---|
Completely automatic | The method can be used by a non-expert user, or even by the patient alone |
Automatic angle correction | The method compensates for Doppler angle |
Large field of view | The carotid is located even without the B-mode display |
Automatic check for measurement correctness | Wrong measurements are automatically discarded |
Low cost | It can be implemented in a small and economic device |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, D.H.; McDicken, W.N. Doppler Ultrasound Physics, Instrumentation and Signal Processing; Wiley: Chichester, UK, 2000; ISBN 978-0471970019. [Google Scholar]
- Grant, E.G.; Benson, C.B.; Moneta, G.L.; Alexandrov, A.V.; Baker, J.D.; Bluth, E.I.; Carroll, B.A.; Eliasziw, M.; Gocke, J.; Hertzberg, B.S.; et al. Carotid artery stenosis: Gray-scale and Doppler US diagnosis—Society of Radiologists in Ultrasound Consensus Conference. Radiology 2003, 229, 340–346. [Google Scholar] [CrossRef]
- Bandyk, D.F. Follow-up after carotid endarterectomy and stenting: What to look for and why. Semin. Vasc. Surg. 2020, 33, 47–53. [Google Scholar] [CrossRef]
- Murthy, S.; Leligdowicz, A.; Adhikari, N.K.J. Intensive care unit capacity in low-income countries: A systematic review. PLoS ONE 2015, 10, e0116949. [Google Scholar] [CrossRef] [PubMed]
- Iadanza, E.; Gonnelli, V.; Satta, F.; Gherardelli, M. Evidence-based medical equipment management: A convenient implementation. Med. Biol. Eng. Comput. 2019, 57, 2215–2230. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.; Zhang, S.; Angiolini, F.; Arditi, M.; Kimura, S.; Goto, S.; Thiran, J.-P.; De Micheli, G. Towards Ultrasound Everywhere: A Portable 3D Digital Back-End Capable of Zone and Compound Imaging. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 968–981. [Google Scholar] [CrossRef]
- Peyton, G.; Farzaneh, B.; Soleimani, H.; Boutelle, M.G.; Drakakis, E.M. Quadrature Synthetic Aperture Beamforming Front-End for Miniaturized Ultrasound Imaging. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 871–883. [Google Scholar] [CrossRef] [PubMed]
- Zamora, I.; Ledesma, E.; Uranga, A.; Barniol, N. Miniaturized 0.13-μm CMOS Front-End Analog for AlN PMUT Arrays. Sensors 2020, 20, 1205. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Fool, F.; dos Santos, D.S.; Chang, Z.-Y.; Noothout, E.; Vos, H.J.; Bosch, J.G.; Verweij, M.D.; de Jong, N.; Pertijs, M.A.P. Design of an Ultrasound Transceiver ASIC with a Switching-Artifact Reduction Technique for 3D Carotid Artery Imaging. Sensors 2021, 21, 150. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Ali, U.; Ali, E.; Hussain, A. A Narrative Review on the Advantages of Portable Ultrasound Machines in the Emergency Department. EC Emerg. Med. Crit. Care 2018, 2, 43–47. [Google Scholar]
- Newhouse, S.; Effing, M.; Dougherty, B.; Costa, A.; Rose, A. Is Bigger Really Better? Comparison of Ultraportable Handheld Ultrasound with Standard Point-of-Care Ultrasound for Evaluating Safe Site Identification and Image Quality prior to Pleurocentesis. Respiration 2020, 99, 325–332. [Google Scholar] [CrossRef]
- Kang, J.; Yoon, C.; Lee, J.; Kye, S.-B.; Lee, Y.; Chang, J.H.; Kim, G.-D.; Yoo, Y.; Song, T.-K. A System-on-Chip Solution for Point-of-Care Ultrasound Imaging Systems: Architecture and ASIC Implementation. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.-Y.; Seo, D.; Singhal, U.; Li, X.; Maharbiz, M.M.; Alon, E.; Boser, B.E. Miniaturizing Ultrasonic System for Portable Health Care and Fitness. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 767–776. [Google Scholar] [CrossRef]
- Van den Heuvel, T.L.A.; Graham, D.J.; Smith, K.J.; de Korte, C.L.; Neasham, J.A. Development of a Low-Cost Medical Ultrasound Scanner Using a Monostatic Synthetic Aperture. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Jana, B.; Biswas, R.; Nath, P.K.; Saha, G.; Banerjee, S. Smartphone-Based Point-of-Care System Using Continuous-Wave Portable Doppler. IEEE Trans. Instrum. Meas. 2020, 69, 8352–8361. [Google Scholar] [CrossRef]
- Kenny, J.S.; Munding, C.E.; Eibl, J.K.; Eibl, A.M.; Long, B.F.; Boyes, A.; Yin, J.; Verrecchia, P.; Parrotta, M.; Gatzke, R.; et al. A novel, hands-free ultrasound patch for continuous monitoring of quantitative Doppler in the carotid artery. Sci. Rep. 2021, 11, 7780. [Google Scholar] [CrossRef]
- Pashaei, V.; Dehghanzadeh, P.; Enwia, G.; Bayat, M.; Majerus, S.J.A.; Mandal, S. Flexible Body-Conformal Ultrasound Patches for Image-Guided Neuromodulation. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 305–318. [Google Scholar] [CrossRef]
- Fox, M.D. Multiple crossed-beam ultrasound Doppler velocimetry. IEEE Trans. Sonics Ultrason. 1978, 25, 281–286. [Google Scholar] [CrossRef]
- Ricci, S.; Matera, R.; Savoia, A.S.; Quaglia, F.; Tortoli, P. Toward Automatic Measurement of Carotid Blood Velocity. In Proceedings of the IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 1311–1314. [Google Scholar] [CrossRef]
- Boni, E.; Bassi, L.; Dallai, A.; Guidi, F.; Meacci, V.; Ramalli, A.; Ricci, S.; Tortoli, P. ULA-OP 256: A 256-Channel Open Scanner for Development and Real-Time Implementation of New Ultrasound Methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1488–1495. [Google Scholar] [CrossRef] [PubMed]
- Ricci, S.; Ramalli, A.; Bassi, L.; Boni, E.; Tortoli, P. Real-Time Blood Velocity Vector Measurement over a 2D Region. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Ashrafian, H. Anatomically specific clinical examination of the carotid arterial tree. Anat. Sci. Int. 2007, 82, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Ricci, S.; Meacci, V. Data-Adaptive Coherent Demodulator for High Dynamics Pulse-Wave Ultrasound Applications. Electronics 2018, 7, 434. [Google Scholar] [CrossRef] [Green Version]
- Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM 1972, 15, 11–15. [Google Scholar] [CrossRef]
- Golemati, S.; Stoitsis, J.; Sifakis, E.G.; Balkizas, T.; Nikita, K.S. Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound Med. Biol. 2007, 33, 1918–1932. [Google Scholar] [CrossRef] [PubMed]
- Krejza, J.; Arkuszewski, M.; Kasner, S.E.; Weigele, J.; Ustymowicz, A.; Hurst, R.W.; Cucchiara, B.L.; Messe, S.R. Carotid Artery Diameter in Men and Women and the Relation to Body and Neck Size. Stroke 2006, 37, 1103–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricci, S.; Meacci, V. FPGA-Based Doppler Frequency Estimator for Real-Time Velocimetry. Electronics 2020, 9, 456. [Google Scholar] [CrossRef] [Green Version]
- Morganti, T.; Ricci, S.; Vittone, F.; Palombo, C.; Tortoli, P. Clinical validation of common carotid artery wall distension assessment based on multigate Doppler processing. Ultrasound Med. Biol. 2005, 31, 937–945. [Google Scholar] [CrossRef]
- De Korte, C.L.; Fekkes, S.; Nederveen, A.J.; Manniesing, R.; Hansen, H.R.H.G. Review: Mechanical Characterization of Carotid Arteries and Atherosclerotic Plaques. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1613–1623. [Google Scholar] [CrossRef]
- Zhu, Y.; Cinthio, M.; Erlöv, T.; Bjarnegård, N.; Ahlgren, Å.R. Comparison of the multi-phasic longitudinal displacement of the left and right common carotid artery in healthy humans. Clin. Physiol. Funct. Imaging 2021, 41, 342–354. [Google Scholar] [CrossRef]
- Ilea, D.E.; Duffy, C.; Kavanagh, L.; Stanton, A.; Whelan, P.F. Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 158–177. [Google Scholar] [CrossRef] [Green Version]
- Ricci, S.; Cinthio, M.; Ahlgren, Å.R.; Tortoli, P. Accuracy and Reproducibility of a Novel Dynamic Volume Flow Measurement Method. Ultrasound Med. Biol. 2013, 39, 1903–1914. [Google Scholar] [CrossRef] [PubMed]
- Nakamizo, A.; Amano, T.; Matsuo, S.; Kuwashiro, T.; Yasaka, M.; Okada, Y. Common carotid flow velocity is associated with cognitive function after carotid endarterectomy. J. Clin. Neurosci. 2020, 76, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Newhouse, V.L.; Bendick, P.J.; Varner, L.W. Analysis of Transit Time Effects on Doppler Flow Measurement. IEEE Trans. Biomed. Eng. 1976, 5, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Ricci, S.; Vilkomerson, D.; Matera, R.; Tortoli, P. Accurate blood peak velocity estimation using spectral models and vector Doppler. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Tortoli, P.; Guidi, G.; Newhouse, V.L. Improved blood velocity estimation using the maximum Doppler frequency. Ultrasound Med. Biol. 1995, 21, 527–532. [Google Scholar] [CrossRef]
- Tortoli, P.; Lenge, M.; Righi, D.; Ciuti, G.; Liebgott, H.; Ricci, S. Comparison of carotid artery blood velocity measurements by vector and standard Doppler approaches. Ultrasound Med. Biol. 2015, 41, 1354–1362. [Google Scholar] [CrossRef]
- Lui, E.Y.L.; Steinman, A.H.; Cobbold, R.S.C.; Johnston, K.W. Human factors as a source of error in peak Doppler velocity measurement. J. Vasc. Surg. 2005, 42, 972.e1–972.e10. [Google Scholar] [CrossRef] [Green Version]
- Sahani, A.K.; Shah, M.I.; Radhakrishnan, R.; Joseph, J.; Sivaprakasam, M. An Imageless Ultrasound Device to Measure Local and Regional Arterial Stiffness. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 200–208. [Google Scholar] [CrossRef]
- Di Palma, V.; De Venuto, D.; Ricci, S.; Frangi, A.; Savoia, A.S.; Di Nocera, D.; Zampognaro, P.; Coronato, A.; Infantino, I.; Pescosolido, L.; et al. Medical Assistance in Contextual awareness (AMICO): A project for a better cardiopathic patients quality of care. In Proceedings of the IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), Otranto, Italy, 13–14 June 2019. [Google Scholar] [CrossRef]
- Song, I.; Yoon, J.; Kang, J.; Kim, M.; Jang, W.S.; Shin, N.H.; Yoo, Y. Design and Implementation of a New Wireless Carotid Neckband Doppler System with Wearable Ultrasound Sensors: Preliminary Results. Appl. Sci. 2019, 9, 2202. [Google Scholar] [CrossRef] [Green Version]
- Convertino, V.A.; Schauer, S.G.; Weitzel, E.K.; Cardin, S.; Stackle, M.E.; Talley, M.J.; Sawka, M.N.; Inan, O.T. Wearable Sensors Incorporating Compensatory Reserve Measurement for Advancing Physiological Monitoring in Critically Injured Trauma Patients. Sensors 2020, 20, 6413. [Google Scholar] [CrossRef]
Probe | L12-5D |
---|---|
Probes Type | Linear |
Elements | 128 |
Central frequency | 7.5 MHz |
Bandwidth (−6 dB) | 80% |
Element Pitch | 300 μm |
Bandwidth | 6–11 MHz |
Elevation focus | 20 mm |
B-Mode Image | |
---|---|
Lines | 96 |
Frequency | 7.5 MHz |
TX focus | 20 mm |
RX focus | Dynamic F# = 3 |
Doppler Image | |
Packet Size | 128 |
TX/RX Aperture | 16 elements (4.8 mm) |
TX Azimuthal Focus | 20 mm |
Transmission | 3 sinusoidal cycles @ 7.5 MHz |
PRF | 8 + 8 kHz |
Reception Focus | Dynamic focusing F# = 3 |
Clutter filter | 100 Hz |
Series | Tilt τ (°) | Rot. ρ (°) | Transl. r (mm) | Depth d (mm) |
---|---|---|---|---|
I | −15, −10, −6, 0, +6, +10, +15 | 0 | 0 | 23 |
II | 0 | 0, 3, 6, 12, 16, 20 | 0 | 23 |
III | ~0 | ~0 | random | 23 |
IV | ~0 | ~0 | 0 | 19–30 |
Series | Min/Max (mm) | Mean (mm) | r.m.s. (mm) | Discarded |
---|---|---|---|---|
4 mm channel | ||||
I (Tilt) | 0.03/0.60 | 0.19 | 0.23 | 0 |
II (Rotation) | 0.03/0.29 | 0.11 | 0.14 | 0 |
III (Translation) | 0.04/0.64 | 0.24 | 0.27 | 1 |
IV (Depth) | 0.02/0.60 | 0.21 | 0.30 | 0 |
6 mm channel | ||||
I (Tilt) | 0.08/0.53 | 0.23 | 0.26 | 0 |
II (Rotation) | 0.09/0.52 | 0.26 | 0.29 | 0 |
III (Translation) | 0.03/0.67 | 0.26 | 0.31 | 0 |
IV (Depth) | 0.30/060 | 0.41 | 0.43 | 0 |
Series | Min/Max (mm) | Mean (mm) | r.m.s. (mm) | Discarded |
---|---|---|---|---|
I | 0.06/0.83 | 0.36 | 0.42 | 0 |
II | 0.19/0.59 | 0.40 | 0.42 | 0 |
III | 0.06/0.55 | 0.24 | 0.29 | 0 |
IV | 0.20/0.80 | 0.56 | 0.62 | 0 |
V | 0.01/0.62 | 0.57 | 0.44 | 1 |
VI | 0.11/0.90 | 0.45 | 0.50 | 1 |
Series | Mean Peak (cm/s) | (%) | (%) | Discarded |
---|---|---|---|---|
4 mm channel | ||||
I (Tilt) | 29.7 | −5.3 | 10.6 | 0 |
II (Rotation) | 32.9 | +2.1 | 5.2 | 1 |
III (Translation) | 35.5 | +4.4 | 4.2 | 1 |
IV (Depth) | 36.0 | +5.9 | 5.5 | 0 |
6 mm channel | ||||
I (Tilt) | 19.5 | +8.3 | 2.8 | 0 |
II (Rotation) | 18.5 | +2.8 | 2.9 | 0 |
III (Translation) | 18.8 | +4.4 | 2.2 | 0 |
IV (Depth) | 18.7 | +3.7 | 3.0 | 0 |
Series | Mean Peak (cm/s) | Std (cm/s) | (%) | Discarded |
---|---|---|---|---|
I | 69.2 | 8.4 | 12.1 | 0 |
II | 68.5 | 5.2 | 7.7 | 1 |
III | 63.5 | 4.6 | 7.3 | 1 |
IV | 74.0 | 5.3 | 7.1 | 0 |
V | 57.0 | 3.4 | 6.1 | 0 |
VI | 81.0 | 8.1 | 10.1 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matera, R.; Ricci, S. Automatic Measurement of the Carotid Blood Flow for Wearable Sensors: A Pilot Study. Sensors 2021, 21, 5877. https://doi.org/10.3390/s21175877
Matera R, Ricci S. Automatic Measurement of the Carotid Blood Flow for Wearable Sensors: A Pilot Study. Sensors. 2021; 21(17):5877. https://doi.org/10.3390/s21175877
Chicago/Turabian StyleMatera, Riccardo, and Stefano Ricci. 2021. "Automatic Measurement of the Carotid Blood Flow for Wearable Sensors: A Pilot Study" Sensors 21, no. 17: 5877. https://doi.org/10.3390/s21175877
APA StyleMatera, R., & Ricci, S. (2021). Automatic Measurement of the Carotid Blood Flow for Wearable Sensors: A Pilot Study. Sensors, 21(17), 5877. https://doi.org/10.3390/s21175877