Anytime ECG Monitoring through the Use of a Low-Cost, User-Friendly, Wearable Device
Abstract
:1. Introduction
2. State of the Art
3. The ECG WATCH
3.1. Analog Circuit Design
3.2. Digital Circuit Design
3.3. Power Consumption
4. Experiments
4.1. Bland-Altman Plot
4.2. Power Spectral Density (PSD)
4.3. Signal to Noise Ratio (SNR)
4.4. Time-Domain Differences
5. Atrial Fibrillation Detection
Algorithm Assessment
6. Conclusions
7. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Townsend, N.; Wilson, L.; Bhatnagar, P.; Wickramasinghe, K.; Rayner, M.; Nichols, M. Cardiovascular Disease in Europe: Epidemiological Update 2016. Eur. Heart J. 2016, 37, 3232–3245. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yu, X.B. Capacitive Biopotential Measurement for Electrophysiological Signal Acquisition: A Review. IEEE Sens. J. 2016, 16, 2832–2853. [Google Scholar] [CrossRef]
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 12 February 2021).
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 12 February 2021).
- WHO. About Cardiovascular Diseases. Available online: https://www.who.int/cardiovascular_diseases/about_cvd/en/ (accessed on 12 February 2021).
- Shirmohammadi, S.; Barbe, K.; Grimaldi, D.; Rapuano, S.; Grassini, S. Instrumentation and Measurement in Medical, Biomedical, and Healthcare Systems. IEEE Instrum. Meas. Mag. 2016, 19, 6–12. [Google Scholar] [CrossRef]
- Schamroth, L. An Introduction to ElectroCardiography, 8th ed.; Wiley: Hoboken, NJ, USA, 2018; ISBN 978-81-265-3897-3. [Google Scholar]
- Schamroth, L. An Introduction to Electrocardiography, 8 Adapted Ed. Available online: https://www.wileyindia.com/leoschamroth-an-introduction-to-electrocardiography-8-adapted-ed.html (accessed on 12 February 2021).
- Yusuf, S.; Pearson, M.; Sterry, H.; Parish, S.; Ramsdale, D.; Rossi, P.; Sleight, P. The Entry ECG in the Early Diagnosis and Prognostic Stratification of Patients with Suspected Acute Myocardial Infarction. Eur. Heart J. 1984, 5, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.W.; Nowacki, D.; Li, J.K. ECG T-Wave Monitor for Potential Early Detection and Diagnosis of Cardiac Arrhythmias. Cardiovasc. Eng. 2010, 10, 201–206. [Google Scholar] [CrossRef] [PubMed]
- O’Gara, P.T.; Kushner, F.G.; Ascheim, D.D.; Casey, D.E.; Chung, M.K.; de Lemos, J.A.; Ettinger, S.M.; Fang, J.C.; Fesmire, F.M.; Franklin, B.A.; et al. 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction: Executive Summary: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013, 127, 529–555. [Google Scholar] [CrossRef] [Green Version]
- Serhani, M.A.; El Kassabi, H.T.; Ismail, H.; Nujum Navaz, A. ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges. Sensors 2020, 20, 1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawar, P.; Jones, V.; van Beijnum, B.-J.F.; Hermens, H. A Framework for the Comparison of Mobile Patient Monitoring Systems. J. Biomed. Inform. 2012, 45, 544–556. [Google Scholar] [CrossRef]
- Pan, W.; He, A.; Feng, K.; Li, Y.; Wu, D.; Liu, G. Multi-Frequency Components Entropy as Novel Heart Rate Variability Indices in Congestive Heart Failure Assessment. IEEE Access 2019, 7, 37708–37717. [Google Scholar] [CrossRef]
- Szilagyi, L.; Szilagyi, S.M.; Fordos, G.; Benyo, Z. Quick ECG Analysis for On-Line Holter Monitoring Systems. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 1678–1681. [Google Scholar]
- Kasahara, K.; Shiobara, M.; Nakamura, S.; Yamashiro, K.; Yana, K.; Ono, T. Sudden Cardiac Arrest Risk Stratification Based on 24-Hour Holter ECG Statistics. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5817–5820. [Google Scholar]
- Szilagyi, S.M.; Szilagyi, L.; Frigy, A.; Incze, A. Holter Telemetry in the Study of Heart Rate Variability. Rom. Heart J. 1996, 2, 146. [Google Scholar]
- Liu, J.; Liu, M.; Bai, Y.; Zhang, J.; Liu, H.; Zhu, W. Recent Progress in Flexible Wearable Sensors for Vital Sign Monitoring. Sensors 2020, 20, 4009. [Google Scholar] [CrossRef]
- Chaari Fourati, L.; Said, S. Remote Health Monitoring Systems Based on Bluetooth Low Energy (BLE) Communication Systems. In The Impact of Digital Technologies on Public Health in Developed and Developing Countries, Proceedings of the 18th International Conference, ICOST 2020, Hammamet, Tunisia, 24–26 June 2020; Jmaiel, M., Mokhtari, M., Abdulrazak, B., Aloulou, H., Kallel, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 41–54. [Google Scholar]
- Ozkan, H.; Ozhan, O.; Karadana, Y.; Gulcu, M.; Macit, S.; Husain, F. A Portable Wearable Tele-ECG Monitoring System. IEEE Trans. Instrum. Meas. 2020, 69, 173–182. [Google Scholar] [CrossRef]
- Gusev, M.; Guseva, A. State-of-the-Art of Cloud Solutions Based on ECG Sensors. In Proceedings of the IEEE EUROCON 2017—17th International Conference on Smart Technologies, Ohrid, Macedonia, 6–8 July 2017; pp. 501–506. [Google Scholar]
- Fayn, J.; Rubel, P. Toward a Personal Health Society in Cardiology. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Capua, C.D.; Meduri, A.; Morello, R. A Smart ECG Measurement System Based on Web-Service-Oriented Architecture for Telemedicine Applications. IEEE Trans. Instrum. Meas. 2010, 59, 2530–2538. [Google Scholar] [CrossRef]
- Lin, C.; Chang, K.; Lin, C.; Chiang, C.; Lu, S.; Chang, S.; Lin, B.; Liang, H.; Chen, R.; Lee, Y.; et al. An Intelligent Telecardiology System Using a Wearable and Wireless ECG to Detect Atrial Fibrillation. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Fanucci, L.; Saponara, S.; Bacchillone, T.; Donati, M.; Barba, P.; Sanchez-Tato, I.; Carmona, C. Sensing Devices and Sensor Signal Processing for Remote Monitoring of Vital Signs in CHF Patients. IEEE Trans. Instrum. Meas. 2013, 62, 553–569. [Google Scholar] [CrossRef]
- Randazzo, V.; Pasero, E.; Navaretti, S. VITAL-ECG: A Portable Wearable Hospital. In Proceedings of the 2018 IEEE Sensors Applications Symposium (SAS), Seoul, Korea, 12–14 March 2018; pp. 1–6. [Google Scholar]
- Randazzo, V.; Ferretti, J.; Pasero, E. A Wearable Smart Device to Monitor Multiple Vital Parameters—VITAL ECG. Electronics 2020, 9, 300. [Google Scholar] [CrossRef] [Green Version]
- Biagetti, G.; Crippa, P.; Falaschetti, L.; Turchetti, C. A Multi-Channel Electromyography, Electrocardiography and Inertial Wireless Sensor Module Using Bluetooth Low-Energy. Electronics 2020, 9, 934. [Google Scholar] [CrossRef]
- Sun, F.; Yi, C.; Li, W.; Li, Y. A Wearable H-Shirt for Exercise ECG Monitoring and Individual Lactate Threshold Computing. Comput. Ind. 2017, 92, 1–11. [Google Scholar] [CrossRef]
- Taji, B.; Shirmohammadi, S.; Groza, V.; Bolic, M. An ECG Monitoring System Using Conductive Fabric. In Proceedings of the 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Gatineau, QC, Canada, 4–5 May 2013; pp. 309–314. [Google Scholar]
- Nemati, E.; Deen, M.J.; Mondal, T. A Wireless Wearable ECG Sensor for Long-Term Applications. IEEE Commun. Mag. 2012, 50, 36–43. [Google Scholar] [CrossRef]
- Park, C.; Chou, P.H.; Bai, Y.; Matthews, R.; Hibbs, A. An Ultra-Wearable, Wireless, Low Power ECG Monitoring System. In Proceedings of the 2006 IEEE Biomedical Circuits and Systems Conference, London, UK, 29 November–1 December 2006; pp. 241–244. [Google Scholar]
- Trindade, I.G.; Machado da Silva, J.; Miguel, R.; Pereira, M.; Lucas, J.; Oliveira, L.; Valentim, B.; Barreto, J.; Santos Silva, M. Design and Evaluation of Novel Textile Wearable Systems for the Surveillance of Vital Signals. Sensors 2016, 16, 1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokus, M.A.; Jur, J.S. Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording. IEEE Trans. Biomed. Eng. 2016, 63, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Xiao, X.; Chen, X.; Lin, H.; Wu, W.; Chen, S. A Low-Power and Miniaturized Electrocardiograph Data Collection System with Smart Textile Electrodes for Monitoring of Cardiac Function. Australas. Phys. Eng. Sci. Med. 2016, 39, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Rachim, V.P.; Chung, W. Wearable Noncontact Armband for Mobile ECG Monitoring System. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 1112–1118. [Google Scholar] [CrossRef]
- Villegas, A.; McEneaney, D.; Escalona, O. Arm-ECG Wireless Sensor System for Wearable Long-Term Surveillance of Heart Arrhythmias. Electronics 2019, 8, 1300. [Google Scholar] [CrossRef] [Green Version]
- Ye-Lin, Y.; Bueno-Barrachina, J.M.; Prats-boluda, G.; Rodriguez de Sanabria, R.; Garcia-Casado, J. Wireless Sensor Node for Non-Invasive High Precision Electrocardiographic Signal Acquisition Based on a Multi-Ring Electrode. Measurement 2017, 97, 195–202. [Google Scholar] [CrossRef]
- Crema, C.; Depari, A.; Flammini, A.; Sisinni, E.; Vezzoli, A. The WearPhone: Changing Smartphones into Multichannel Vital Signs Monitors. In Proceedings of the 2016 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Benevento, Italy, 15–18 May 2016; pp. 1–6. [Google Scholar]
- Guzik, P.; Malik, M. ECG by Mobile Technologies. J. Electrocardiol. 2016, 49, 894–901. [Google Scholar] [CrossRef]
- Depari, A.; Flammini, A.; Sisinni, E.; Vezzoli, A. A Wearable Smartphone-Based System for Electrocardiogram Acquisition. In Proceedings of the 2014 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lisboa, Portugal, 11–12 June 2014; pp. 1–6. [Google Scholar]
- Khan, W.Z.; Xiang, Y.; Aalsalem, M.Y.; Arshad, Q. Mobile Phone Sensing Systems: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 402–427. [Google Scholar] [CrossRef]
- Baig, M.M.; Gholamhosseini, H.; Connolly, M.J. A Comprehensive Survey of Wearable and Wireless ECG Monitoring Systems for Older Adults. Med. Biol. Eng. Comput. 2013, 51, 485–495. [Google Scholar] [CrossRef]
- Nia, A.M.; Mozaffari-Kermani, M.; Sur-Kolay, S.; Raghunathan, A.; Jha, N.K. Energy-Efficient Long-Term Continuous Personal Health Monitoring. IEEE Trans. Multi-Scale Comput. Syst. 2015, 1, 85–98. [Google Scholar] [CrossRef]
- Sun, Z.; Ye, J.; Zhang, X.; Yuan, M.; Zhong, Z.; Tan, X. Development of a Wearable Wireless ECG Monitoring System with Ultra-Low Power Consumption. Zhongguo Yi Liao Qi Xie Za Zhi 2020, 44, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-H.; Zhang, W.; Guan, M.-H.; Jiang, S.-Y.; Fan, M.-H.; Abu, P.A.R.; Chen, C.-A.; Chen, S.-L. A Low-Power High-Data-Transmission Multi-Lead ECG Acquisition Sensor System. Sensors 2019, 19, 4996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beach, C.; Krachunov, S.; Pope, J.; Fafoutis, X.; Piechocki, R.J.; Craddock, I.; Casson, A.J. An Ultra Low Power Personalizable Wrist Worn ECG Monitor Integrated With IoT Infrastructure. IEEE Access 2018, 6, 44010–44021. [Google Scholar] [CrossRef]
- Spanò, E.; Pascoli, S.D.; Iannaccone, G. Low-Power Wearable ECG Monitoring System for Multiple-Patient Remote Monitoring. IEEE Sens. J. 2016, 16, 5452–5462. [Google Scholar] [CrossRef]
- Randazzo, V.; Ferretti, J.; Pasero, E. ECG WATCH: A Real Time Wireless Wearable ECG. In Proceedings of the 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Istanbul, Turkey, 26–28 June 2019; pp. 1–6. [Google Scholar]
- Pasero, E.; Balzanelli, E.; Caffarelli, F. Intruder Recognition Using ECG Signal. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8. [Google Scholar]
- Randazzo, V.; Cirrincione, G.; Pasero, E. Shallow Neural Network for Biometrics from the ECG-WATCH. In Intelligent Computing Theories and Application, Proceedings of the International Conference on Intelligent Computing, Bari, Italy, 2–5 October 2020; Huang, D.-S., Bevilacqua, V., Hussain, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 259–269. [Google Scholar]
- Bansal, A.; Joshi, R. Portable Out-of-hospital Electrocardiography: A Review of Current Technologies. J. Arrhythm. 2018, 34, 129–138. [Google Scholar] [CrossRef]
- GIMA. Available online: https://www.gimaitaly.com/prodotti.asp?sku=33246&dept_selected=5801&dept_id=5801 (accessed on 11 February 2021).
- Boulos, M.N.K.; Wheeler, S.; Tavares, C.; Jones, R. How Smartphones Are Changing the Face of Mobile and Participatory Healthcare: An Overview, with Example from ECAALYX. Biomed. Eng. OnLine 2011, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- AliveCor. Available online: https://www.alivecor.com/ (accessed on 11 February 2021).
- Kardia Mobile. Quiver. Available online: https://quiver.store/prodotto/kardia/ (accessed on 7 July 2021).
- ECGCheck. Available online: https://www.cardiacdesigns.com (accessed on 11 February 2021).
- QardioCore. Qardio. Available online: https://www.qardio.com/it/qardiocore-wearable-ecg-ekg-monitor-iphone/ (accessed on 7 July 2021).
- Apple Watch Series 6. Available online: https://www.apple.com/it/shop/buy-watch/apple-watch (accessed on 11 February 2021).
- Einthoven’s Triangle. Available online: https://medical-dictionary.thefreedictionary.com/Einthoven%27s+triangle (accessed on 12 February 2021).
- Thakor, N.V.; Webster, J.G. Ground-Free ECG Recording with Two Electrodes. IEEE Trans. Biomed. Eng. 1980, BME-27, 704. [Google Scholar] [CrossRef]
- Winter, B.B.; Webster, J.G. Driven-Right-Leg Circuit Design. IEEE Trans. Biomed. Eng. 1983, BME-30, 66. [Google Scholar] [CrossRef]
- Surda, J.; Lovas, S.; Pucik, J.; Jus, M. Spectral Properties of ECG Signal. In Proceedings of the 17th International Conference Radioelektronika, Brno, Czech Republic, 24–25 April 2007; pp. 1–5. [Google Scholar]
- Jingwei, D.; Wenwen, J. Design of Digital Filter on ECG Signal Processing. In Proceedings of the 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), Qinhuangdao, China, 18–20 September 2015; pp. 1272–1275. [Google Scholar]
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. J. R. Stat. Soc. Ser. D (Stat.) 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Scher, A.M.; Young, A.C. Frequency Analysis of the Electrocardiogram. Circ. Res. 1960, 8, 344–346. [Google Scholar] [CrossRef] [Green Version]
- CDC. Other Conditions Related to Heart Disease|Cdc.Gov. Available online: https://www.cdc.gov/heartdisease/other_conditions.htm (accessed on 12 February 2021).
- Munger, T.M.; Wu, L.-Q.; Shen, W.K. Atrial Fibrillation. J. Biomed. Res. 2014, 28, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoni-Berisso, M.; Lercari, F.; Carazza, T.; Domenicucci, S. Epidemiology of Atrial Fibrillation: European Perspective. CLEP 2014, 6, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, A.R.; Gray, D. Chamberlain’s Symptoms and Signs in Clinical Medicine, An Introduction to Medical Diagnosis; CRC Press: Boca Raton, FL, USA, 2010; ISBN 978-1-4822-1378-2. [Google Scholar]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32, 230–236. [Google Scholar] [CrossRef] [PubMed]
ECG WATCH f 20% [Hz] | B105 f 20% [Hz] | ECG WATCH f 50% [Hz] | B105 f 50% [Hz] | ECG WATCH f 80% [Hz] | B105 f 80% [Hz] |
---|---|---|---|---|---|
3.4 | 3.4 | 9.8 | 9.8 | 17.0 | 17.1 |
1.7 | 2.5 | 7.6 | 7.8 | 15.7 | 15.9 |
3.2 | 3.6 | 8.2 | 7.7 | 14.6 | 13.9 |
4.6 | 4.2 | 10.1 | 9.7 | 17.5 | 17.7 |
4.5 | 4.2 | 8.8 | 7.5 | 15.5 | 15.2 |
1.6 | 1.2 | 4.0 | 3.7 | 12.9 | 12.4 |
4.3 | 3.8 | 9.2 | 9.0 | 16.6 | 17.1 |
3.2 | 3.2 | 9.7 | 9.8 | 16.8 | 16.7 |
3.6 | 3.6 | 10.5 | 8.6 | 16.1 | 14.6 |
3.8 | 1.9 | 9.1 | 7.3 | 16.4 | 15.2 |
System | f 20% [Hz] | f 50% [Hz] | f 80% [Hz] |
---|---|---|---|
B105 | 3.9 | 8.7 | 15.3 |
ECG WATCH | 3.6 | 8.6 | 15.3 |
Mean [dB] | Standard Deviation [dB] | |
---|---|---|
B105 | 145.7 | 27 |
ECG WATCH | 128.14 | 10 |
Mean | Standard Deviation | Max | |
---|---|---|---|
Differences | −0.027 | 0.0931 | 0.1508 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Randazzo, V.; Ferretti, J.; Pasero, E. Anytime ECG Monitoring through the Use of a Low-Cost, User-Friendly, Wearable Device. Sensors 2021, 21, 6036. https://doi.org/10.3390/s21186036
Randazzo V, Ferretti J, Pasero E. Anytime ECG Monitoring through the Use of a Low-Cost, User-Friendly, Wearable Device. Sensors. 2021; 21(18):6036. https://doi.org/10.3390/s21186036
Chicago/Turabian StyleRandazzo, Vincenzo, Jacopo Ferretti, and Eros Pasero. 2021. "Anytime ECG Monitoring through the Use of a Low-Cost, User-Friendly, Wearable Device" Sensors 21, no. 18: 6036. https://doi.org/10.3390/s21186036
APA StyleRandazzo, V., Ferretti, J., & Pasero, E. (2021). Anytime ECG Monitoring through the Use of a Low-Cost, User-Friendly, Wearable Device. Sensors, 21(18), 6036. https://doi.org/10.3390/s21186036