Detection and Location of Surface Damage Using Third-Order Combined Harmonic Waves Generated by Non-Collinear Ultrasonic Waves Mixing
Abstract
:1. Introduction
2. Fundamental Theory
2.1. Principle of Ultrasonic Waves Mixing
2.2. Principle of Ultrasonic Waves Mixing
2.3. Design of Wedge Angle
2.4. Set of Time Daley
3. Specimens and Experimental Setup
3.1. Specimens
3.2. Experimental Setup
4. Results and Discussion
4.1. Non-Collinear Mixing Tests in Intact Samples
4.1.1. Mixing of 2.0 MHz Transverse Wave and 1.0 MHz Longitudinal Wave
- Only the transverse wave is generated;
- Only the longitudinal wave is generated;
- Both of these two bulk waves are generated.
4.1.2. Mixing of 2.0 MHz Transverse Wave and 1.1 MHz Longitudinal Wave
- When the two signals of 2 MHz and 1.1 MHz are excited simultaneously, there is no obvious sum–frequency signal (3.1 MHz) in the frequency domain.
- Third-order combined harmonic at frequencies of 4.2 MHz and 5.1 MHz clearly appear.
- The peak of the 6.0 MHz signal does not shift.
4.2. Detection and Location of Fatigue Damage by Non-Collinear Wave Mixing
4.2.1. Corrosion Sample Scanning
4.2.2. Fatigue Sample Scanning
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Milella, P.P. Fatigue and Corrosion in Metals; Springer: Milan, Italy, 2012. [Google Scholar]
- Liu, P.; Sohn, H.; Kundu, T.; Yang, S. Noncontact detection of fatigue cracks by laser nonlinear wave modulation spectroscopy (LNWMS). NDT E Int. 2014, 66, 106–116. [Google Scholar] [CrossRef]
- Dace, G.E.; Thompson, P.B.; Brash, L.J.H.; Rehbein, D.K.; Buck, O. Nonlinear acoustics, a technique to determine micro-structural changes in material. In Review of Progress in Quantitative Nondestructive Evaluation, 1st ed.; Thompson, D.O., Chimenti, D.E., Eds.; Springer: Boston, MA, USA, 1991. [Google Scholar]
- Jhang, K.Y. Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. Int. J. Precis. Eng. Manuf. 2009, 10, 123–135. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jacobs, L.J.; Qu, J.M. Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 2006, 120, 1266–1273. [Google Scholar] [CrossRef]
- Sun, L.; Kulkarni, S.S.; Achenbach, J.D.; Krishnaswamy, S. Technique to minimize couplant-effect in acoustic nonlinearity measurements. J. Acoust. Soc. Am. 2006, 120, 2500–2514. [Google Scholar] [CrossRef]
- Nagy, P.B. Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 1998, 36, 375–381. [Google Scholar] [CrossRef]
- Cantrell, J.H.; Yost, W.T. Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 2001, 23, 487–490. [Google Scholar] [CrossRef]
- Herrmann, J.; Kim, J.Y.; Jacobs, L.J.; Qu, J.; Littles, J.W.; Savage, M.F. Assessment of material damage in a nickel-base superalloy using nonlinear Rayleigh surface waves. J. Appl. Phys. 2006, 99, 124913. [Google Scholar] [CrossRef]
- Walker, S.V.; Kim, J.Y.; Qu, J.; Jacobs, L.J. Fatigue damage evaluation in A36 steel using nonlinear Rayleigh surface waves. NDT E Int. 2012, 48, 10–15. [Google Scholar] [CrossRef]
- Zeitvogel, D.T.; Matlack, K.H.; Kim, J.Y.; Jacobs, L.J.; Singh, P.M.; Qu, J. Characterization of stress corrosion cracking in carbon steel using nonlinear Rayleigh surface waves. NDT E Int. 2014, 62, 144–152. [Google Scholar] [CrossRef]
- Deng, M.; Wang, P.; Lv, X. Experimental observation of cumulative second-harmonic generation of Lamb-wave propagation in an elastic plate. J. Phys. D Appl. Phys. 2005, 38, 344. [Google Scholar] [CrossRef]
- Deng, M. Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 2003, 94, 4152–4159. [Google Scholar] [CrossRef]
- Bermes, C.; Kim, J.Y.; Qu, J.; Jacobs, L.J. Nonlinear Lamb waves for the detection of material nonlinearity. Mech. Syst. Signal Process 2008, 22, 638–646. [Google Scholar] [CrossRef]
- Jiao, J.; Lv, H.; He, C.; Wu, B. Fatigue crack evaluation using the non-collinear wave mixing technique. Smart Mater. Struct. 2017, 26, 065005. [Google Scholar] [CrossRef]
- Jiao, J.; Sun, J.; Wu, B.; He, C. A frequency-mixing nonlinear ultrasonic technique for micro-crack detection. Acta Acust 2013, 38, 648–656. [Google Scholar]
- Sun, M.; Xiang, Y.; Deng, M.; Xu, J.; Xuan, F.Z. Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity. NDT E Int. 2018, 93, 1–6. [Google Scholar] [CrossRef]
- Croxford, A.J.; Wilcox, P.D.; Drinkwater, B.W.; Nagy, P.B. The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue. J. Acoust. Soc. Am. 2009, 126, EL117–EL122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Den Abeele, K.E.A.; Johnson, P.A.; Sutin, A. Techniques to Discern Material Damage, Part I: Nonlinear Wave Modulation Spectroscopy (NWMS). J. Res. Nondestruct. Eval. 2000, 12, 17–30. [Google Scholar] [CrossRef]
- Jones, G.L. Interaction of elastic waves in an isotropic solid. J. Acoust. Soc. Am. 1963, 35, 5. [Google Scholar] [CrossRef]
- Demčenko, A.; Akkerman, R.; Nagy, P.B.; Loendersloot, R. Non-collinear wave mixing for non-linear ultrasonic detection of physical ageing in PVC. NDT E Int. 2012, 49, 34–39. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, G.; Zhao, Y.; Jacobs, L.J.; Qu, J. Mixing of collinear plane wave pulses in elastic solids with quadratic nonlinearity. J. Acoust. Soc. Am. 2014, 136, 2389–2404. [Google Scholar] [CrossRef] [Green Version]
- McGovern, M.E.; Buttlar, W.G.; Reis, H. Estimation of oxidative ageing in asphalt concrete pavements using non-collinear wave mixing of critically-refracted longitudinal waves. Insight-Non-Destr. Test. Cond. Monit. 2015, 57, 25–34. [Google Scholar] [CrossRef]
Section | Distance (mm) | Velocity (m/s) | Propagation Time (μs) |
---|---|---|---|
l1 | 12.0 | 2720 | 4.41 |
l2 | 41.0 | 3097 | 13.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Shi, T.; Qin, X.; Deng, M. Detection and Location of Surface Damage Using Third-Order Combined Harmonic Waves Generated by Non-Collinear Ultrasonic Waves Mixing. Sensors 2021, 21, 6027. https://doi.org/10.3390/s21186027
Li W, Shi T, Qin X, Deng M. Detection and Location of Surface Damage Using Third-Order Combined Harmonic Waves Generated by Non-Collinear Ultrasonic Waves Mixing. Sensors. 2021; 21(18):6027. https://doi.org/10.3390/s21186027
Chicago/Turabian StyleLi, Weibin, Tianze Shi, Xiaoxu Qin, and Mingxi Deng. 2021. "Detection and Location of Surface Damage Using Third-Order Combined Harmonic Waves Generated by Non-Collinear Ultrasonic Waves Mixing" Sensors 21, no. 18: 6027. https://doi.org/10.3390/s21186027
APA StyleLi, W., Shi, T., Qin, X., & Deng, M. (2021). Detection and Location of Surface Damage Using Third-Order Combined Harmonic Waves Generated by Non-Collinear Ultrasonic Waves Mixing. Sensors, 21(18), 6027. https://doi.org/10.3390/s21186027