Contactless Gait Assessment in Home-like Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Sensors Used to Measure Gait
2.3. Gait Parameters
2.4. Study Protocol
2.5. Long-Term Functionality
2.6. Data Processing
2.7. Statistics
3. Results
3.1. Demographics and Assessed Walks
3.2. Comparison of Devices
3.3. Long-Term Measurement
4. Discussion
Limitations and Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TUG test | Timed Up and Go test |
BBS | Berg Balance Scale |
POMA | Performance-Oriented Mobility Assessment |
FGA | Functional Gait Assessment |
FoG | Freezing of gait |
PD | Parkinson’s disease |
LiDAR | Light detection and ranging |
RMB | Rotating multibeam |
IMU | Inertial Measurement Unit |
CCNA | Canadian Consortium on Neurodegeneration in Aging |
SIR | sequential importance resampling |
PM | Pressure mat |
WS | Wearable sensor |
RMSE | root-mean-squared error |
Appendix A. Correlation Analysis
Appendix B. Bland-Altman Evaluation
References
- Verghese, J.; LeValley, A.; Hall, C.B.; Katz, M.J.; Ambrose, A.F.; Lipton, R.B. Epidemiology of Gait Disorders in Community-Residing Older Adults. J. Am. Geriatr. Soc. 2006, 54, 255–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, D.; Funk, M.; Crossley, M.; Basran, J.; Kirk, A.; Dal Bello-Haas, V. The Potential of Gait Analysis to Contribute to Differential Diagnosis of Early Stage Dementia: Current Research and Future Directions. Can. J. Aging 2007, 26, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Nieuwboer, A.; Dom, R.; Weerdt, W.D.; Desloovere, K.; Fieuws, S.; Broens-Kaucsik, E. Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson’s disease. Mov. Disord. 2001, 16, 1066–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verghese, J.; Ambrose, A.F.; Lipton, R.B.; Wang, C. Neurological Gait Abnormalities and Risk of Falls in Older Adults. J. Neurol. 2010, 257, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Zijlstra, W.; Hof, A.L. Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 2003, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Espy, D.D.; Yang, F.; Bhatt, T.; Pai, Y.C. Independent influence of gait speed and step length on stability and fall risk. Gait Posture 2010, 32, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.; Nordström, A.; Nordström, P. Greater Fall Risk in Elderly Women Than in Men Is Associated with Increased Gait Variability During Multitasking. J. Am. Med. Dir. Assoc. 2016, 17, 535–540. [Google Scholar] [CrossRef]
- Sofuwa, O.; Nieuwboer, A.; Desloovere, K.; Willems, A.M.; Chavret, F.; Jonkers, I. Quantitative Gait Analysis in Parkinson’s Disease: Comparison with a Healthy Control Group. Arch. Phys. Med. Rehabil. 2005, 86, 1007–1013. [Google Scholar] [CrossRef] [Green Version]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar]
- Berg, K.O.; Maki, B.E.; Williams, J.I.; Holliday, P.J.; Wood-Dauphinee, S.L. Clinical and laboratory measures of postural balance in an elderly population. Arch. Phys. Med. Rehabil. 1992, 73, 1073–1080. [Google Scholar]
- Wrisley, D.M.; Marchetti, G.F.; Kuharsky, D.K.; Whitney, S.L. Reliability, internal consistency, and validity of data obtained with the functional gait assessment. Phys. Ther. Rehabil. 2004, 84, 906–918. [Google Scholar] [CrossRef] [Green Version]
- Montero-Odasso, M.; Sarquis-Adamson, Y.; Kamkar, N.; Pieruccini-Faria, F.; Bray, N.; Cullen, S.; Mahon, J.; Titus, J.; Camicioli, R.; Borrie, M.J.; et al. Dual-task gait speed assessments with an electronic walkway and a stopwatch in older adults. A reliability study. Exp. Gerontol. 2020, 142, 111102. [Google Scholar] [CrossRef]
- Riis, J.; Byrgesen, S.M.; Kragholm, K.H.; Mørch, M.M.; Melgaard, D. Validity of the GAITRite Walkway Compared to Functional Balance Tests for Fall Risk Assessment in Geriatric Outpatients. Geriatrics 2020, 5, 77. [Google Scholar] [CrossRef]
- GAITRite Platinum Plus Classic. Available online: https://www.gaitrite.com/ (accessed on 12 September 2021).
- Riley, P.O.; Paylo, K.W.; Kerrigan, D.C. Mobility and Gait Assessment Technologies. In Eldercare Technology for Clinical Practitioners; Alwan, M., Felder, R.A., Eds.; Humana Press: Totowa, NJ, USA, 2008; pp. 33–51. [Google Scholar]
- Kressig, R.W.; Herrmann, F.R.; Grandjean, R.; Michel, J.P.; Beauchet, O. Gait variability while dual-tasking: Fall predictor in older inpatients? Aging Clin. Exp. Res. 2008, 20, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Vicon Motion Tracking. Available online: https://www.vicon.com/ (accessed on 12 September 2021).
- Picillo, M.; Ricciardi, C.; Tepedino, M.F.; Abate, F.; Cuoco, S.; Carotenuto, I.; Erro, R.; Ricciardelli, G.; Russo, M.; Cesarelli, M.; et al. Gait Analysis in Progressive Supranuclear Palsy Phenotypes. Front. Neurol. 2021, 12, 674495. [Google Scholar] [CrossRef]
- Theia Markerless, Qualisys. Available online: https://www.qualisys.com/ (accessed on 12 September 2021).
- Physilog, Gait Up. Available online: https://gaitup.com/ (accessed on 12 September 2021).
- Donisi, L.; Pagano, G.; Cesarelli, G.; Coccia, A.; Amitrano, F.; D’Addio, G. Benchmarking between two wearable inertial systems for gait analysis based on a different sensor placement using several statistical approaches. Measurement 2021, 173, 108642. [Google Scholar] [CrossRef]
- Celik, Y.; Stuart, S.; Woo, W.L.; Godfrey, A. Gait analysis in neurological populations: Progression in the use of wearables. Med. Eng. Phys. 2021, 87, 9–29. [Google Scholar] [CrossRef] [PubMed]
- Schütz, N.; Saner, H.; Rudin, B.; Botros, A.; Pais, B.; Santschi, V.; Buluschek, P.; Gatica-Perez, D.; Urwyler, P.; Marchal-Crespo, L.; et al. Validity of pervasive computing based continuous physical activity assessment in community-dwelling old and oldest-old. Sci. Rep. 2019, 9, 9662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botia, J.A.; Villa, A.; Palma, J. Ambient Assisted Living system for in-home monitoring of healthy independent elders. Expert Syst. Appl. 2012, 39, 8136–8148. [Google Scholar] [CrossRef]
- Riikonen, M.; Mäkelä, K.; Perälä, S. Safety and monitoring technologies for the homes of people with dementia. Gerontechnology 2010, 9, 32–45. [Google Scholar] [CrossRef]
- Rantz, M.; Lane, K.; Phillips, L.J.; Despins, L.A.; Galambos, C.; Alexander, G.L.; Koopman, R.J.; Hicks, L.; Skubic, M.; Miller, S.J. Enhanced registered nurse care coordination with sensor technology: Impact on length of stay and cost in aging in place housing. Nurs. Outlook 2015, 63, 650–655. [Google Scholar] [CrossRef]
- Klemets, J.; Määttälä, J.; Hakala, I. Integration of an in-home monitoring system into home care nurses’ workflow: A case study. Int. J. Med. Inform. 2019, 123, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Van Ancum, J.M.; van Schooten, K.S.; Jonkman, N.H.; Huijben, B.; Van Lummel, R.C.; Meskers, C.G.; Maier, A.B.; Pijnappels, M. Gait speed assessed by a 4-m walk test is not representative of daily-life gait speed in community-dwelling adults. Maturitas 2019, 121, 28–34. [Google Scholar] [CrossRef]
- Rubenstein, L.Z.; Josephson, K.R. The epidemiology of falls and syncope. Clin. Geriatr. Med. 2002, 18, 141–158. [Google Scholar] [CrossRef]
- Bloem, B.R.; Hausdorff, J.M.; Visser, J.E.; Giladi, N. Falls and freezing of gait in Parkinson’s disease: A review of two interconnected, episodic phenomena. Mov. Disord. 2004, 19, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Tinetti, M.E.; Baker, D.I.; McAvay, G.; Claus, E.B.; Garrett, P.; Gottschalk, M.; Koch, M.L.; Trainor, K.; Horwitz, R.I. A Multifactorial Intervention to Reduce the Risk of Falling among Elderly People Living in the Community. N. Engl. J. Med. 1994, 331, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Scheurer, S.; Koch, J.; Kucera, M.; Bryn, H.; Bärtschi, M.; Meerstetter, T.; Nef, T.; Urwyler, P. Optimization and Technical Validation of the AIDE-MOI Fall Detection Algorithm in a Real-Life Setting with Older Adults. Sensors 2019, 19, 1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganz, D.A.; Bao, Y.; Shekelle, P.G.; Rubenstein, L.Z. Will My Patient Fall? JAMA 2007, 297, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Botros, A.; Schütz, N.; Camenzind, M.; Urwyler, P.; Bolliger, D.; Vanbellingen, T.; Kistler, R.; Bohlhalter, S.; Müri, R.M.; Mosimann, U.P.; et al. Long-Term Home-Monitoring Sensor Technology in Patients with Parkinson’s Disease-Acceptance and Adherence. Sensors 2019, 19, 5169. [Google Scholar] [CrossRef] [Green Version]
- Mathie, M.J.; Coster, A.C.F.; Lovell, N.H. A pilot study of long-term monitoring of human movements in the home using accelerometry. J. Telemed. Telecare 2004, 10, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, S.; Wickström, N. Gait Event Detection in Real-World Environment for Long-Term Applications: Incorporating Domain Knowledge Into Time-Frequency Analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1363–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bongue, B.; Dupré, C.; Beauchet, O.; Rossat, A.; Fantino, B.; Colvez, A. A screening tool with five risk factors was developed for fall-risk prediction in community-dwelling elderly. J. Clin. Epidemiol. 2011, 64, 1152–1160. [Google Scholar] [CrossRef]
- Piau, A.; Mattek, N.; Crissey, R.; Beattie, Z.; Dodge, H.; Kaye, J. When will my patient fall? Sensor-based in-home walking speed identifies future falls in older adults. J. Gerontol. Ser. A 2020, 75, 968–973. [Google Scholar] [CrossRef]
- Li, C.; Lee, C.F.; Xu, S. Stigma Threat in Design for Older Adults. Int. J. Des. 2020, 14, 14. [Google Scholar]
- Muresan, M.P.; Nedevschi, S. Multimodal sparse LIDAR object tracking in clutter. In Proceedings of the 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 6–8 September 2018; pp. 215–221. [Google Scholar] [CrossRef]
- White, S.A.; Parrish, C.E.; Calder, B.R.; Pe’eri, S.; Rzhanov, Y. Lidar-derived national shoreline: Empirical and stochastic uncertainty analyses. J. Coast. Res. 2011, 62, 62–74. [Google Scholar] [CrossRef]
- Fudickar, S.; Stolle, C.; Volkening, N.; Hein, A. Scanning Laser Rangefinders for the Unobtrusive Monitoring of Gait Parameters in Unsupervised Settings. Sensors 2018, 18, 3424. [Google Scholar] [CrossRef] [Green Version]
- Gálai, B.; Benedek, C. Feature selection for Lidar-based gait recognition. In Proceedings of the 2015 International Workshop on Computational Intelligence for Multimedia Understanding (IWCIM), Prague, Czech Republic, 29–30 October 2015; pp. 1–5. [Google Scholar]
- Benedek, C.; Gálai, B.; Nagy, B.; Jankó, Z. Lidar-Based Gait Analysis and Activity Recognition in a 4D Surveillance System. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Frenken, T.; Gövercin, M.; Mersmann, S.; Hein, I.A. Precise assessment of self-selected gait velocity in domestic environments. In Proceedings of the 2010 4th International Conference on Pervasive Computing Technologies for Healthcare, Munich, Germany, 22–25 March 2010; pp. 1–8. [Google Scholar]
- Yorozu, A.; Takahashi, M. Development of gait measurement robot using laser range sensor for evaluating long-distance walking ability in the elderly. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 4888–4893. [Google Scholar]
- Yoon, S.; Jung, H.W.; Jung, H.; Kim, K.; Hong, S.K.; Roh, H.; Oh, B.M. Development and validation of 2D-LiDAR-based gait analysis instrument and algorithm. Sensors 2021, 21, 414. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.T.; Suh, Y.S. Human Gait Tracking for Normal People and Walker Users Using a 2D LiDAR. IEEE Sens. J. 2020, 20, 6191–6199. [Google Scholar] [CrossRef]
- Pistacchi, M.; Gioulis, M.; Sanson, F.; De Giovannini, E.; Filippi, G.; Rossetto, F.; Marsala, S.Z. Gait analysis and clinical correlations in early Parkinson’s disease. Funct. Neurol. 2017, 32, 28–34. [Google Scholar] [CrossRef]
- Baltadjieva, R.; Giladi, N.; Gruendlinger, L.; Peretz, C.; Hausdorff, J.M. Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson’s disease. Eur. J. Neurosci. 2006, 24, 1815–1820. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Schindler, K.A.; Nef, T.; Baud, M.O.; Tzovara, A.; Yilmaz, G.; Tinkhauser, G.; Gerber, S.M.; Gnarra, O.; Warncke, J.D.; Schütz, N.; et al. NeuroTec Sitem-Insel Bern: Closing the Last Mile in Neurology. Clin. Transl. Neurosci. 2021, 5, 13. [Google Scholar] [CrossRef]
- Cleland, B.T.; Arshad, H.; Madhavan, S. Concurrent validity of the GAITRite electronic walkway and the 10-m walk test for measurement of walking speed after stroke. Gait Posture 2019, 68, 458–460. [Google Scholar] [CrossRef]
- Van Uden, C.J.; Besser, M.P. Test-retest reliability of temporal and spatial gait characteristics measured with an instrumented walkway system (GAITRite®). BMC Musculoskelet. Disord. 2004, 5, 1–4. [Google Scholar] [CrossRef]
- Gordon, C.C.; Churchill, T.; Clauser, C.E.; Bradtmiller, B.; McConville, J.T.; Tebbetts, I.; Walker, R.A. 1988 Anthropometric Survey of U.S. Army Personnel: Summary Statistics Interim Report; Technical Report NATICK/TR-89/027; U.S. Army Natick RD&E Center: Natick, MA, USA, 1989.
- Dadashi, F.; Mariani, B.; Rochat, S.; Büla, C.J.; Santos-Eggimann, B.; Aminian, K. Gait and Foot Clearance Parameters Obtained Using Shoe-Worn Inertial Sensors in a Large-Population Sample of Older Adults. Sensors 2014, 14, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Verghese, J.; Holtzer, R.; Lipton, R.B.; Wang, C. Quantitative Gait Markers and Incident Fall Risk in Older Adults. J. Gerontol. Ser. A 2009, 64A, 896–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGough, E.L.; Logsdon, R.G.; Kelly, V.E.; Teri, L. Functional Mobility Limitations and Falls in Assisted Living Residents With Dementia: Physical Performance Assessment and Quantitative Gait Analysis. J. Geriatr. Phys. Ther. 2013, 36, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Roiz, R.d.M.; Cacho, E.W.A.; Pazinatto, M.M.; Reis, J.G.; Cliquet, A., Jr.; Barasnevicius-Quagliato, E.M.A. Gait analysis comparing Parkinson’s disease with healthy elderly subjects. Arq. Neuro-Psiquiatr. 2010, 68, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Greene, B.R.; O’Donovan, A.; Romero-Ortuno, R.; Cogan, L.; Scanaill, C.N.; Kenny, R.A. Quantitative Falls Risk Assessment Using the Timed Up and Go Test. IEEE Trans. Biomed. Eng. 2010, 57, 2918–2926. [Google Scholar] [CrossRef] [PubMed]
- Cullen, S.; Montero-Odasso, M.; Bherer, L.; Almeida, Q.; Fraser, S.; Muir-Hunter, S.; Li, K.; Liu-Ambrose, T.; McGibbon, C.A.; McIlroy, W.; et al. Guidelines for Gait Assessments in the Canadian Consortium on Neurodegeneration in Aging (CCNA). Can. Geriatr. J. 2018, 21, 157–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozakai, R.; Tsuzuku, S.; Yabe, K.; Ando, F.; Niino, N.; Shimokata, H. Age-Related Changes in Gait Velocity and Leg Extension Power in Middle-Aged and Elderly People. J. Epidemiol. 2000, 10, 77–81. [Google Scholar] [CrossRef]
- Gyger, N.; Botros, A.; Single, M. Available online: https://gitlab.com/artorg-ger/lidar-gait-analysis/ (accessed on 15 March 2021).
- Del Moral, P. Nonlinear filtering: Interacting particle resolution. Comptes Rendus De L’Académie Des Sci.-Ser. I-Math. 1997, 325, 653–658. [Google Scholar] [CrossRef]
- Arulampalam, M.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Koch, G. Intraclass correlation coefficient. In Encyclopedia of Statistical Sciences; John Wiley & Sons: New York, NY, USA, 1982; Volume 4, pp. 213–217. ISBN 0471743801. [Google Scholar]
Fall Risk | PD | |
---|---|---|
Step length | [7] | [49] |
Step time | [7] | - |
Stride length | [7,57,58] | [8,49,50,59] |
Cycle time | [7,58] | [49,50] |
Velocity | [57,58] | [8,49,50,59] |
Cadence | [58,60] | [49] |
Velocity | Step Length | Defining Characteristics | |
---|---|---|---|
Free walk | - | - | Self-chosen pace and step length |
Cognitive walk | - | - | Cognitive exercise while walking |
Cowboy walk | - | - | Extra wide cowboy-like steps |
30/100 | 100 bpm | 30 cm | Fixed step length and velocity |
30/120 | 120 bpm | 30 cm | Fixed step length and velocity |
60/60 | 60 bpm | 60 cm | Fixed step length and velocity |
60/120 | 120 bpm | 60 cm | Fixed step length and velocity |
U-turn | - | - | Self-paced walk around a marker |
Step Length | Step Time | Stride Length | Cycle Time | Cadence | Velocity | ||
---|---|---|---|---|---|---|---|
(cm) | (s) | (cm) | (s) | ||||
LiDAR-PM | mean | −0.09 | −0.00 | −0.63 | −0.00 | 8.52 | −1.09 |
conf. int. | [−0.45, 0.27] | [−0.01, 0.00] | [−1.04, −0.22] | [−0.01, 0.01] | [7.85, 9.18] | [−1.66, −0.52] | |
adj. p-value | 1 | 0.09 | 0.01 | 1 | <0.01 | 0.04 | |
3.31 | 0.05 | 3.84 | 0.09 | 10.48 | 5.33 | ||
LiDAR-WS | mean | −0.37 | - | 0.22 | −0.00 | - | - |
conf. int. | [−0.97, 0.23] | - | [−0.47, 0.91] | [−0.02, 0.01] | - | - | |
adj. p-value | 0.67 | - | 1 | 1 | - | - | |
4.93 | - | 5.63 | 0.14 | - | - | ||
WS-PM | mean | −0.25 | - | 1.00 | −0.00 | - | - |
conf. int. | [−0.72, 0.22] | - | [0.52, 1.49] | [−0.014, 0.01] | - | - | |
adj. p-value | 0.74 | - | <0.01 | 1 | - | - |
Step Length | Step Time | Stride Length | Cycle Time | Velocity | Cadence | ||
---|---|---|---|---|---|---|---|
LiDAR-PM | r: | 0.98 | 0.96 | 0.99 | 0.96 | 0.98 | 0.95 |
: | 0.95 | 0.91 | 0.98 | 0.92 | 0.95 | 0.90 | |
LiDAR-WS | r: | 0.95 | - | 0.98 | 0.91 | - | - |
: | 0.90 | - | 0.97 | 0.83 (0.91) | - | - | |
WS-PM | r: | 0.97 | - | 0.99 | 0.94 | - | - |
: | 0.94 | - | 0.98 | 0.89 (0.97) | - | - | |
LiDAR-WS-PM | : | 0.96 | 0.95 | 0.99 | 0.94 | 0.98 | 0.86 (0.95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botros, A.; Gyger, N.; Schütz, N.; Single, M.; Nef, T.; Gerber, S.M. Contactless Gait Assessment in Home-like Environments. Sensors 2021, 21, 6205. https://doi.org/10.3390/s21186205
Botros A, Gyger N, Schütz N, Single M, Nef T, Gerber SM. Contactless Gait Assessment in Home-like Environments. Sensors. 2021; 21(18):6205. https://doi.org/10.3390/s21186205
Chicago/Turabian StyleBotros, Angela, Nathan Gyger, Narayan Schütz, Michael Single, Tobias Nef, and Stephan M. Gerber. 2021. "Contactless Gait Assessment in Home-like Environments" Sensors 21, no. 18: 6205. https://doi.org/10.3390/s21186205
APA StyleBotros, A., Gyger, N., Schütz, N., Single, M., Nef, T., & Gerber, S. M. (2021). Contactless Gait Assessment in Home-like Environments. Sensors, 21(18), 6205. https://doi.org/10.3390/s21186205