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Abstract: Fault detection of axle bearings is crucial to promote the safe, efficient, and reliable running
of high-speed trains. In recent decades, time−frequency analysis (TFA) techniques have been
widely used in mechanical equipment fault diagnoses. Time-reassigned multisynchrosqueezing
transform (TMSST), as a novel time−frequency representation (TFR) algorithm, is more suitable
for dealing with strong frequency-varying signals. However, TMSST TFR results are subject to
noise interference. It is difficult to extract the accurate time−frequency (TF) fault feature of the axle
bearing under a complex working environment. In addition, determination of the TMSST algorithm
parameters depends on the personnel’s subjective experience. Therefore, the TMSST result has a
great randomicity and has the disadvantage of having a poor reliability. To address the above issues,
a hybrid SVD-based denoising and self-adaptive TMSST is proposed for axle bearing fault detection
in this paper. The main improvements of the proposed algorithm include the following two aspects:
(1) An SVD-based denoising method using the maximum SV mean to determine the reasonable SV
order is adopted to eliminate noise interference and to reserve useful fault impulse information. (2) A
new evaluation metric, named time−frequency spectrum permutation entropy (TFS-PEn), is put
forward for the quantitative evaluation of the performance of TFR for the TMSST, and then a water
cycle algorithm (WCA)-based optimized TMSST can adaptively determine the optimal algorithm
parameters. In both the simulation and experimental tests, the superiority and effectiveness of the
proposed method is compared with the TMSST, short-time Fourier transform (STFT), MSST, wavelet
transform (WT), and Hilbert-Huang transform (HHT) methods. The results show that the proposed
algorithm has a better performance for extracting the weak fault features of axle bearing under a
strong background noise environment.

Keywords: axle bearing; time−frequency analysis; singular value decomposition; time-reassigned
synchrosqueezing transform; fault detection

1. Introduction

Bogies are located at both ends of high-speed train carriages and play an important role
in the safe and stable operation of the trains. With the increase in train speed, the working
environment of the bogies under heavy-load and long-term alternating stress conditions
is becoming more and more severe. Axle bearings, as an important rotating part of
the bogie, are subjected to a variety of dynamic loads and harsh working conditions
during operation [1]. As a result, axle bearings are exposed to a significant risk of failure
deterioration. Especially in the strong wheel-track excitation environment, the failure
characteristics of axle bearings are weak and almost completely submerged in the strong
noise, so the fault diagnosis of axle bearings is of great importance.

The collision of the damaged rotating roller will generate a series of periodic im-
pacts and corresponding resonances when the surface of the bearing component fails.
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The fault characteristic frequencies of different types of bearing failures are varied. How-
ever, when overwhelmed by heavy noise, the fault impulse feature generated by an incipi-
ent fault is too weak to detect directly. This has led to a considerable amount of research
on the vibration-based diagnosis of bearings in the last decades. Many signal processing
methods, such as the spectral kurtosis (SK) algorithm [2,3], morphological filter [4], sparse
representation [5], and time−frequency analysis (TFA) [6,7], have been explored over
the years for bearing fault diagnosis. Among them, the TFA techniques can convert the
one-dimensional (1D) time-domain signal into a two-dimensional (2D) time−frequency
(TF) feature distributed along the time and frequency directions. It can effectively de-
scribe the variation of the frequency components of a non-stationary signal with time. In
addition, some advanced time−frequency decomposition methods have been emerging.
Chegini et al. [8] proposed an empirical wavelet transform (EWT) method for early fault
detection and for diagnosing the fault pattern of bearings. Xing et al. [9] developed a
bearing fault diagnosis method based on variational mode decomposition (VMD), Tsallis
entropy, and the fuzzy C-means clustering algorithm. Pan et al. [10] presented a symplectic
geometry mode decomposition method for rotating machinery compound fault diagnosis,
which can decompose a time signal into a series of mode components. Chen et al. [11]
adopted an adaptive chirp mode decomposition to extract the fast fluctuating instantaneous
frequency of the signal of the rub-impact rotor, and achieved a good result.

Traditional TFA methods, such as short-time Fourier transform (STFT), Wigner−Ville
distribution (WVD), and wavelet transform (WT), have been widely employed for fault sig-
nal analyses. Despite the respective good performances of these techniques, shortcomings
also remain that limit their practical application. Because of the Heisenberg uncertainty
principle, STFT and WT technologies are unable to obtain a high-accuracy time−frequency
resolution [12]. WVD is not suitable for multi-component signal analysis because of cross-
term interference [13]. Auger et al. [14] proposed a TF reassignment method that effectively
improves the readability of the TF feature distribution. Daubechies et al. [15] proposed a
synchrosqueezing transformation (SST) method based on TFR, further improving the read-
ability of TFA and preserving the reversibility property, but it has a more serious ambiguity
on the time−frequency representation (TFR). The degree of energy concentration of the TF
distribution is an important indicator of the effectiveness of TFA methods. To overcome
the problem of ambiguity in TFR, different kinds of SST techniques, such as WT-based SST,
STFT-based SST, high-order SST, and time-reassigned SST (TSST), are constantly emerging
to move the energy of each time−frequency point to the energy center of gravity and to
generate a high energy concentrated TFR [16–19]. However, the above SST techniques
exhibit a good TF energy concentration effect only when the analyzed signal has a con-
stant instantaneous frequency or slow time-varying characteristics. In actual engineering,
the fault impulses of the vibration signals for the rotating machinery key components,
such as the bearings and gears, are transient, which have a very wide frequency band
response. The above-mentioned methods are not applicable for a fault impact signal with
violent instantaneous frequency changes.

Time-reassigned multisynchrosqueezing transform (TMSST) is the latest TFA method
proposed by Yu et al. [20], which can deal with a strong frequency-varying signal and
obtain a highly concentrated TFR to characterize the fault impulse. Although the TMSST
method is suitable for processing transient impulse fault signals and can solve the blurry
TFR problem of the traditional SST methods, there are still two deficiencies that seriously
limit its application in practical engineering.

(1) The TMSST method is less robust to noise interference. The key components of
the rotating machinery often work under very harsh conditions, and the measured
vibration signals contain a large number of background noise interference components.
The fault feature information is immersed in heavy background noise, which leads to
fault impulses that are difficult to recognize. TMSST is only effective for fault impulse
components of the signals, but cannot eliminate the interference of noise.
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(2) The self-adaptability of the TMSST is relatively poor. In practical applications, two al-
gorithm parameters of the TMSST need to be set in advance, and they have a significant
influence on the results of the TFR. So far, the choice of the TMSST algorithm param-
eters still depends on human experience, which leads to a high uncertainty for the
TFR results.

To tackle the above problems and expand the practical application of the TMSST,
a framework combining singular value decomposition (SVD)-based denoising and self-
adaptive TMSST is presented in this paper. The proposed method can eliminate noise
interference as much as possible, and can effectively extract weak fault impulse features
for axle bearing fault diagnosis. The main contributions of the work proposed in this paper
are summarized as follows.

(1) An SVD-based denoising method is introduced to eliminate noise interference. The SVD
technique is reviewed as a competitive noise reduction method, which has been widely
used in signal denoising [21,22]. Hence, for the problem that the reconstruction singular
value (SV) order is difficult to determine in SVD, a maximum SV mean method is pro-
posed in this paper to implement the self-adaptive determination of the SV order. The
useful fault impulse components of the signal are retained and the noise components
are removed after SV reconstruction.

(2) Adaptive optimization TMSST is developed to acquire the optimal algorithm pa-
rameters and extract the TF fault feature information. A new evaluation metric,
time−frequency spectrum permutation entropy (TFS-PEn), is proposed to quantita-
tively evaluate the TFR performance of the TMSST. To further improve the adaptability
of TMSST, an optimized water cycle algorithm (WCA) is introduced to determine the
algorithm parameters adaptively.

The rest of the paper is structured as follows. SVD-based denoising based on the
maximum SV mean is described in Section 2. The TMSST method is briefly described in
Section 3. The proposed method is detailed in Section 4. Numerical and experimental
examples are illustrated in Section 5. Conclusions are drawn in Section 6.

2. SVD-Based Denoising Theory

The SVD-based denoising algorithm has two remarkable advantages. (1) SVD is
a non-parametric technique and is easy to implement. For a given matrix, it can be
decomposed into two orthogonal matrices and some corresponding singular values without
any parameters. Some denoising algorithms, such as the Kalman filter algorithm and
wavelet transform filter algorithm, need to set relevant parameters in advance. (2) The
essence of SVD is to retain the useful information in the signal subspace and to remove the
interference components in the noise subspace. So, the SVD-based denoising algorithm
does not introduce additional components into the denoising process. It does not pollute
the raw signal, which is different from other denoising algorithms, such as morphology
filter and stochastic resonance denoising. Based on the above analysis, the SVD-based
denoising algorithm is suitable for signal denoising preprocessing.

2.1. SVD

Assuming that X = {x1, x2, ..., xN} is a 1D vibration signal, the Hankel matrix of X is
formed as

Am×n =


x(1) x(2) · · · x(n)
x(2) x(3) · · · x(n + 1)

...
...

...
...

x(m) x(m + 1) · · · x(N)

 (1)

where 1 < m < N, n = N − m + 1. m is the rows of the matrix and n is the columns of the
matrix. In order to enhance the performance of the SVD, the Hankel matrix should be
decomposed as fully as possible [23]. When constructing the Hankel matrix, the number of
rows and columns of the matrix should be as equal as possible according to the length of
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the analyzed signal. In the course of practice, n = N/2 when N is an even number and
n = (N + 1)/2 when N is an odd number.

For matrix Am×n, the following mathematical formula can be obtained according to
the theory of the SVD.

Am×n = Um×lΛVT
n×l (2)

where Um×l , VT
n×l are the orthogonal matrixes and Λ is a diagonal matrix with the size of

l × l. The diagonal elements are

Λ = diag(σ1, σ2, ..., σk) (3)

where σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0, k = min(m, n). σ1, σ2, ..., σk are the SVs of the matrix Am×n.
For a bearing vibration signal with noise, the matrix Am×n can be considered as follows:

Am×n = Dm×n + Wm×n (4)

where Dm×n belongs to the fault signal space and Wm×n belongs to the noise signal space.
This reveals that the SVs that belong to the fault useful signal and noise signal have different
distribution features. The useful signal can be obtained through reconstruction with some
SVs that represent the fault impulse components.

2.2. Signal Reconstruction

The performance of SVD-based denoising depends on the choice of the SV order.
Figure 1a shows a simulated signal. When the simulated signal contains a strong noise,
it is difficult to identify the original signal waveform (Figure 1b). Figure 1c–e shows the
reconstructed signal based on different SV orders. The useful components of the signal
cannot be extracted completely if the SV order is not enough, while the noise components
cannot be eliminated effectively if the SV order is over the upper limit.

Through the above analysis, knowing how to make a reasonable choice for the SV
order is crucial for SVD-based denoising. The Hankel matrix, described by Equation (1),
shows that two adjacent row vectors lag only one data point. Hence, adjacent row vectors
are highly similar sequences with a strong resistance. The Hankel matrix consists of useful
signal components and has a significant feature that the SVs are larger in the first few values
and the rest are much smaller. However, the difference in SVs for a noise matrix is similar
because the two adjacent row vectors in the noise matrix have a bad correlation. Based on
these analyses, the maximum SV mean method is proposed in order to determine the
reasonable SV order in this paper. The SV mean is illustrated with the following equation

Zi =
σi−1 − σi+1

2
(5)

where Zi is the i-th SV mean. k = arg(maxZi) is the optimal SV order. The appearance of
the maximum SV mean is caused by the irrelevance of the fault component and the noise
interference component in the signal; therefore, the maximum mean value can be seen
as a dividing line between the useful signal and the noise signal. Only the first k SVs are
reserved for matrix reconstruction to reconstruct the denoising signal.
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3. Time-Reassigned Multisynchrosqueezing Transform (TMSST)
3.1. Time-Reassigned Synchrosqueezing Transform(TSST)

A mono-component signal can be expressed as follows:

ŝ(w) = A(ω)eiϕ(ω) (6)

where A(ω) and ϕ(ω) represent the amplitude and phase of the signal, respectively. ŝ(w) is
transformed into the TF domain by STFT using a moving window function ĝ(ξ)

G(t, ω) = (2π)−1
∫ +∞

−∞
ŝ(ξ)ĝ(ξ − w)ei(ξ−ω)tdξ (7)

The first-order Taylor expansion of ŝ(w) is written as

ŝ(ξ) = A(w)ei(ϕ(w)+ϕ′(w)(ξ−ω)) (8)

Substituting Equation (8) into Equation (7) results in the following

G(t, ω) = (2π)−1
∫ +∞
−∞ A(ω)ei(ϕ(ω)+ϕ′ (ω)(ξ−ω))_g (ξ −ω)ei(ξ−ω)tdξ

= A(ω)eiϕ(ω)g(t + ϕ′ (ω))
(9)
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where ϕ′(ω) represents the group delay (GD). It is observed that the TF energy of ŝ(ω)
spreads around the GD trajectory in Equation (9). To enhance the TF energy concentration,
TSST is proposed to derive a 2D GD estimate as follows:

t̂(t, ω) = Re(
i∂ωG(t, ω)

G(t, ω)
) (10)

where Re() is the real part. Substituting Equation (9) into Equation (10) results in the following:

t̂(t, ω) = −ϕ′ (ω) (11)

The blurry TF energy is squeezed into the GD trajectory through the operation of a 1D
integration along the time direction.

Ts(u, ω) =
∫ +∞

−∞
G(t, ω)δ(u− t̂(t, ω))dt (12)

Combining Equations (10), (12), and (13), we obtain the following:

Ts(u, ω) = (2π)−1
∫ +∞
−∞

∫ +∞
−∞ ŝ(ξ)

_
g (ξ −ω)ei(ξ−w)tδ(u + ϕ′ (ω))dξdt

= ŝ(ξ)
_
g (0)δ(u + ϕ′ (ω))

(13)

It can be seen from Equation (13) that the blurry TF energy of ŝ(w) can be squeezed
into the GD trajectory in the TSST. However, it only achieves a good result for a signal with
weak frequency-varying characteristics.

3.2. Time-Reassigned Multisynchrosqueezing Transform (TMSST)

The second-order Taylor expansion of ŝ(ω) is obtained

ŝ(ξ) = A(ω)ei(ϕ(ω)+ϕ′ (ω)(ξ−ω)+0.5ϕ′′ (ω)(ξ−ω)2) (14)

The Gaussian window function used in STFT is

g(ω) =
√

2σπe−0.5σω2
(15)

Substituting Equations (14) and (15) into Equation (7), we obtain the following:

G(t, ω) = (2π)−1
∫ +∞
−∞ A(ω)ei(ϕ(ω)+ϕ′ (ω)(ξ−ω)+0.5ϕ′′ (ω)(ξ−ω)2)

√
2σπe−0.5σ(ξ−ω)2

ei(ξ−ω)tdξ

= A(ω)eiϕ(ω)
√

σ
σ−iϕ′′ (ω)

e
− (t+ϕ′ (ω))

2

2σ−2iϕ′′ (ω)

(16)

The 2D GD estimate of Equation (16) can be obtained as follows

t̂(t, ω) = −ϕ′(ω) +
ϕ′′ (ω)2

σ2 + ϕ′′ (ω)2

(
t + ϕ′(ω)

)
(17)

Now, substituting t = −ϕ′ (ω) into Equation (17), we obtain the following

t̂(−ϕ′ (ω), ω) = −ϕ′ (ω) (18)
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The fixed-point iterative algorithm of −ϕ′ (ω) is used to reduce the error −ϕ′ (ω) and
_
t (t, w). The iteration results from the 1-th to N-th are

t̂(t̂(t, ω), ω) = −ϕ
′
(ω) + ( ϕ

′ ′
(ω)2

σ2+ϕ
′′ (ω)2 )

2

(t + ϕ
′
(ω))

t̂(t̂(t̂(t, ω), ω), ω) = −ϕ
′
(ω) + ( ϕ

′ ′
(ω)2

σ2+ϕ
′′ (ω)2 )

3

(t + ϕ
′
(ω))

· · ·

t̂[N](t, ω) = −ϕ
′
(ω) + ( ϕ

′ ′
(ω)2

σ2+ϕ
′′ (ω)2 )

N

(t + ϕ
′
(ω))

(19)

When the iteration number N reaches infinity, the following result can be obtained:

lim
N→∞

t̂[N](t, ω) = −ϕ′ (ω) (20)

So, Equation (13) can be written as

Ts[N](u, ω) =
∫ +∞

−∞
G(t, ω)δ(ζ − t̂[N](t, ω))dt (21)

After a sufficient number of iterations, we obtain

lim
N→∞

Ts[N](u, ω) = ŝ(ω)
_
g (0)δ(u + ϕ′ (ω)) (22)

The TMSST method can squeeze the TF energy of a strong frequency-varying sig-
nal into the GD trajectory through multiple fixed-point iterations. In the TMSST result,
there are a series of significant TF amplitude points that denote the fault impulse interval.
The maximum value of the TF envelope spectrum (TFES) for each amplitude point can be
used to represent the fault impulse feature, which is calculated as follows

TFES(ω) = max
∣∣∣∣∫ +∞

−∞
(
∣∣∣Ts[N](t, ω)

∣∣∣− φ(ω))e−iξtdt
∣∣∣∣ (23)

where φ(ω) is the mean value at the frequency point ω in the TMSST result. The maximum
TFES values can be applied to extract the periodic fault impulse feature.

The antinoise capability of TMSST is poor because the noise components cannot be
squeezed into the GD trajectory through the TMSST. Figure 2a gives a simulated fault
impulse signal without any noise, and Figure 2b shows its TMSST result. It is found that
every TF energy trajectory can represent the corresponding fault impulse in the simulated
signal. The simulated signal adding SNR = −5dB Gaussian white noise and its TMSST
result are illustrated in Figure 3a,b, respectively. The TF energy trajectories are blurred and
confusing, and do not represent the fault characteristics.
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4. The Proposed Method
4.1. Time−Frequency Spectrum Permutation Entropy (TFS-PEn)

In the course of TMSST implementation, there are two algorithm parameters (moving
window width hw and number of iterations hnum) that need to be confirmed in advance.
Figure 4 illustrates the TMSST results of the simulated signal shown in Figure 2a with
different hw values. As illustrated in Figure 4, a small hw value causes a bad TF energy
concentration, while a large hw value leads to a blurry TF energy representation. Therefore,
the selection of algorithm parameters for the TMSST has an important effect on its TFR
performance. To avoid the blindness of the parameter selection and to improve the robust-
ness and reliability of the traditional TMSST, a new metric called TFS-PEn is proposed to
quantitatively evaluate the TFR performance of the TMSST.
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According to Equation (22), the TMSST result is integrated along the frequency axis to
acquire the time−frequency spectrum (TFS) as follows

ETs =
∫ +∞

−∞
ŝ(ω)

_
g (0)δ(u + ϕ′ (ω))dω (24)

TFS represents the distribution of the TF energy along the time axis in the TMSST
result. When a highly concentrated TFR of a fault impulse appears in the TMSST result,
the TFS shows an obvious regularity feature. Alternatively, if the TFR of the TMSST result
is blurry, the distribution of the TFS has a large randomness. To further estimate the TFES
result, permutation entropy (PEn) is introduced to calculate the TFS-PEn.

PEn is a parameter of average entropy that was first proposed by Bandt et al. [24]. It can
be utilized to describe the complexity of a time series or a measured signal in a physical system
reconstructed by the phase space. In addition, PEn also takes into account the nonlinear behav-
ior characteristic of the signal sequence, which is very suitable for analyzing the fault vibration
signals of the bearing [25]. For the given TFS series {ETs(i), i = 1, 2, · · · , N} of size N, an em-
bedding procedure is used to form a vector XETs = [ETs(i), ETs(i + τ), · · · , ETs(i + (m− 1)τ)]
arranged in an increasing order, where the embedding dimension is m and the lag is τ.
When m is fixed, there are m! = 1× 2× · · · × N possible permutations. For a given permuta-
tion π, f (π) represents its frequency in the TFES series. Assuming the relative frequency is
p(π) = f (π)/(N − (m− 1)τ), the PEn for the TFS series is written as follows:

Hp(m) = −∑m!
m=1 p(π) ln p(π) (25)

The corresponding normalized entropy is given as follows:

Hp = Hp(m)/ ln(m!) (26)
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In the calculation of PEn, the embedded dimension and the lag are set to m = 6 and
τ = 3, separately, according to [26].

When the TFS series shows regular fault impulse characteristics, the TFS-PEn value is
smaller and, vice versa, TFS-PEn value is larger. TMSST results with different hw values
shown in Figure 4 are used as an example to measure the TFS-PEn value. The corresponding
TFS results and their TFS-PEns are displayed in Figure 5. It can be clearly observed that
the TFS series based on hw = 100 exhibits a more obvious regular fault impulse feature
with a minimum TFS-PEn value compared with the other TFS series. The reduction in the
periodic fault components leads to an increase in the complexity of the TFS series and to an
increase in the TFS-PEn value. Therefore, the minimum TFS-PEn evaluation criterion is
used to optimize the selection of the algorithm parameters in the TMSST method.
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Figure 5. TFS results and their TFS-PEns for a simulated signal based on different hw values:
(a) hw = 10; (b) hw = 100; (c) hw = 300; (d) hw = 500.

4.2. Water Cycle Algorithm (WCA)-Based Optimized TMSST

To further improve the efficiency and accuracy of the algorithm parameter identifica-
tion, a water cycle algorithm (WCA) is introduced into the TMSST to adaptively acquire
the optimal parameters in this paper. As a novel metaheuristic optimization algorithm,
WCA is used for solving the constrained engineering optimization problems, which has
many advantages, such as fast convergence, excellent capability for optimal weighting
searching, high accuracy, and good robustness [27]. For details of the WCA implementation,
please refer to [28]. The flowchart of the proposed method is shown in Figure 6, and its
specific steps are as follows:

(1) Construct the Hankel matrix of the analyzed signal according to Equation (1) and
perform the SVD on the Hankel matrix.
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(2) Acquire the SVs of the Hankel matrix and determine the optimal SV order according to
the maximum SV mean method, and then reconstruct the denoising signal according
to the optimal SV order.

(3) Set the WCA’s initial parameters. The number of rivers and sea is Nsr = 5, the
total number of population is Npop = 15, the evaporation condition constant is
dmax = 1 × 10−5, and the maximum number of iteration is max_it = 50. In the
TMSST implementation, the ranges of parameters hw and hnum are set to [1, 500] and
[1, 20], respectively.

(4) The minimum TFS-PEn evaluation criterion is used in the WCA to adaptively select
the optimal algorithm parameters of the TMSST. Perform the WCA optimization
until the maximum iteration number is satisfied, and obtain the optimal TMSST
parameters.

(5) Carry out the TMSST and calculate the maximum TFES values to extract the fault
impulse features of the faulty bearing.
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5. Simulation Study

A simulated bearing fault signal consisting of fault impulses and noise interferences is
given as follows [29] h(t) = exp(−ζt) cos(2π fnt)

x(t) = ∑
i

Aih(t− iT − τi) sin(2π frt + θ) + r(t) (27)

where the resonance frequency is fn = 4000, damping coefficient is ζ = 500, average period
of fault impulse component is T = 14 ms, and Ai = 2 is the amplitude. τi is a small
fluctuation variable of the i-th fault impact and τ ∼ N(0, 0.05T). The sampling frequency
of the simulated signal is 12,800 Hz ad the period of fault impulse is set as 14ms. In the
simulated signal, r(t) is the Gaussian white noise with a signal to noise ratio (SNR = −7dB),
which is white noise with a mean of 0 and standard deviation. The pure signal and mixed
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signal with noise are shown in Figure 7a,b, respectively. The frequency spectrum of the
simulated signal is shown in Figure 7c, and the direct envelope spectrum is shown in
Figure 7d. Because of the noise interference, it is difficult to identify the fault impulse
components in the noise signal waveform, and the fault characteristic frequency cannot be
extracted in the direct envelope spectrum either.
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Figure 7. The simulated signal: (a) time-domain waveform of the pure signal; (b) time-domain
waveform of the noise signal; (c) frequency spectrum of the noise signal; (d) direct envelope spectrum
of the noise signal.

First, the SVD-based denoising method is used to process the simulated signal, and the
results are shown in Figure 8. The optimal SV order is 7 according to the position of the
maximum SV mean. The denoising signal is processed by the WCA-optimized TMSST,
and the optimal algorithm parameters are hw = 387 and hnum = 11. The TMSST result is
shown in Figure 9a. A series of highly concentrated TF trajectories can be found in the
TMSST result. The maximum TFES values are shown in Figure 9b, and it can be seen that
the time intervals are very clear and have a regular periodic pattern. From the zoomed
versions of the TMSST result shown in Figure 9c,d, it can be observed that the time intervals
are equal to the pre-set fault characteristic period of the simulated signal.
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6. Experiment Study
6.1. Experiment Description

The fault signals of the bearings are acquired from a high-speed train axle bearing
test rig. The structure of the test rig is shown in Figure 10. One end of the test rig is
a support normal bearing that joins a motor, and the other end is the test axle bearing.
A radial actuator and an axial actuator are mounted on the test bearing. The hydraulic
loading device can apply radial and axial static loading to the test bearing. Some real
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track spectrums can be input into the control system to simulate the change of the real
excitation of the axle bearing. Therefore, the test rig can simulate the actual situation of the
axle bearing when the high-speed train is running, and can meet the operation test under
different speed grades and load conditions.
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The main parts of the test rig are illustrated in Figure 11. Detailed information of the
test axle bearing is given in Table 1. The inner race and outer race surface of the bearing
are processed by wire cutting to generate a small dent defect. They are shown in Figure 12.
An accelerometer is mounted on the test bearing. The vibration signals are picked up with
a sampling frequency 51,200 Hz. The shaft rotational speed is set to 1500 rpm (rotating
frequency fr = 7.75 Hz) in the bearing inner race fault test, and the shaft speed is 1800 rpm
(rotating frequency fr = 7.75 Hz) in the outer fault test. The fault impulse intervals of the
outer race fault and inner race fault are 4.56 ms and 4.11 ms, respectively.
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Table 1. The geometric parameters of the axle bearing.

Type Rolling Element
Diameter

Pitch
Diameter

Pitch
Diameter

Contact
Angle

Roller
Number

FAG
F-80781109 26.5 mm 185 mm 185 mm 10◦ 17
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6.2. Fault Analysis

Figure 13a shows the time-domain waveform of the bearing outer race fault signal.
It is difficult to find any evident fault impulse components because of the noise interference.
The SVD-based denoising results are illustrated in Figure 13. The optimal SV order is 5
according to the maximum SV mean in Figure 13b. The denoising signal is processed by the
WCA-optimized TMSST, and the optimal TMSST parameters are hw = 344 and hnum = 11.
Some clear TF trajectories can be found in the TMSST result shown in Figure 14a, and they
present a clear periodic pattern. The maximum TFES values are calculated as shown in
Figure 14b. The zoomed versions of the TFES result illustrated in Figure 14c,d demonstrate
that the impulse interval is equal to the fault cycle interval. It can be concluded that the
proposed method is feasible for bearing fault diagnosis.

As a comparative analysis, the traditional TMSST based on the optimal algorithm pa-
rameters is directly used for the analysis of the bearing outer race fault signal. The TMSST
result is displayed in Figure 15a. It can be seen that the TF trajectories are blurred and mud-
dled. We cannot extract any obvious TF fault features in the TMSST result. The maximum
TFES values are shown in Figure 15b. The impulse intervals are not equal to each other.
The results show that the traditional TMSST method failed to detect the fault feature due
to the strong noise interference. Therefore, the SVD-based denoising method is necessary
and useful.

The time-domain waveform of the axle bearing inner fault signal is shown in Figure 16a.
The optimal SV order is chosen as 7 according to the maximum SV mean in Figure 16b, and the
denoising result is given in Figure 16c. The results of the WCA-optimized are hw = 423 and
hnum = 6. The TMSST result is displayed in Figure 17a, and the TF trajectories exhibits a good
TFR performance. The inner race fault impulse can be accurately extracted in Figure 17b,c.
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Figure 13. The SVD-based denoising of the outer race fault signal: (a) original signal; (b) some SVs
and their means; (c) denoising result.
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Figure 14. The results of the proposed method for outer race fault. (a) MTSST result; (b)TFES result
of the TMSST; (c,d) zoomed versions.
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The result of the traditional TMSST using the same algorithm parameters is given in
Figure 18a. The TF trajectories are blurred, and the fault impulses cannot be identified
accurately. Figure 18b shows that the time intervals of the maximum TFES values vary
from each other. It failed to extract fault features using the traditional TMSST method.
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6.3. Comparison Analysis

In order to demonstrate the superiority and effectiveness of the proposed method, four
existing common TFA methods, STFT, MSST, WT, and Hilbert-Huang transform (HHT),
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are utilized to analyze the axle bearing fault signals. Figures 19 and 20 display the analysis
results of the above comparison methods for the initial signal without denoising. The
results show that the TFRs of all four methods are very blurred and the outer race and
inner race fault features cannot be identified accurately.
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To fully verify the superiority of the proposed method, the fault signals after the SVD-
based denoising are also processed by these four comparison methods. Figures 21 and 22
show the results of these four comparison methods for analyzing the SVD-based denoising
signals. Compared with analyzing the initial fault signals, the conditions of the TF energy
concentration for the denoising signal using these four comparison methods are slightly
better. However, the TFRs of the outer race fault and inner race fault remain ambiguous
and cannot be identified.
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7. Conclusions

In the actual working condition, the fault vibration signal of high-speed train axle
bearing contains a lot of noise components. Although the TMSST method is able to pro-
duce clearer energy concentrated time−frequency (TF) trajectories to extract fault impulse
features in the time−frequency representation (TFR), the interference of the background
noise seriously restricts the TFR performance of the TMSST. To address this issue, a hybrid
SVD-based denoising and self-adaptive TMSST is proposed to extract the fault feature
of the axle bearing. On the one hand, a maximum SV mean method is put forward to
determine the SV order to reconstruct the signal. The SVD-based denoising pre-processing
technique can remove a large amount of background noise and reserve the useful fault
impulse components. On the other hand, a minimum TFS-PEn evaluation criterion is
presented to quantitatively evaluate the performance of TFR for the TMSST. Then, a water
cycle algorithm is introduced into the TMSST to adaptively acquire the optimal algorithm
parameters and to improve the reliability and robustness of the TMSST. Both the simulated
fault signal analysis and experimental data prove the feasibility of the proposed method.
In general, the proposed method fixes the shortcomings of the traditional TMSST and
expands its application. Moreover, it has a certain value for axle bearing fault detection
and provides a new way of thinking about the TFR of fault features, which is very likely
to contribute to future related topics regarding other time−frequency analysis (TFA) tech-
niques. The signal SVD and the optimization algorithm iteration process have a high
computational cost. The main limitation of the proposed method is that it requires a large
number of calculations and it is less efficient. Hence, improving the operating efficiency of
the proposed approach still needs further research.
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Nomenclature

Time−frequency analysis TFA
Time−frequency TF
Spectral kurtosis SK
Empirical wavelet transform EWT
One-dimensional 1D
Two-dimensional 2D
Short-time Fourier transform STFT
Wigner−Ville distribution WVD
Wavelet transform WT
Synchrosqueezing transformation SST
Time-reassigned synchrosqueezing transformation TSST
Time-reassigned multisynchrosqueezing transform TMSST
Time−frequency representation TFR
Singular value decomposition SVD
Singular value SV
Permutation entropy PEn
Time−frequency spectrum permutation entropy TFS-PEn
Water cycle algorithm WCA
Group delay GD
Hilbert-Huang transform HHT
Time−frequency envelope spectrum TFES
Time−frequency spectrum TFS
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