Feasibility of Novel Rear-Side Mirage Deflection Method for Thermal Conductivity Measurements
Abstract
:1. Introduction
2. Background Theory
2.1. Rear-Side Mirage Deflection Method
2.2. Temperature Distribution and Phase Delay Analysis
2.3. Thermal Property Determination Algorithm
3. Experimental Investigation
3.1. Specimens Used for Experiments
3.2. Experimental Setup for Rear-Side Mirage Deflection Method
4. Results
5. Conclusions
- (1)
- For the rear-side mirage deflection method, a three-dimensional unsteady state heat conduction equation was established, and the three-dimensional unsteady state temperature distribution was derived using the complex transformation method and Hankel transformation. The theoretical phase delay between the pump beam and the probe beam was derived via temperature distribution to conduct the deflection analysis of the probe beam.
- (2)
- A light absorption thin film made of copper was formed on each of the target materials using the electrodeposition process to eliminate the influence of the optical properties of the target materials. The purity of the light absorption thin film was measured using XRF, and it was found that approximately 99.95% of the film was copper. The influence of the contact resistance between the light absorption thin film and the target materials could be indirectly examined in the case where the target material was copper. The theoretical phase delay results, which did not consider the contact resistance, showed good agreement with the experimental phase delay results with relative errors of less than 0.5%. This indicates that the influence of the contact resistance between the light absorption thin film and the target materials on the phase delay is not significant.
- (3)
- Thermal conductivity could be determined by applying the phase curve algorithm to the experimentally measured phase delay results. The determined thermal conductivities of the three target materials (copper, aluminum, and stainless steel) showed good agreement with those provided by the manufacturers with relative errors equal to or less than 0.2%. This indicates that the accuracy was significantly improved considering that the relative error obtained in the existing study, which performed measurements through the mirage deflection method, was 2.1%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Radius of pump beam [m] | |
Bessel function of the first kind | |
Thermal conductivity [W/m-K] | |
Optical absorption length [m] | |
Refractive index | |
Power of pump beam [W] | |
Heat source [W/m3] | |
Reflectivity | |
Temperature [K] | |
Time [s] | |
Greek letter | |
Thermal diffusivity [m/s] | |
Integration variable | |
Optical absorption coefficient [1/m] | |
Deflection angle [°] | |
Phase delay [°] | |
Angular frequency [1/s] |
Appendix A
Appendix B
Appendix B1. Uncertainty Analysis
Appendix B2. Uncertainty Analysis for Phase Delay of Pump and Probe Beam
Category | Input Quantity |
---|---|
Frequency of pump beam (Hz) | 20 |
Diameter of pump beam (μm) | 70 |
Relative position (mm) | 0 |
Height of probe beam (μm) | 150 |
Environment temperature (°C) | 25 |
Thermal conductivity of air (W/m-K) | 0.02624 |
Category | Value | |
---|---|---|
Type A evaluation of standard uncertainty (°) | 0.0591 | |
Type B evaluation of standard uncertainty (°) | Mechanical chopper | 4.1569 |
PSD sensor | 2.0785 | |
Lock-in Amplifier | 2.0785 | |
Motorized stage | 0.2078 | |
Beam profiler | 4.1569 | |
Combined standard uncertainty (°) | 6.5762 | |
Expanded uncertainty (°) | 13.2 | |
Uncertainty of phase delay (%) | 3.7 |
References
- Khaselev, O.; Bansal, A.; Turner, J.A. High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrog. Energy 2001, 26, 127–132. [Google Scholar] [CrossRef]
- Berger, L.I. Semiconductor Materials; CRC Press: New York, NY, USA, 1996. [Google Scholar]
- Ross, R.B. Metallic Materials Specification Handbook; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Weast, R.C.; Astle, M.J.; Beyer, W.H. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 1988. [Google Scholar]
- Kish, L.B. End of Moore’s law: Thermal (noise) death of integration in micro and nano electronics. Phys. Lett. A 2002, 305, 144–149. [Google Scholar] [CrossRef]
- Powell, R.W.; Taylor, R.E. Multi-property Apparatus and Procedure for High Temperature Determinations; Purdue University: Lafayette, IN, USA, 1970. [Google Scholar]
- Taylor, R.E.; Kimbrough, W.D.; Powell, R.W. Thermophysical properties of tantalum, tungsten, and tantalum-10 wt. per cent tungsten at high temperatures. J. Less Common Met. 1971, 24, 369–382. [Google Scholar] [CrossRef]
- Cahill, D.G.; Katiyar, M.; Abelson, J.R. Thermal conductivity of a-Si: H thin films. Phys. Rev. B 1994, 50, 6077. [Google Scholar] [CrossRef] [PubMed]
- Cezairliyan, A. Design and operational characteristics of a high-speed (millisecond) system for the measurement of thermophysical properties at high temperatures. J. Res. Nat. Bur. Stand. C 1971, 75, 7–18. [Google Scholar] [CrossRef]
- Cezairliyan, A.; Miiller, A.P. Specific heat capacity and electrical resistivity of a carbon-carbon composite in the range 1500–3000 k by a pulse heating method. Int. J. Thermophys. 1980, 1, 317–326. [Google Scholar] [CrossRef]
- Cezairliyan, A.; Morse, M.S.; Beckett, C.W. Measurement of melting point and electrical resistivity (above 2,840 deg K) of molybdenum by a pulse heating method. Rev. Int. des Hautes Températures et des Refract. 1970, 7, 382–388. [Google Scholar]
- Sell, J. Photothermal Investigations of Solids and Fluids; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Taylor, R. Determination of thermophysical properties by direct electric heating. High Temp. High Press. 1981, 13, 9–22. [Google Scholar]
- Arai, T.; Baba, T.; Ono, A. Thermographic investigation of laser flash diffusivity measurement. High Temp. High Press. 1987, 19, 269–273. [Google Scholar]
- Deem, H.W.; Wood, W.D. Flash thermal-diffusivity measurements using a laser. Rev. Sci. Instrum. 1962, 33, 1107–1109. [Google Scholar] [CrossRef]
- Salazar, A.; Sánchez-Lavega, A.; Fernandez, J. Thermal diffusivity measurements in solids by the ‘‘mirage’’technique: Experimental results. J. Appl. Phys. 1991, 69, 1216–1223. [Google Scholar] [CrossRef]
- Spear, J.D.; Russo, R.E.; Silva, R.J. Collinear photothermal deflection spectroscopy with light-scattering samples. Appl. Opt. 1990, 29, 4225–4234. [Google Scholar] [CrossRef]
- Murphy, J.C.; Aamodt, L.C. Photothermal spectroscopy using optical beam probing: Mirage effect. J. Appl. Phys. 1980, 51, 4580–4588. [Google Scholar] [CrossRef]
- Jackson, W.B.; Amer, N.M. Direct measurement of gap-state absorption in hydrogenated amorphous silicon by photothermal deflection spectroscopy. Phys. Rev. B 1982, 25, 5559. [Google Scholar] [CrossRef] [Green Version]
- Jackson, W.B.; Amer, N.M.; Boccara, A.C.; Fournier, D. Photothermal deflection spectroscopy and detection. Appl. Opt. 1981, 20, 1333–1344. [Google Scholar] [CrossRef]
- Bertolotti, M.; Liakhou, G.; Li Voti, R.; Peng Wang, R.; Sibilia, C.; Yakovlev, V.P. Mirror temperature of a semiconductor diode laser studied with a photothermal deflection method. J. Appl. Phys. 1993, 74, 7054–7060. [Google Scholar] [CrossRef]
- Bertolotti, M.; Liakhou, G.; Ferrari, A.; Ralchenko, V.; Smolin, A.; Obraztsova, E.; Korotoushenko, K.; Pimenov, S.; Konov, V. Measurements of thermal conductivity of diamond films by photothermal deflection technique. J. Appl. Phys. 1994, 75, 7795–7798. [Google Scholar] [CrossRef]
- Bashirnezhad, K.; Rashidi, M.M.; Yang, Z.; Bazri, S.; Yan, W.M. A comprehensive review of last experimental studies on thermal conductivity of nanofluids. J. Therm. Anal. Calorim. 2015, 122, 863–884. [Google Scholar] [CrossRef]
- Yamaoka, S.; Kataoka, Y.; Kazama, Y.; Fujii, Y.; Hibara, A. Efficient thermal lens nanoparticle detection in a flow-focusing microfluidic device. Sens. Actuators B Chem. 2016, 228, 581–586. [Google Scholar] [CrossRef]
- Abad, B.; Borca-Tasciuc, D.A.; Martin-Gonzalez, M.S. Non-contact methods for thermal properties measurement. Renew. Sustain. Energy Rev. 2017, 76, 1348–1370. [Google Scholar] [CrossRef]
- Kant, K.; Shukla, A.; Sharma, A.; Biwole, P.H. Heat transfer study of phase change materials with graphene nano particle for thermal energy storage. Sol. Energy 2017, 146, 453–463. [Google Scholar] [CrossRef]
- Dacarro, G.; Taglietti, A.; Pallavicini, P. Prussian blue nanoparticles as a versatile photothermal tool. Molecules 2018, 23, 1414. [Google Scholar] [CrossRef] [Green Version]
- Olmstead, M.A.; Amer, N.M.; Kohn, S.; Fournier, D.; Boccara, A.C. Photothermal displacement spectroscopy: An optical probe for solids and surfaces. Appl. Phys. A 1983, 32, 141–154. [Google Scholar] [CrossRef]
- Opsal, J.; Rosencwaig, A. Thermal-wave depth profiling: Theory. J. Appl. Phys. 1982, 53, 4240–4246. [Google Scholar] [CrossRef]
- Opsal, J.; Rosencwaig, A.; Willenborg, D.L. Thermal-wave detection and thin-film thickness measurements with laser beam deflection. Appl. Opt. 1983, 22, 3169–3176. [Google Scholar] [CrossRef] [PubMed]
- Jeon, P.; Lee, K.; Yoo, J.; Park, Y.; Lee, J. The theoretical study of the measuring thermal diffusivity of semi-infinite solid using the photothermal displacement. KSME Int. J. 2004, 18, 1712–1721. [Google Scholar] [CrossRef]
- Lee, E.H.; Lee, K.J.; Jeon, P.S.; Yoo, J. Measurement of thermal diffusivity based on the photothermal displacement technique using the minimum phase method. J. Appl. Phys. 2000, 88, 588–590. [Google Scholar] [CrossRef]
- Jeon, P.; Lee, K.; Yoo, J.; Park, Y.; Lee, J. Measurement of thermal diffusivity using deformation gradient and phase in the photothermal displacement technique. KSME Int. J. 2003, 17, 2078–2086. [Google Scholar] [CrossRef]
- Jeon, P.S.; Kim, J.H.; Kim, H.J.; Yoo, J. Thermal conductivity measurement of anisotropic material using photothermal deflection method. Thermochim. Acta 2008, 477, 32–37. [Google Scholar] [CrossRef]
- Jeon, P.; Lee, E.; Lee, K.; Yoo, J. A theoretical study for the thermal diffusivity measurement using photothermal deflection scheme. Energy Eng. J. 2001, 10, 63–70. [Google Scholar]
- Salazar, A.; Gateshki, M.; Gutiérez-Juárez, G.; Sánchez-Lavega, A.; Ang, W.T. Novel results on collinear mirage deflection. In Analytical Sciences/Supplements Proceedings of 11th International Conference of Photoacoustic and Photothermal Phenomena; The Japan Society for Analytical Chemistry: Tokyo, Japan, 2002; pp. s95–s98. [Google Scholar]
- Salazar, A.; Sánchez-Lavega, A.; Fernández, J. Thermal diffusivity measurements on solids using collinear mirage detection. J. Appl. Phys. 1993, 74, 1539–1547. [Google Scholar] [CrossRef]
- Spear, J.D.; Silva, R.J.; Klunder, G.L.; Russo, R.E. Collinear photothermal deflection spectroscopy of liquid samples at varying temperature. Appl. Spectrosc. 1993, 47, 1580–1584. [Google Scholar] [CrossRef]
- Kim, M.; Park, K.; Kim, G.; Yoo, J.; Kim, D.K.; Kim, H. Collinear deflection method for the measurement of thermal conductivity of transparent single layer anisotropic material. Appl. Sci. 2019, 9, 1522. [Google Scholar] [CrossRef] [Green Version]
- Gallais, L.; Commandré, M. Photothermal deflection in multilayer coatings: Modeling and experiment. Appl. Opt. 2005, 44, 5230–5238. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Incropera, F. Convection heat transfer in electronic equipment cooling. J. Heat Transf. 1988, 110, 1097–1111. [Google Scholar] [CrossRef]
- Carvill, J. Mechanical Engineer’s Data Handbook; Butterworth-Heinemann: Oxford, UK, 1994. [Google Scholar]
- Esmati, M.; Sharifi, H.; Raeissi, M.; Atrian, A.; Rajaee, A. Investigation into thermal expansion coefficient, thermal conductivity and thermal stability of Al-graphite composite prepared by powder metallurgy. J. Alloy. Compd. 2019, 773, 503–510. [Google Scholar] [CrossRef]
- Coleman, H.W.; Steele, W.G. Experimentation, Validation, and Uncertainty Analysis for Engineers; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Guide to the Expression of Uncertainty in Measurement. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 (accessed on 1 September 2021).
Category | Materials | Thermal Conductivity (W/m-K) | Refractive Index |
---|---|---|---|
Substrate | B, Cdiamond, Si, P, Ga, GaAs, Se, Sn, and Te | 0.05–2.90 × 10−3 | 2.3–3.97 |
Metal | Ag, Au, Cu, Al, Carbon Nanotubes, and Graphene | 210–419 | 0.5–0.9 |
Method | Limitation | |
---|---|---|
Contact | DC heating [6,7,8] | Conductive materials only |
Pulse heating [9,10,11] | Conductive materials only | |
Laser calorimetry [12] | Large amount of heat loss | |
3ω Method [13] | Complicated method causing specimen damage | |
Noncontact | Photo Acoustic [12] | Low accuracy |
Laser flash [14,15] | Specimen damage and limitations in terms of sample shape/size | |
Photothermal radiometry [12] | Problem of emissivity factor | |
Photothermal reflection [12] | Standardization of roughness on surface of specimen | |
Photothermal displacement [12] | Surface treatment of specimen | |
Photothermal deflection [12] | Increase in S/N ratio |
Element | Proportion (m%) |
---|---|
Cu | 99.9461 |
S | 0.0223 |
P | 0.0316 |
Material | Thermal Conductivity (W/m-K) | Specific Heat (J/kg K) | Density (kg/m3) |
---|---|---|---|
Copper [42,43] | 385 | 385 | 8960 |
Aluminum [3,44] | 210 | 900 | 2699 |
SUS 304 | 12.7 | 500 | 7945 |
Condition | Errors | ||
---|---|---|---|
Intensity of pump beam (W) | 10 | Power stability | ±0.25% rms |
Radius of pump beam (μm) | 75 | 2.3 mm ± 10% | |
Height of probe beam (μm) | 150 | ±3 μm | |
Relative position (mm) | 0 to 0.6 (interval 0.1) | ±1.2 μm | |
Modulated frequency (Hz) | 20 | <2% |
Material | (W/m-k) | (W/m-k) | Relative Error (%) |
---|---|---|---|
Copper | 385 | 384.3 | 0.1 |
Aluminum | 210 | 209.5 | 0.2 |
SUS 304 | 12.7 | 12.7 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.; Kim, M.; Kim, H. Feasibility of Novel Rear-Side Mirage Deflection Method for Thermal Conductivity Measurements. Sensors 2021, 21, 5971. https://doi.org/10.3390/s21175971
Kim G, Kim M, Kim H. Feasibility of Novel Rear-Side Mirage Deflection Method for Thermal Conductivity Measurements. Sensors. 2021; 21(17):5971. https://doi.org/10.3390/s21175971
Chicago/Turabian StyleKim, Gwantaek, Moojoong Kim, and Hyunjung Kim. 2021. "Feasibility of Novel Rear-Side Mirage Deflection Method for Thermal Conductivity Measurements" Sensors 21, no. 17: 5971. https://doi.org/10.3390/s21175971
APA StyleKim, G., Kim, M., & Kim, H. (2021). Feasibility of Novel Rear-Side Mirage Deflection Method for Thermal Conductivity Measurements. Sensors, 21(17), 5971. https://doi.org/10.3390/s21175971