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Abstract: In this paper, we demonstrate the application of deep neural networks (DNNs) for process-
ing the reflectance spectrum from a fiberoptic temperature sensor composed of densely inscribed
fiber bragg gratings (FBG). Such sensors are commonly avoided in practice since close arrangement
of short FBGs results in distortion of the spectrum caused by mutual interference between gratings.
In our work the temperature sensor contained 50 FBGs with the length of 0.95 mm, edge-to-edge
distance of 0.05 mm and arranged in the 1500–1600 nm spectral range. Instead of solving the direct
peak detection problem for distorted signal, we applied DNNs to predict temperature distribution
from entire reflectance spectrum registered by the sensor. We propose an experimental calibration
setup where the dense FBG sensor is located close to an array of sparse FBG sensors. The goal of
DNNs is to predict the positions of the reflectance peaks of the reference sparse FBG sensors from the
reflectance spectrum of the dense FBG sensor. We show that a convolution neural network is able to
predict the positions of FBG reflectance peaks of sparse sensors with mean absolute error of 7.8 pm
that is slightly higher than the hardware reused interrogator equal to 5 pm. We believe that dense
FBG sensors assisted with DNNs have a high potential to increase spatial resolution and also extend
the length of a fiber optical sensors.

Keywords: fiber bragg grating; optical fiber sensor; distributed temperature sensor; deep learning
algorithms; fully connected neural network; convolutional neural network

1. Introduction

Fiber bragg grating sensors are widely used for distributed temperature and strain
sensing [1–3]. The performance of FBG-based sensors significantly depends on the accuracy
of the peak detection algorithms that provide the possibility of converting a registered
signal into temperature/strain values. Commonly, an array of FBGs is sparsely inscribed
on a stretch of fiber in spatial and spectral domains to avoid mutual interference between
neighboring FBGs. In this case, the peaks positions and their shapes are relatively simple
to distinguish and plenty of algorithms may be applied for processing [4–6].

However, there is always a trade-off between peak detection accuracy and the number
of FBG sensors in the sensing channel. The limited capacity of a sensing channel results
in the limited length and spatial resolution of an FBG sensor. Increasing the number of
sensing channels limits the sensor interrogation rate and increases the cost of a final device.

At the same time, FBG sensors with high spatial resolution are attractive for various
applications including damage processes monitoring [7], healthcare [8], and heat localiza-
tion [9]. The spatial resolution of a fiber optical sensor may be raised by implementation of
chirped FBGs [10] or the implementation more advanced interrogation technique [11].

Software solutions are mainly focused on the coupling of the reflectance spectra of
several FBG sensors into one sensing channel and processing the resulting signal for peaks
discrimination [12,13]. Today, the scientific community is paying significant attention
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to machine-learning (ML) algorithms, which have already shown good performance at
various fundamental levels and practical applications [14,15]. Particularly, data-driven
algorithms are capable of operating with large-scale high-dimensional data and finding
hidden intrinsic features and dependencies. There have already been successive attempts
to apply ML algorithms for interpretation the of overlapped reflectance spectra from
sparse FBG sensors including: extreme learning machines [12], least squares support
vector regression [16], convolutional neural networks [17], particle swarm optimization
algorithms, long short-term memory algorithms [18] and others [19,20].

However, in most of the presented works, the performances of the algorithms were
demonstrated on the model spectra of FBGs, where various additional spectrum distortions
associated, for example, with mutual interference between neighboring FBGs, are not
considered. Additionally, FBG arrays with a small number of gratings (up to 4 FBGs) were
used in experiments, while a real network of sensors can contain more than 50 individual
sensing points, for which the presented algorithms will have a significant root mean square
error and a significantly longer signal processing time (~s), which makes it difficult to use
these algorithms for real-time measurement applications. The possibility of interrogating
a sensors network containing 60 FBGs was recently demonstrated [20], but in this case
spectral bandwidth was divided into 30 independent regions without crosstalk containing
only two paired FBGs with spectral overlap. Each FBG has a bandwidth of ≈0.25 nm to
ensure the absence of crosstalk between adjacent regions (1–3 nm), so a length of FBG was
~5 mm, which limits the spatial resolution of measurements. In the case of short FBGs
(<1 mm) used for high spatial resolution measurements, the spectral width is much higher
(~1.5 nm) and for this reason the spectra will significantly affect each other and therefore
these algorithms will give a large error.

Here, we investigate alternative method to process experimental reflection spectra of
a highly dense FBG temperature sensor. Fifty closely inscribed FBGs allowed us to increase
the length and spatial resolution of the temperature sensor interrogated by using a single
optical channel of interrogator. To fabricate the sensor, we used the femtosecond point-
by-point inscription technique, allowing high-precision FBG positioning and wavelength
resonance specification. For adequate interpretation of a complex reflection signal we do
not solve the peak detection problem, but apply deep learning algorithms in order to match
the whole reflectance spectrum of the dense FBG sensor with temperature distribution.
We also propose an experimental setup based on optical interrogator and Peltier cells for
training procedures of deep learning algorithms. By applying the developed algorithms,
we show that the capacity of the optical channel of the interrogator can be increased without
significant loss of accuracy in the FBG peak detection.

2. Experimental Setup

In the following experiments we used two different types of FBG-based temperature
sensors inscribed in Fibercore SM1500(9/125)P polyimide-coated fiber by using femtosec-
ond IR laser pulses [21]. The first one was a highly dense sensor composed of 50 uniform
FBGs equidistantly arranged along 50 mm fiber segment. Each of the gratings had a length
of 0.95 mm and was separated from the neighboring by 0.05 mm, as shown in Figure 1. The
resonant wavelengths of the FBGs in the array were chosen to uniformly fill the spectral
range of the used 8-channels HBM FS22-SI interrogator (1500–1600 nm). The interrogator
operated in optical spectrum analyzer mode providing 1 Spectrum per second refresh rate,
20,001 points per spectrum, and 5 pm resolution. The second type of FBG array was an
array containing only intermediate elements of a highly dense array, as shown in Figure 1.
Due to the decrease in the FBG density, the reflection spectra the array possess a less noisy
shape, making it possible to use such a sensor as a reference when processing the data of a
highly dense sensor.
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level of the resonance peaks compared to a sparse FBG array. 

(a) 

 

(b) 
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We used five calibrated sparse temperature sensors and additional channels of the 
interrogator to calibrate the dense FBG sensor. The general scheme of the experimental 
setup is depicted in Figure 3. 

Figure 1. Arrangement of FBGs in highly dense and sparse temperature sensors.

Figure 2a shows a fragment of a reflection spectrum of the highly dense FBG tem-
perature sensor and one of the sparse FBG temperature sensors measured by the optical
interrogator. The whole reflectance spectrums are depicted in Figure 2b. As can be seen
from the spectra, the close spectral arrangement of the FBGs in a highly dense array leads
to mutual interference between adjacent gratings, which consequently increases the noise
level of the resonance peaks compared to a sparse FBG array.
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Figure 2. Reflection spectra of a highly dense and one of the sparse FBG sensors: zoomed (a) and full
(b) spectral ranges.

We used five calibrated sparse temperature sensors and additional channels of the
interrogator to calibrate the dense FBG sensor. The general scheme of the experimental
setup is depicted in Figure 3.

FBG sensors were glued closely to each other (as shown at Figure 1) on an aluminum
plate with attached Peltier cells on the back surface. By controlling the current and polarity
of the electrical power supplies, as well as the positions of Peltier cells, we applied dif-
ferent temperature gradients to the plate, some of which are presented on Figure 4. The
temperature of the plate varied in the range from 10 to 80 ◦C with spatial gradients in the
range from −0.38 ◦C/mm to 0.44 ◦C/mm. The diversity of the temperature gradients was
exploited during the training procedure, thus improving the ability of the deep neural
network to generalize incoming data and improve the sensitivity of the dense FBG sensor.



Sensors 2021, 21, 6188 4 of 9
Sensors 2021, 21, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 3. Principle scheme of the experimental setup. 

FBG sensors were glued closely to each other (as shown at Figure 1) on an aluminum 
plate with attached Peltier cells on the back surface. By controlling the current and polarity 
of the electrical power supplies, as well as the positions of Peltier cells, we applied differ-
ent temperature gradients to the plate, some of which are presented on Figure 4. The tem-
perature of the plate varied in the range from 10 to 80 °C with spatial gradients in the 
range from −0.38 °C/mm to 0.44 °C/mm. The diversity of the temperature gradients was 
exploited during the training procedure, thus improving the ability of the deep neural 
network to generalize incoming data and improve the sensitivity of the dense FBG sensor. 

 
Figure 4. Examples of exploited temperature gradients during training procedure. 

3. Architectures of Deep Neural Network 
The task for deep neural networks was to predict the reflectance peak positions of 50 

FBGs contained in 5 sparse sensors by the optical reflectance spectrum of the highly dense 
sensor. We investigated the performances of full-connected and convolutional neural net-
works, which were built using the TensorFlow software package [22]. A fully connected 
neural network (FCNN) was selected as the most common and simple architecture. Our 
FCNN consisted of input, hidden and output layers, as shown in Figure 5. The size of the 
input layer was 20,001 neurons corresponding to the size of the signal array from the in-
terrogator, the output layer had 50 neurons corresponding to the number of the FBGs of 
the dense sensor. The size of the hidden layer was optimized in order to reduce computa-
tional time and maintain the precision of the algorithm. During the grid search procedure 
of hyperparameters of FCNN we used Mean Squared Error as a loss function and Adamax 
optimizer for neuron weights optimization. FCNN with 500 neurons at the hidden layer 
with sigmoid activation function showed the best performance (Section 4). 

Figure 3. Principle scheme of the experimental setup.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 3. Principle scheme of the experimental setup. 

FBG sensors were glued closely to each other (as shown at Figure 1) on an aluminum 
plate with attached Peltier cells on the back surface. By controlling the current and polarity 
of the electrical power supplies, as well as the positions of Peltier cells, we applied differ-
ent temperature gradients to the plate, some of which are presented on Figure 4. The tem-
perature of the plate varied in the range from 10 to 80 °C with spatial gradients in the 
range from −0.38 °C/mm to 0.44 °C/mm. The diversity of the temperature gradients was 
exploited during the training procedure, thus improving the ability of the deep neural 
network to generalize incoming data and improve the sensitivity of the dense FBG sensor. 

 
Figure 4. Examples of exploited temperature gradients during training procedure. 

3. Architectures of Deep Neural Network 
The task for deep neural networks was to predict the reflectance peak positions of 50 

FBGs contained in 5 sparse sensors by the optical reflectance spectrum of the highly dense 
sensor. We investigated the performances of full-connected and convolutional neural net-
works, which were built using the TensorFlow software package [22]. A fully connected 
neural network (FCNN) was selected as the most common and simple architecture. Our 
FCNN consisted of input, hidden and output layers, as shown in Figure 5. The size of the 
input layer was 20,001 neurons corresponding to the size of the signal array from the in-
terrogator, the output layer had 50 neurons corresponding to the number of the FBGs of 
the dense sensor. The size of the hidden layer was optimized in order to reduce computa-
tional time and maintain the precision of the algorithm. During the grid search procedure 
of hyperparameters of FCNN we used Mean Squared Error as a loss function and Adamax 
optimizer for neuron weights optimization. FCNN with 500 neurons at the hidden layer 
with sigmoid activation function showed the best performance (Section 4). 

Figure 4. Examples of exploited temperature gradients during training procedure.

3. Architectures of Deep Neural Network

The task for deep neural networks was to predict the reflectance peak positions of
50 FBGs contained in 5 sparse sensors by the optical reflectance spectrum of the highly
dense sensor. We investigated the performances of full-connected and convolutional neural
networks, which were built using the TensorFlow software package [22]. A fully connected
neural network (FCNN) was selected as the most common and simple architecture. Our
FCNN consisted of input, hidden and output layers, as shown in Figure 5. The size of
the input layer was 20,001 neurons corresponding to the size of the signal array from
the interrogator, the output layer had 50 neurons corresponding to the number of the
FBGs of the dense sensor. The size of the hidden layer was optimized in order to reduce
computational time and maintain the precision of the algorithm. During the grid search
procedure of hyperparameters of FCNN we used Mean Squared Error as a loss function
and Adamax optimizer for neuron weights optimization. FCNN with 500 neurons at the
hidden layer with sigmoid activation function showed the best performance (Section 4).

We also chose a convolutional neural network (CNN) for the task, because of its
potential capability to reveal hidden features related to interference between reflectance
patterns of nearby FBGs (Figure 6). The input layer was a two-dimensional array of the
reflectance pattern, after which there was a layer with one convolutional filter of size 2 × 2
and Relu activation function. The 2-dimensional convoluted image was then flattened and
transferred to two fully connected layers. The size of the last output layer was 50 neurons.
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Figure 6. Convolutional neural network consisted of six layers.

Unlike FCNN, where we have used a 1-dimensional array as an input, we transformed
the input signal array into a two-dimensional image. This was undertaken in order to
reduce the size of a convolutional filter. Our first attempt was to slice 1-dimensional into
50 windows with centered reflectance peaks of FBGs (Figure 7a). However, this approach
leads to greater challenges during signal processing due to the aperiodic arrangement of
the peaks. Instead, we sliced the input signal into 59 parts, since 59 is a prime factor for
20,001 (Figure 7b). Despite the image losing its physical meaning, such an approach is
more robust and straightforward.
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The input data was scaled for both neural networks in following order: first, each
sample of a reflectance spectra was shifted by mean value of the intensity, then it was
normalized by standard deviation of the intensity. Sample size of training, validation and
testing datasets were 2000, 500 and 1000, respectively.

4. Results

The learning curve of the FCNN on a training dataset and prediction error on a
validation dataset are depicted at Figure 8a. We plotted the curves on a logarithmic scale
for the convenience of their analysis. During training epochs loss function (mean absolute
error) drops down and saturates after 100 epochs. The evolution of the prediction error
(orange line) shows that the neural network was not overfitted. Figure 8b shows mean
absolute error rates for different activation functions and number of nodes at the hidden
layer. Figure 8c demonstrates the predicted positions of the reflectance peaks for all 50 FBGs
of the sparse sensors against measured ones in scaled units. Figure 8c is the same curve for a
single FBG in nm units. The curves are in close proximity to the straight line corresponding
to the ideal case when predicted values are equal to measured values. We found out that
FCNN is able to predict the positions of the reflectance peak of the sparse FBG sensors with
a mean absolute error equal to 10.9 pm. The root mean square error (RMSE) was 18 pm
and the coefficient of determination (R2) was 0.9988.

In the same way we analyzed the performance of CNN (Figure 9). It can be seen
that neural networks have similar performance; however, CNN shows the lowest mean
absolute error, equal to 7.4 pm, RMSE equal to 14 pm and R2 equal to 0.9993.

The RMSE metric is more sensitive to large errors comparing to MAE. It is clearly seen
from Figures 8c and 9c that the mismatch between real, predicted and measured values is
not uniformly distributed along different FBGs. For some FBGs, the mean absolute error
does not exceed 5 pm; however, for one FBG the mean absolute error reaches 14 pm. We
attribute this to the violation of the uniformity of the temperature field across fiber sensors
during the mechanical translation of the Peltier cells. Indeed, CNN performed worse at
convex temperature distribution when only one Peltier cell was used. The RMSE was equal
to 14.48 pm and R2 was equal to 0.9967 for convex temperature distribution comparing to
8.48 pm and 0.9993 for raised gradient temperature distribution. The issue may be solved
by adding more Peltier cells with lower size or building more complicated heating/cooling
systems, for instance, using laser heating in combination with a spatial light modulator.
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Computational complexities of FCNN and CNN may be estimated as follows:

CFCNN = Ninput · Nhidden + Nhiden ∗ Noutput, (1)

CCNN = Ninput · D2 + Ninput ∗ N f cl1 + N f cl1 · N f cnn2 + N f cnn2 ∗ Noutput, (2)

where Ninput, Noutput, Nhidden—numbers of neurons of the input, output layers and hidden
layers in FCNN, D—dimension of the convolution filter, Nfcl1 and Nfcl2—numbers of neu-
rons of the fully connected layers in CNN architecture. Calculation of FCNN output takes
around 10 million operations, while calculation of CNN output takes around 16 million
operations. Better performance of CNN may be related to increased complexity of the
architecture. At any case the computational time of the neural networks output is negligible
comparing to hardware acquisition time of reflectance spectrum. Computation time of the
CNN output from a single sample of the registered reflectance spectrum takes in average
37 milliseconds running on modest graphical processor unit NVIDEA GeForce GTX 950M.
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5. Conclusions

Thus, the calibration method of a highly dense FBG temperature sensor is proposed in
the paper. It provides a possibility for increasing the spatial resolution of a fiberoptic sensor,
avoiding the complications of FBG manufacturing or of an interrogation setup. The method
is an alternative to the more common approach, wherein several sparse FBGs sensors are
coupled into one optical channel. It was shown that deep learning algorithms are capable
of mapping the complex reflectance spectrum of the dense sensor with 50 peaks to position
of reflectance peaks of the sparse calibrated FBG temperature sensors. The relatively simple
architecture of convolutional neural network allowed us to increase the spatial resolution
of the dense FBG sensor by five times while maintaining a high temperature resolution
close to hardware resolution. Future improvements of the method may be associated with
complication of the architecture of the neural network and increasing the uniformity of the
temperature distribution across fiber sensors.
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