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Abstract: Direction-of-arrival (DOA) estimation plays an important role in array signal processing,
and the Estimating Signal Parameter via Rotational Invariance Techniques (ESPRIT) algorithm is one
of the typical super resolution algorithms for direction finding in an electromagnetic vector-sensor
(EMVS) array; however, existing ESPRIT algorithms treat the output of the EMVS array either as
a “long vector”, which will inevitably lead to loss of the orthogonality of the signal components,
or a quaternion matrix, which may result in some missing information. In this paper, we propose
a novel ESPRIT algorithm based on Geometric Algebra (GA-ESPRIT) to estimate 2D-DOA with
double parallel uniform linear arrays. The algorithm combines GA with the principle of ESPRIT,
which models the multi-dimensional signals in a holistic way, and then the direction angles can be
calculated by different GA matrix operations to keep the correlations among multiple components of
the EMVS. Experimental results demonstrate that the proposed GA-ESPRIT algorithm is robust to
model errors and achieves less time complexity and smaller memory requirements.

Keywords: direction-of-arrival estimation; geometric algebra; ESPRIT algorithm; electromagnetic
vector-sensor array

1. Introduction

Direction-of-arrival (DOA) estimation of electromagnetic (EM) signals has attracted
wide attention in many communication fields, such as radar [1,2], mobile networks [3] and
sonar [4]. It is clear that DOA estimation is the basic and essential part in an array signal
processing system. For example, a corresponding transmitting or receiving beamformer
can be designed to extract signals in the direction of interest and suppress uninteresting in-
terference signals. The electromagnetic vector sensor (EMVS) can catch polarization-related
information compared to a conventional scalar sensor, which can further improve the
target resolution, anti-interference ability and detection stability for DOA estimation [5–7];
therefore, the research for EMVS array direction finding has become a hotspot.

With the appearance of the Long-Vector MODEL (LV-MODEL) [5] (built for EMVS),
multiple researchers have proposed various DOA estimators. The existing estimators
can be summarized into three categories: (1) research on DOA estimators transplanting
from scalar sensor; (2) research based on special array arrangement; (3) research based on
advanced mathematical tools.

In terms of transplantation, the classic subspace-based super-resolution algorithm [8]
(Multiple Signal Classification—MUSIC) was transplanted to the EMVS [9–11] array, but
the algorithms often suffer high computational complexity because of the four-dimensional
parameter search for two direction angles and two additional polarization angles; therefore,
Weiss [12] used the polynomial root to reduce the computational complexity to a certain
extent. In addition, another subspace-based super-resolution algorithm [13,14] (Estimation
of Signal Parameters via Rotational Invariance Techniques—ESPRIT) was also transplanted
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into the EMVS array, and realized closed-form estimation of DOA. In [15,16], authors
showed that the statistical performance of the maximum likelihood and subspace-fitting
algorithms based on the EMVS array are better than both MUSIC and ESPRIT, but the high
calculation limits its application in actual engineering.

There are few studies based on the special array arrangement because most EMVS
arrays are co-centered, leading to the mutual coupling interference and spatial information
loss. In [17], a double-parallel-line EMVS array whose six components are all spatially
separated achieved mutual coupling reduction to refine the DOA-finding accuracy by
orders of magnitude. A triangular array [18] combined with a vector cross product and
interferometric angle measurement, aimed to overcome the drawback that [17] cannot
achieve two-dimensional aperture expansion. In addition, a spatial expansion method of a
triangle structure [19] was proposed to provide higher-precision DOA estimation.

The traditional model for EMVS is just a linear combination of each component, which
somehow locally destroy the orthogonality of the signal components [20]. Meanwhile,
the heavy computational efforts and memory requirements during data processing for
the DOA estimation cannot be ignored [21]. Recently, the hypercomplex has been widely
studied and applied in multi-dimensional parameter estimation. Miron et al. [22] first
proposed a new Quaternion Model (Q-MODEL) for the two-component EMVS array.
Then, many models and algorithms based on quaternion have been proposed [23–25];
however, the Q-MODEL had to discard some of the original information because the
quaternion only has three imaginary parts. Further, the research has extended to bi-
quaternion [26] and quad-quaternion [27,28]. These quaternion-based algorithms showed
higher estimation accuracy and less complexity; however, Jiang et al. [21] found that the
physical interpretations of the presented quaternion-like models have not been discussed.
In order to solve the problem, they derived G-MODEL [21] by Geometric Algebra (GA)
formulations of Maxwell equations. The computing technology of G-MODEL not only
minimizes the memory requirements and computational complexity, but also removes the
correlation of noise on different antennas.

It is easy to find that the current studies utilizing hypercomplex algebra are mainly
focused on the MUSIC algorithm [22,26–28]. In fact, MUSIC greatly suffers from a heavy
computational burden for its spectrum search, while the computation of ESPRIT algorithm
is cheaper, and it can automatically decouple [29]; therefore, the research in this paper
extends the ESPRIT algorithm using a new mathematical tool—GA. Through the new
calculation rules, the physical nature of EMVS is matched with the signal processing
technology, which avoids correlation loss between different components in the previous
algorithms. The major contributions of this paper are as follows.

1. We incorporate the multi-dimensional consistency of GA into ESPRIT, and propose a
Geometric Algebra-based ESPRIT algorithm (GA-ESPRIT) for 2D-DOA estimation.

2. We use the new calculation rules of the high-dimensional algebra system to preserve
the correlation among multiple components of EMVS.

3. Experimental results demonstrate that the proposed GA-ESPRIT algorithm can
achieve more accurate, stable and lighter DOA estimation.

The rest of this paper is organized as follows. Section 2 introduces the basics of GA and
the EMVS model for narrow-band signals based on GA. Section 3 describes the proposed
GA-ESPRIT in detail. Experimental results and analysis are provided in Section 4, followed
by concluding remarks in Section 5.

2. Preliminaries
2.1. Fundamental of Geometric Algebra

The concept of GA [30] was proposed by David Hestenes in the 1960s, who combined
Clifford Algebra with a physical geometric structure. After decades of research, GA has
shown its absolute superiority in electromagnetism [31], cosmology [32], multi-channel
image [33–35] and other physical sciences.
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2.1.1. Geometric Product

The crucial product operation in GA theory is the geometric product [30]. For vectors
a and b, the geometric product is denoted by

ab = a · b + a ∧ b, (1)

where {·} and {∧} denote the inner product and the outer product, respectively.

2.1.2. Multi-Vector

Let Gn = C`n,0, which is the real GA of the quadratic pair (V, Q) where V = Rn and
Q is the quadratic form of signature (n, 0). There is an orthogonal basis {e1, e2, . . . , en} in
Rn, which generates 2n basis elements of Gn via the geometric product as shown in (2):

{1}︸︷︷︸
k=0

, {ei}︸︷︷︸
k=1

,
{

eij, i < j
}

︸ ︷︷ ︸
k=2

, . . . , {e1e2 · · · en}︸ ︷︷ ︸
k=n

(2)

for i, j = 1, 2, . . . , n.
The multi-vector A of Gn is defined as

A = E0(A) + ∑
1≤i≤n

Ei(A)ei + ∑
1≤i<j≤n

Eij(A)eij + . . . + E1...n(A)e1...n

= 〈A〉0 + 〈A〉1 + 〈A〉2 + . . . + 〈A〉n,
(3)

where Ei(A), Eij(A), . . . , E1...n(A) ∈ R, and 〈A〉k denotes the component of A of grade k.
The reverse of multi-vector A is defined as

Ã =
n

∑
k=0

(−1)k(k−1)/2〈A〉k. (4)

2.2. The Geometric Algebra of Euclidean 3-Space

According to the structural characteristics of EMVS, G3 is chosen to model and process
the received signals [21]. The multiplication rule can be found in Table 1.

Table 1. The multiplication rule in G3.

1 e1 e2 e3 e12 e23 e13 e123
1 1 e1 e2 e3 e12 e23 e13 e123
e1 e1 1 e12 e13 e2 e123 e3 e23
e2 e2 −e12 1 e23 −e1 e3 −e123 −e13
e3 e3 −e13 −e23 1 e123 −e2 −e1 e12
e12 e12 −e2 e1 e123 −1 e23 −e23 −e3
e23 e23 −e123 −e3 e2 −e13 −1 e12 −e1
e13 e13 −e3 −e123 e1 e23 −e12 −1 e2
e123 e123 e23 −e13 e12 −e3 −e1 e2 −1

Referring to (2) and (3), a G3 matrix with m-row and n-column, noted Gm×n
3 , is

constructed as follows [20]

A = A0 + A1e1 + A2e2 + A3e3 + A4e12

+ A5e23 + A6e13 + A7e123,
(5)

where Ak for k = 1, 2, 3, . . . , 7 are all m × n real number matrices. The transpose with
reversion of A is denoted by AH

AH = AT
0 + AT

1 e1 + AT
2 e2 + AT

3 e3 −AT
4 e12

−AT
5 e23 −AT

6 e13 −AT
7 e123,

(6)
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where AT
i for k = 1, 2, 3, . . . , 7 denotes the transpose.

2.3. G-MODEL

A compact polarized GA model for the vector-sensor array was proposed in [21],
named G-MODEL, which models the six-component outputs of a vector sensor holistically
using a multi-vector in G3. Suppose there are K narrow-band, far-field and uncorre-
lated sources with wavelength λ impinging on an array, which includes Q vector sensors.
Define θk ∈ [0, 2π), φk ∈ [0, π), γk ∈ [0, π/2) and ηk ∈ [−π, π) are the azimuth an-
gle, elevation angle, polarization amplitude angle and phase difference angle of the kth
source, respectively.

Define uk = cos θk sin φke1 + sin θk sin φke2 + cos φke3 as the unit vector (see Figure 1)
of the kth source when it impinges on the sensor at the origin. vk1 = − sin θke1 + cos θke2
and vk2 = cos θk cos φke1 + sin θk cos φke2 − sin φke3 are unit multi-vectors. The position
vector of the qth sensor is rq = rq1e1 + rq2e2 + rq3e3. The output of the qth vector sensor in
the array is denoted by [21]

Y(q)
EH(t) =

K

∑
k=1

Xq(θk, φk)VkPkSk(t) + N(q)
EH(t), (7)

where Xq(θk, φk) = ee123
2π
λ (cos θk sin φkrq1+sin θk sin φkrq2+cos φkrq3) is the spatial phase factor of

the kth source incident on the qth vector sensor.

Vk = (1 + uk)[vk1,−vk2],

Pk =

[
cos γk

sin γkee123ηk

]
,

Sk(t) = |Sk(t)| exp[e123(2π fkt)].

In next section, the GA-ESPRIT algorithm is deduced based on the G-MODEL.
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3. Proposed Algorithm

The basic premise of the ESPRIT algorithm is that there are identical subarrays, the
spacing between subarrays is known and the structure of subarrays is identical, which
satisfies the rotational invariance in space [13]. Uniform linear arrays (ULAs) appear when
it comes to one-dimensional DOA estimation using conventional ESPRIT [1,13]. Compared
with ULAs, double parallel uniform linear arrays (DPULAs) can identify two-dimensional
DOA because of the special construction, which consists of two parallel ULAs [36–38];
therefore, the algorithm discussed in this paper is based on DPULAs.

Figure 1. Direction vector of incident source.

3. Proposed Algorithm

The basic premise of the ESPRIT algorithm is that there are identical subarrays, the
spacing between subarrays is known and the structure of subarrays is identical, which
satisfies the rotational invariance in space [13]. Uniform linear arrays (ULAs) appear when
it comes to one-dimensional DOA estimation using conventional ESPRIT [1,13]. Compared
with ULAs, double parallel uniform linear arrays (DPULAs) can identify two-dimensional
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DOA because of the special construction, which consists of two parallel ULAs [36–38];
therefore, the algorithm discussed in this paper is based on DPULAs.

3.1. Complex Representation Matrix and Related Calculations

In view of the paucity of research on calculations with multi-vector, the Complex
Representation Matrix (CRM) [20] is introduced because of the mature matrix theories.
Consider a matrix A ∈ Gm×n

3 , the CRM is defined by Ψ(A)

Ψ(A) =

(
A0 + A3 + (A7 + A4)e123 −A1 + A6 + (A2 −A5)e123
−A1 −A6 − (A2 + A5)e123 A0 −A3 + (A7 −A4)e123

)
. (8)

Let ν = (−e1 + e13)/2 ∈ G3, and its reversion is ν̃ = (−e1 − e13)/2 ∈ G3. Then,

ν2 = ν̃2 = 0 and νν̃ + ν̃ν = 1, (9)

which imply νν̃ν = ν, ν̃νν̃ = ν̃, (νν̃)2 = νν̃, (ν̃ν)2 = ν̃ν.
It immediately follows that, for every A ∈ G3, we have

A = E2mΨ(A)EH
2n, (10)

Ψ(A) = Q2m

[
A 0
0 A

]
Q2n, (11)

where in (10) and (11) we have

E2k = [νν̃Ik ν̃Ik] ∈ Gk×2k
3 , (12)

Q2k =

[
νν̃Ik ν̃Ik
νIk ν̃νIk

]
∈ G2k×2k

3 . (13)

Ik denotes the k× k identity matrix. It is not difficult to prove that

Q2k = QH
2k = Q2k

−1, (14a)

Ψ(AH) = (Ψ(A))H , (14b)

Ψ(A+) = (Ψ(A))+, (14c)

where {+} denotes the pseudo-inverse. Referring to (10) and (14c), the pseudo-inverse of
any A ∈ G3 is

A+ = E2n(Ψ(A))+EH
2m. (15)

Since e2
123 = −1 and e123 commutes with all elements in G3, one can identify it with the

complex imaginary unit j [20], and so we can view Ψ(A) given in (8) as a complex matrix.

3.2. Model for DPULAs

Consider a DPULA with 2M + 2 sensors, as shown in Figure 2, in which d and M refer
to the spacing between two adjacent sensors and the number of sensors in per subarray,
respectively. The array is divided into three subarrays. The 1st to Mth sensors on the x-axis
compose the first subarray, the 2nd to (M + 1)th sensors form the second subarray and the
(M + 2)th to (2M + 1)th that located on a straight line parallel to the x-axis make up the
third subarray. The reason for the division can be found in Figure 3, that is, there are two
unknown DOA parameters in the model, which need two rotational invariance relations.
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Figure 2. Double parallel uniform linear array.
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Figure 3. Schematic diagram of GA-ESPRIT.

Since the three subarrays have the same structure and the same number of sensor,
each output of them has only one phase difference for the same signal. Signals received by
subarray one, two and three are defined as Y1

EH , Y2
EH and Y3

EH , respectively. According to
the above array model, the outputs of the three subarrays at time t are as follows

Y1
EH(t) = AS(t) + N1(t),

Y2
EH(t) = AFS(t) + N2(t),

Y3
EH(t) = AGS(t) + N3(t),

(16)

where
Y1

EH(t) =
[
Y(1)

EH(t), . . . , Y(M)
EH (t)

]T
,

Y2
EH(t) =

[
Y(2)

EH(t), . . . , Y(M+1)
EH (t)

]T
,

Y3
EH(t) =

[
Y(M+2)

EH (t), . . . , Y(2M+1)
EH (t)

]T
,

(17)

and
A = [a(Γ1), . . . , a(ΓK)],

a(Γk) =
[
1, x(θk, φk), . . . , xM−1(θk, φk)

]T
VkPk,

x(θk, φk) = ee123
2π
λ d cos θk sin φk ,

F = diag( f1, . . . , fK), G = diag(g1, . . . , gK).

(18)

According to (18), we find that the DOA information is contained in matrix A, F and G.
Because F and G are diagonal matrices that only contain direction information of incident
signals, the focus is the two matrices, i.e.,

fk = ee123
2π
λ d cos θk sin φk ,

gk = ee123
2π
λ d sin θk sin φk .

(19)

Clearly, it is easy to figure out the DOA in the light of (19) if we obtain the two ideal
matrices F and G. From the rules of subarray division, we can see that the latter (M− 1)
sensors of subarray one and the former (M + 1) sensors of subarray two are overlapped.
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Since the three subarrays have the same structure and the same number of sensor,
each output of them has only one phase difference for the same signal. Signals received by
subarray one, two and three are defined as Y1

EH , Y2
EH and Y3

EH , respectively. According to
the above array model, the outputs of the three subarrays at time t are as follows

Y1
EH(t) = AS(t) + N1(t),

Y2
EH(t) = AFS(t) + N2(t),

Y3
EH(t) = AGS(t) + N3(t),

(16)

where
Y1

EH(t) =
[
Y(1)

EH(t), . . . , Y(M)
EH (t)

]T
,

Y2
EH(t) =

[
Y(2)

EH(t), . . . , Y(M+1)
EH (t)

]T
,

Y3
EH(t) =

[
Y(M+2)

EH (t), . . . , Y(2M+1)
EH (t)

]T
,

(17)

and
A = [a(Γ1), . . . , a(ΓK)],

a(Γk) =
[
1, x(θk, φk), . . . , xM−1(θk, φk)

]T
VkPk,

x(θk, φk) = ee123
2π
λ d cos θk sin φk ,

F = diag( f1, . . . , fK), G = diag(g1, . . . , gK).

(18)
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According to (18), we find that the DOA information is contained in matrix A, F and G.
Because F and G are diagonal matrices that only contain direction information of incident
signals, the focus is the two matrices, i.e.,

fk = ee123
2π
λ d cos θk sin φk ,

gk = ee123
2π
λ d sin θk sin φk .

(19)

Clearly, it is easy to figure out the DOA in the light of (19) if we obtain the two ideal
matrices F and G. From the rules of subarray division, we can see that the latter (M− 1)
sensors of subarray one and the former (M + 1) sensors of subarray two are overlapped.
Thus, in order to reduce the computational complexity, subarray one and subarray two can
be merged to form a new matrix YEH , that is,

YEH(t) = [y1(t), y2(t), . . . , yM+1(t)]
T . (20)

After merging, the (2M + 2)th redundant sensor is added to subarray three to form a
new subarray PEH , so that the third subarray has the same dimension as YEH

PEH(t) = [yM+2(t), yM+3(t), . . . , y2M+2(t)]
T . (21)

Let A be the array flow pattern of YEH , then

A = [a(Γ1), a(Γ2), . . . , a(ΓK)],
a(Γk) =

[
1, x(θk, φk), . . . , xM(θk, φk)

]TVkPk.
(22)

YEH and PEH can be written as

YEH(t) = AS(t) + Na(t),

PEH(t) = AGS(t) + Nb(t),
(23)

where

Na(t) =
[

N1(t)
nM+1(t)

]
, Nb(t) =

[
N3(t)

n2M+2(t)

]
.

Then, B(t) is defined as

B(t) =
[

YEH(t)
PEH(t)

]
= CS(t) + N(t), (24)

where

C =

[
A

AG

]
, N(t) =

[
Na(t)
Nb(t)

]
.

Finally, the output of the whole array is denoted by

B(t) = CS(t) + N(t). (25)

3.3. Algorithm Details

It is assumed that the sources received by the vector-sensor array are random signals
which are independent and uncorrelated. In the same way, the measuring noise on six
antennas of each sensor is white noise with the same power.

3.3.1. Subspace Separation

Under the above assumption, theoretically, the covariance matrix of the array output
is given by

R = E
{

BBH
}
= CRsCH + 6σ2I2M+2, (26)
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where E{·} stands for the mathematical expectation operator, σ2 is the noise power on
each vector antenna, RS = E

{
S(t)SH(t)

}
.

Since the geometric product is non-commutativity, the Eigenvalue Decomposition
(ED) is different from the conventional real methods but similar to the quaternion case. In
other words, there are two possible eigenvalues, namely the left and the right eigenvalue
for G3 matrix. In the proposed algorithm, the right eigenvalue is selected because the right
ED of G3 matrix can be converted to the right ED of its CRM [20].

The ED of R is denoted by

R = UsΣsUH
s + UnΣnUH

n . (27)

According to the principle of subspace separation, Us is the signal subspace cor-
responding to K larger eigenvalues, and Σs is a diagonal matrix composed of K larger
eigenvalues. In addition, Un is orthogonal to Us and it is the noise subspace correspond-
ing to the remaining 4(M + 1)− K small eigenvalues. Similarly, Σn is a diagonal matrix
composed of the remaining small eigenvalues.

In the actual processing, the received signal is usually sampled. So, for a certain
number of snapshots N, (26) and (27) can be rewritten as

R̂ =
1
N

N

∑
i=1

B(ti)BH(ti),

R̂ = ÛsΣ̂sÛH
s + ÛnΣ̂nÛH

n .

(28)

Because the space formed by the eigenvectors corresponding to the larger eigenvalues
is the same as the space formed by the steering multi-vectors of the incident signals, that is,
span{Us} = span{C}, there exists a unique non-singular matrix T, which satisfies

Us = CT. (29)

The rotational invariance relations exist among three subarrays, but Us is the signal
subspace of the whole array; therefore, after obtaining Us, the signal subspace of three
subarrays must be separated. By the arrangement of sensor array, we find that the signal
subspace of three subarrays can be calculated by

Us1 = K1Us = CT,

Us2 = K2Us = CFT,

Us3 = K3Us = CGT,

(30)

where Us1, Us2 and Us3 are signal subspaces of subarray one, subarray two and subarray
three, respectively.

K1 =
[

IM 0M×(M+2)
]

M×(2M+2),

K2 =
[

0M×1 IM 0M×(M+1)
]

M×(2M+2),

K3 =
[

0M×(M+1) IM 0M×1
]

M×(2M+2).

(31)

3.3.2. Rotation Invariance

From (30), the pivotal matrices F and G can be found. So, let

Us2 = Us1Ψx (32)

in the same way,
Us3 = Us1Ψy (33)
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It is discovered that the eigenvalues of Ψx and Ψy are diagonal elements of F and G,
respectively.

Equations (32) and (33) are equations themselves, and are usually solved by the Least
Squares (LS) method [29,36,38,39]; however, LS only takes the error on the left side of the
equation into account, it ignores that the coefficient matrix also has an error; therefore, in
order to reduce the error caused by solving the equation as much as possible, this paper
considers a more accurate method—TLS [13]. Next, the solution of the equation is obtained
by taking (32) as an example.

Combining the idea of TLS with the orthogonal property of subspace, we define a new
matrix Us12 = [Us1 Us2]. In fact, the main aim is to seek a unitary matrix D ∈ GM×2K

3 ,
which is orthogonal to Us12. In other words, the space formed by D is orthogonal to the
space formed by the column vectors of Us1 or Us2. So the D can be obtained from the ED
of UH

s12Us12 [40]
UH

s12Us12 = EΛEH , (34)

where Λ is the diagonal matrix whose diagonal elements are composed by K multi-vectors
that only have 0-grade-vector (can regard as non-zero real number) and 3K multi-vectors
that equal to 0. E can be written as

E =

[
E11 E12
E21 E22

]
. (35)

Let EN =

[
E12
E22

]
, which is composed by eigenvectors whose eigenvalues are 0 and

form the noise subspace. Since Us12 is signal subspace, we find that D = EN , i.e.,

Us12D = [Us1 Us2]

[
E12
E22

]
= 0. (36)

Then,
Ψx = −E12E+

22. (37)

The pseudo-inverse of G3 matrix E22 can be found in (15).

3.3.3. Angle Estimation

The azimuth and elevation angle of K signals are included in F and G. In theory,
the eigenvectors obtained by ED of these two matrices are both T; however, in the actual
calculation process, the two eigenvalue decomposition operations are carried out indepen-
dently, which can not ensure that the arrangement of eigenvectors in them is reflected well;
therefore, the diagonal elements of F and G should be matched.

Suppose that T1 and T2 are eigenvector matrices derived from GA-ED of Ψx and Ψy,
respectively. Then

O = |T2HT1| (38)

where {| · |} is the operator that gets magnitude of every multi-vector in a matrix. For the
same signal, the eigenvectors in T1 and T2 corresponding to matched fk and gk are related;
therefore, the order of diagonal elements in F and G can be adjusted by the coordinate of
the largest element in each row (or column) of O to complete matching.

After observing (19), f and g are multi-vectors that only have scalar and 3-grade-
vector, if we replace e123 with the imaginary unit j of complex number, f and g can be
regarded as complex numbers. Finally, we calculate θk and φk with fk and gk, that is,

θk = tan−1
[

angle(gk)
angle( fk)

]
,

φk = sin−1
{

λ
2π sqrt

[
angle(gk)

2 + angle( fk)
2
]}

,
(39)
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where angle(·) is the operator for getting phase angle. In conclusion, the steps of the
GA-ESPRIT algorithm are:

1. The original data received from three subarrays are integrated into the measurement
model of the whole array according to (25);

2. Calculate the covariance matrix R̂, and then the ED in GA of R̂ is performed and the
signal subspace Us can be obtained by the larger eigenvalues;

3. According to (30), the signal subspace Us of the whole array is divided into three
subspaces Us1, Us2 and Us3;

4. Ψx and Ψy can be obtained using TLS in GA, and details can be found in (34)–(37);
5. The ED of Ψx and Ψy is performed to obtain matrices F and G;
6. The eigenvalues are matched in line with (38) and then taken them into Equation (39)

to calculate K pairs direction angles.

Further, the corresponding relationship between the logic flow and steps of GA-
ESPRIT is shown in Figure 4.

Figure 4. Logic flow diagram of GA-ESPRIT.

3.4. Complexity Analysis

As discussed in [21,22,27], the estimation of the data covariance matrix is an important
factor to illustrate the complexity of ESPRIT algorithm and another one is ED, because they
imply many repetitive operations and results, which mean heavy computational burden
and memory requirements. Thus, we evaluate the time complexity of the two processes
and space complexity in terms of real value memory requirements.

Suppose that an array composed of M vector sensors, and N snapshots are taken.
LV-ESPRIT [13] and GA-ESPRIT consider six-component measurements of each vector
sensor, whereas Q-ESPRIT [25] only records two-component measurements (electric field
on x-axis and y-axis.); therefore, we compare the complexity between LV-ESPRIT and GA-
ESPRIT. The output of each vector sensor for each signal consists of six complex numbers
in LV-ESPRIT, while GA-ESPRIT only has one multi-vector with vector and bivector parts.

The geometric product of two multi-vectors received by the array output implies 36
real multiplications [21], which is nine times as many real multiplications as two complex
numbers. As mentioned in Section 2, the ED of a G3 matrix is calculated by its CRM;
therefore, the time complexity of the two algorithms is shown in Table 1. As for space
complexity, the memory requirements of a real number is used to measure [21]. In the
following two tables, CM is the Covariance Matrix, R represents real number.

The complexity comparison of these two algorithms can be found in Table 2, where
CM and R represent covariance matrix and real number, respectively. Observing the time
complexity in Table 2, it is not difficult to find that the computational burdens of CM
and ED in GA-ESPRIT are a quarter and 1/27 of these in LV-ESPRIT, respectively. As for
space complexity, GA-ESPRIT achieves such a significant reduction, more than 1.5 times
compared to LV-ESPRIT, which means that the memory pressure is alleviated, especially
for the large data size. The reason for the above comparison results is the natural advantage
of GA matrix operations. In detail, because the six-dimensional measurement data in
LV-MODEL (stored as 12 real numbers) are mapped into a multi-vector in the G-MODEL
(stored as six real numbers), the amount of calculation will be reduced to varying degrees
with different matrix operations, which will also bring fewer data storage requirements.
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The superior description and calculation ability of GA for multi-dimensional signals make
GA-ESPRIT a very notable method for direction finding.

Table 2. Complexity of GA-ESPRIT and LV-ESPRIT.

Method
Time Complexity Space Complexity

CM ED CM (R) Eigenvalue (R) Eigenvectors (R)

LV-ESPRIT O
{

N · (6M)2} O
{
(6M)3} 72M2 6M 36M2

GA-ESPRIT O
{

9N ·M2} O
{
(2M)3} 8M2 2M 64M2

4. Simulation Results and Analysis

In this section, we simulate and analyze the proposed GA-ESPRIT based on DPULAs
with d = λ/2, discuss its feasibility and performance compared with LV-ESPRIT [14] (in
complex number field) and Q-ESPRIT [24] (in quaternion field). The estimation accuracy is
evaluated by Root Mean Square Error (RMSE), which is calculated by the average of 200
Monte Carlo simulation experiments.

The RMSE of DOA estimation is defined as

RMSE =
1
K

K

∑
k=1

√√√√ 1
200

200

∑
k=1

[(∆θk)
2 + (∆φk)

2], (40)

where K, ∆θk and ∆φk denote the number of incident signals and errors between the result cal-
culated by DOA algorithm and direction angle initially defined in the experiment, respectively.

In actual applications, the sensor model errors [27,41–43] cannot be ignored, which
main include sensor-position error, gain error and phase error. The sensor-position error, as
defined in [27], is the error between the actual position and the ideal position of each vector
sensor. In the simulation experiment, the sensor-position error is modeled as additive noise
with uniform distribution in a certain range, that is,

km = km + d
√

Ppe
[
εmx, εmy, εmz

]T (41)

where km and km are the actual position and ideal position of the mth sensor in vector-
sensor array, respectively. εmx, εmy and εmz are uniformly distributed noise terms. Ppe
represents the perturbation power of sensor-position error and the larger Ppe means the
greater deviation of the sensor from its ideal position. Further, referring to [43], the array
output with the gain and phase error is denoted by

B(t) = (I + ΠΞ)CS(t) + N(t), (42)

where
Π = diag(η1, η2, . . . , η2M+2),
Ξ = diag(exp(e123ξ1), . . . , exp(e123ξ2M+2)),

in which ηi and ξi (i = 1, 2, 3, . . . , 2M+ 2) are gain error and phase disturbance, respectively.
In this paper, we also model them as additive noise. In addition, the six components of all
EMVSs are added with noise according to the Signal-to-Noise ratio (SNR) in the following
experiments. The SNR is defined as SNR = 10lg(Ps/Pn), in which Ps and Pn are the power
of signal and noise on each component, respectively.

In the first experiment, we consider three far-field, narrow-band and uncorrelated
signals with parameters Γ = {160◦, 80◦, 35◦, −60◦}, {60◦, 50◦, 35◦, 60◦} and {20◦, 110◦,
45◦, 80◦} with respect to Signal-to-Noise ratio (SNR) vary −10 dB to 20 dB in two different
cases. In addition, we set M = 7 and the snapshot number is 200. The aim of the first
experiment was to examine the performance of GA-ESPRIT, LV-ESPRIT and Q-ESPRIT
under different noise statistical characteristics. Figure 5a shows the estimation results
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of three algorithms when ideal Gaussian white noise is added, whereas, the noise in
Figure 5b is related. It can be concluded that the three algorithms have very close accuracy
of calculating DOA at high levels of SNR from Figure 5a,b, while with the lower SNR,
GA-ESPRIT has higher accuracy over the other two and can achieve remove the correlation
of noise partially.

(a) (b)

Figure 5. RMSE versus SNR with different noise. (a) RMSE versus SNR with uncorrelated noise.
(b) RMSE versus SNR with correlated noise.

In the second experiment, we compare the performance of GA-ESPRIT, LV-ESPRIT
and Q-ESPRIT when the sensor-position error exists. Assume that two signals with
Γ = {58◦, 77◦, 35◦, −60◦} and {136◦, 50◦, 35◦, 60◦} impinge on a DPULA with M = 9.
Figure 6a shows the performance of the three algorithms when sensor-position error exists
with different intensities. Meanwhile, we set SNR to 10 dB and the snapshot number is
200. The sensor-position error of the array sensor is changed by the value of Ppe, whose
range is 0–0.07. It can be seen in Figure 6b that we fix Ppe = 0.02 to observe the estimation
of the three algorithms by altering SNR from −10 dB to 20 dB. Figure 6a,b both imply
that accuracy of GA-ESPRIT is highest in the presence of the sensor-position error, so the
conclusion is that GA-ESPRIT has the strongest robustness against sensor-position errors
among the three algorithms.

(a) (b)

Figure 6. RMSE with sensor-position error. (a) RMSE versus the power of sensor-position error.
(b) RMSE versus SNR in the presence of sensor-position error.

The third experiment is also designed for two cases. Case one is that only gain error
exists (see Figure 7a), while for case two, only phase error exists (see Figure 7b). Other
conditions are the same as experiment two except that there is no position error. The gain
error is constructed by the random numbers, whose mean value is 1 and variance is 0.2, and
the phase error is constructed by the random numbers with zero-mean and 0.005 variance.
We can learn from Figure 7a,b that, whether there is gain error or phase error, GA-ESPRIT
can maintain the estimation accuracy very well, especially in low SNR.
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(a) (b)

Figure 7. RMSE with gain or phase error. (a) RMSE versus SNR in the presence of gain error.
(b) RMSE versus SNR in the presence of phase error.

In general, it is because Q-ESPRIT only takes part of the array output information into
consideration that makes large RMSE. The reason for LV-ESPRIT’s poor accuracy in the face
of the sensor-model error would be that its “long vector” destroys the orthogonality of the
signal components. The improvement of detection robustness of GA-ESPRIT largely results
from the fact that it can effectively preserve the orthogonality of the signal components
and guarantee the completeness of the information.

5. Conclusions

In this paper, considering that the GA representation contains physical interpretations
and complete information of incident signals, we use the idea of the traditional ESPRIT
algorithm to find multiple EM signals in the direction finding method in GA. In particular,
the model for DPULAs was built in GA and GA-ESPRIT was successfully derived using
new calculation rules to achieve the two-dimensional DOA estimation. Compared with the
previous ESPRIT algorithms, due to the robustness to sensor-model error and correlated
noise, our proposed approach has potential in many practical situations, such as military
radar in difficult environments. According to the experimental results, we have confirmed
that the GA-ESPRIT has improved accuracy in two-dimension DOA estimation and can
resist environmental interference to some extent. More importantly, the proposed algo-
rithm achieves a reduction of more than 1/3 of the memory requirements while the time
complexity is also greatly decreased.

Future works on the GA-ESPRIT will include polarization parameter estimation by
optimizing matrix operations in GA and the ability of DOA recognition when facing
coherent EM signals. It is expected that the proposed GA-ESPRIT will be an efficient
DOA estimator.
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