Cybersecurity in Power Grids: Challenges and Opportunities
Abstract
:1. Introduction
Contributions
- We provide a high-level overview over the communication infrastructure of power grids and derive resulting fundamental challenges w.r.t. cybersecurity risks (Section 2).
- As a foundation to secure power grids, we identify a comprehensive set of attack vectors and scenarios based on these security challenges (Section 3).
- We distill and discuss promising approaches to provide security for interconnected power grids to protect against serious attack vectors and scenarios (Section 4).
2. Communication Infrastructure of Power Grids and Resulting Security Challenges
2.1. Communication Infrastructure of Power Grids
2.2. Fundamental Cybersecurity Challenges
2.2.1. CIA Triad: Availability Is Key
2.2.2. Balancing Generation and Consumption
2.2.3. Decentralization of Power Generation
2.2.4. No Security in Process Control Networks
2.2.5. Difficulty of Physical Network Changes
2.2.6. Weakest Link Problem
3. Attack Vectors and Scenarios
3.1. Attack Vectors in Distribution and Transmission Grids
3.1.1. Lateral Movement from the Office Network
3.1.2. Physical Access
3.1.3. Remote Maintenance Access
3.1.4. Third-Party Exploit
3.1.5. Overcoming Air Gap
3.1.6. Insider Attack
3.1.7. Cascading Effects
3.2. Attack Scenarios
3.2.1. Disconnecting Resources
3.2.2. Injecting False Information
3.2.3. Denial of Service
4. Providing Cybersecurity for Interconnected Power Grids
4.1. Device & Application Security
4.2. Network Security
4.2.1. Network Separation
4.2.2. Intrusion Detection Systems
4.3. Physical Security
4.4. Policies, Procedures & Awareness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CIA | Confidentiality, integrity, and availability |
DB | Database |
DMZ | Demilitarized zone |
DSO | Distribution system operator |
HIDS | Host-based intrusion detection system |
HMI | Human-machine interface |
ICS | Industrial control systems |
IDS | Intrusion detection system |
IPS | Intrusion prevention system |
NIDS | Network-based intrusion detection system |
PCN | Process control network |
PLC | Programmable logic controller |
SCADA | Supervisory control and data acquisition |
SDN | Software-defined networking |
TSO | Transmission system operator |
VPN | Virtual private network |
References
- He, X.; Qiu, R.C.; Ai, Q.; Chu, L.; Xu, X.; Ling, Z. Designing for situation awareness of future power grids: An indicator system based on linear eigenvalue statistics of large random matrices. IEEE Access 2016, 4, 3557–3568. [Google Scholar] [CrossRef]
- Suciu, G.; Sachian, M.A.; Vulpe, A.; Vochin, M.; Farao, A.; Koutroumpouchos, N.; Xenakis, C. SealedGRID: Secure and Interoperable Platform for Smart GRID Applications. Sensors 2021, 21, 5448. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 2008/114/EC of 8 December 2008 on the Identification and Designation of European Critical Infrastructures and the Assessment of the Need to Improve Their Protection. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0114 (accessed on 1 September 2021).
- Proposal for a Directive of the European Parliament and of the Council on the Resilience of Critical Entities COM/2020/829 Final. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2020:829:FIN (accessed on 1 September 2021).
- Presidential Policy Directive/PPD-21—Critical Infrastructure Security and Resilience. Available online: https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil (accessed on 1 September 2021).
- Wang, T.; Long, Q.; Gu, X.; Chai, W. Information Flow Modeling and Performance Evaluation of Communication Networks Serving Power Grids. IEEE Access 2020, 8, 13735–13747. [Google Scholar] [CrossRef]
- Javaid, N.; Hafeez, G.; Iqbal, S.; Alrajeh, N.; Alabed, M.S.; Guizani, M. Energy efficient integration of renewable energy sources in the smart grid for demand side management. IEEE Access 2018, 6, 77077–77096. [Google Scholar] [CrossRef]
- Figueroa-Acevedo, A.L.; Tsai, C.H.; Gruchalla, K.; Claes, Z.; Foley, S.; Bakke, J.; Okullo, J.; Prabhakar, A.J. Visualizing the Impacts of Renewable Energy Growth in the U.S. Midcontinent. IEEE Open Access J. Power Energy 2020, 7, 91–99. [Google Scholar] [CrossRef]
- Phuangpornpitak, N.; Tia, S. Opportunities and Challenges of Integrating Renewable Energy in Smart Grid System. Energy Procedia 2013, 34, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.D.; Al-Ismail, F.S.; Shafiullah, M.; Al-Sulaiman, F.A.; El-Amin, I.M. Grid Integration Challenges of Wind Energy: A Review. IEEE Access 2020, 8, 10857–10878. [Google Scholar] [CrossRef]
- Klaer, B.; Sen, Ö.; van der Velde, D.; Hacker, I.; Andres, M.; Henze, M. Graph-based Model of Smart Grid Architectures. In Proceedings of the 3rd International Conference on Smart Energy Systems and Technologies (SEST), Istanbul, Turkey, 7–9 September 2020. [Google Scholar] [CrossRef]
- Henze, M.; Hiller, J.; Hummen, R.; Matzutt, R.; Wehrle, K.; Ziegeldorf, J.H. Network Security and Privacy for Cyber-Physical Systems. In Security and Privacy in Cyber-Physical Systems: Foundations, Principles, and Applications; Wiley-IEEE Press: Chichester, UK; Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Pennekamp, J.; Glebke, R.; Henze, M.; Meisen, T.; Quix, C.; Hai, R.; Gleim, L.; Niemietz, P.; Rudack, M.; Knape, S.; et al. Towards an Infrastructure Enabling the Internet of Production. In Proceedings of the 2nd IEEE International Conference on Industrial Cyber-Physical Systems (ICPS), Taipei, Taiwan, 6–9 May 2019. [Google Scholar] [CrossRef]
- Hiller, J.; Komanns, K.; Dahlmanns, M.; Wehrle, K. Regaining Insight and Control on SMGW-based Secure Communication in Smart Grids. In Proceedings of the 2019 AEIT International Annual Conference (AEIT), Florence, Italy, 18–20 September 2019. [Google Scholar] [CrossRef]
- Pennekamp, J.; Henze, M.; Schmidt, S.; Niemietz, P.; Fey, M.; Trauth, D.; Bergs, T.; Brecher, C.; Wehrle, K. Dataflow Challenges in an Internet of Production: A Security & Privacy Perspective. In Proceedings of the 5th ACM Workshop on Cyber-Physical Systems Security and PrivaCy (CPS-SPC), London, UK, 11 November 2019. [Google Scholar] [CrossRef]
- Khurana, H.; Hadley, M.; Lu, N.; Frincke, D.A. Smart-Grid Security Issues. IEEE Secur. Priv. 2010, 8, 81–85. [Google Scholar] [CrossRef]
- van der Velde, D.; Henze, M.; Kathmann, P.; Wassermann, E.; Andres, M.; Bracht, D.; Ernst, R.; Hallak, G.; Klaer, B.; Linnartz, P.; et al. Methods for Actors in the Electric Power System to Prevent, Detect and React to ICT Attacks and Failures. In Proceedings of the 6th IEEE International Energy Conference (ENERGYCON), Gammarth, Tunisia, 28 September–1 October 2020. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, X.; Li, Y.; Jiang, Z.; Liang, Y.; Jin, Z.; Wen, Q. A Multi-Step Attack Detection Model Based on Alerts of Smart Grid Monitoring System. IEEE Access 2019, 8, 1031–1047. [Google Scholar] [CrossRef]
- Karimipour, H.; Dehghantanha, A.; Parizi, R.M.; Choo, K.K.R.; Leung, H. A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access 2019, 7, 80778–80788. [Google Scholar] [CrossRef]
- Serror, M.; Hack, S.; Henze, M.; Schuba, M.; Wehrle, K. Challenges and Opportunities in Securing the Industrial Internet of Things. IEEE Trans. Ind. Inform. 2020, 17, 2985–2996. [Google Scholar] [CrossRef]
- E-ISAC. Analysis of the Cyber Attack on the Ukrainian Power Grid. Available online: https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2016/05/20081514/E-ISAC_SANS_Ukraine_DUC_5.pdf (accessed on 1 September 2021).
- Dragos. CRASHOVERRIDE—Analysis of the Threat to Electric Grid Operations. Available online: https://www.dragos.com/wp-content/uploads/CrashOverride-01.pdf (accessed on 1 September 2021).
- Petermann, T.; Bradke, H.; Lüllmann, A.; Poetzsch, M.; Riehm, U. What Happens during a Blackout: Consequences of a Prolonged and Wide-Ranging Power Outage; BoD: Norderstedt, Germany, 2014. [Google Scholar]
- Xie, J.; Stefanov, A.; Liu, C.C. Physical and cyber security in a smart grid environment. Wiley Interdiscip. Rev. Energy Environ. 2016, 5, 519–542. [Google Scholar] [CrossRef]
- Li, X.; Liang, X.; Lu, R.; Shen, X.; Lin, X.; Zhu, H. Securing Smart Grid: Cyber Attacks, Countermeasures, and Challenges. IEEE Commun. Mag. 2012, 50, 38–45. [Google Scholar] [CrossRef]
- Gunduz, M.Z.; Das, R. Cyber-security on smart grid: Threats and potential solutions. Comput. Netw. 2020, 169, 107094. [Google Scholar] [CrossRef]
- Segall, A. Distributed Network Protocol (DNP3). IEEE Trans. Inf. Theory. 1983, 29, 23–35. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. IEC 60870-5-104 Standard. Available online: https://webstore.iec.ch/p-preview/info_iec60870-5-104%7Bed1.0%7Den_d.pdf (accessed on 1 September 2021).
- Andress, J. The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice; Syngress: Amsterdam, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Knight, U.G. Power Systems in Emergencies: From Contingency Planning to Crisis Management; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
- Bundesnetzagentur—Security of supply. Available online: https://www.bundesnetzagentur.de/EN/Areas/Energy/Companies/SecurityOfSupply/QualityOfSupply/QualityOfSupply_node.html (accessed on 1 September 2021).
- Google. Reliability. Available online: https://support.google.com/googlecloud/answer/6056635 (accessed on 1 September 2021).
- ENTSO-E. Operation Handbook. Available online: https://www.ucte.org/resources/publications/ophandbook/ (accessed on 1 September 2021).
- Wang, J.; Wang, X.; Wu, Y. Operating Reserve Model in the Power Market. IEEE Trans. Power Syst. 2005, 20, 223–229. [Google Scholar] [CrossRef]
- Amini, S.; Pasqualetti, F.; Mohsenian-Rad, H. Dynamic Load Altering Attacks Against Power System Stability: Attack Models and Protection Schemes. IEEE Trans. Smart Grid 2018, 9, 2862–2872. [Google Scholar] [CrossRef]
- Dabrowski, A.; Ullrich, J.; Weippl, E.R. Grid Shock: Coordinated Load-Changing Attacks on Power Grids. In Proceedings of the 33rd Annual Computer Security Applications Conference (ACSAC), Orlando, FL, USA, 4–8 December 2017. [Google Scholar] [CrossRef]
- Kenyon, R.W.; Maguire, J.; Present, E.; Christensen, D.; Hodge, B.M. Bulk Electric Power System Risks from Coordinated Edge Devices. IEEE Open Access J. Power Energy 2021, 8, 35–44. [Google Scholar] [CrossRef]
- Dahlmanns, M.; Lohmöller, J.; Fink, I.B.; Pennekamp, J.; Wehrle, K.; Henze, M. Easing the Conscience with OPC UA: An Internet-Wide Study on Insecure Deployments. In Proceedings of the Internet Measurement Conference (IMC), Virtual Event, 27–29 October 2020. [Google Scholar] [CrossRef]
- Chapman, J.P.; Ofner, S.; Pauksztelo, P. Key factors in industrial control system security. In Proceedings of the IEEE 41st Conference on Local Computer Networks (LCN), Dubai, United Arab Emirates, 7–10 November 2016; pp. 551–554. [Google Scholar] [CrossRef]
- Istiaque Ahmed, K.; Tahir, M.; Hadi Habaebi, M.; Lun Lau, S.; Ahad, A. Machine Learning for Authentication and Authorization in IoT: Taxonomy, Challenges and Future Research Direction. Sensors 2021, 21, 5122. [Google Scholar] [CrossRef]
- Maynard, P.; McLaughlin, K.; Haberler, B. Towards Understanding Man-In-The-Middle Attacks on IEC 60870-5-104 SCADA Networks. In Proceedings of the 2nd International Symposium for ICS & SCADA Cyber Security Research (ICS-CSR), St. Pölten, Austria, 11–12 September 2014. [Google Scholar] [CrossRef]
- Hodo, E.; Grebeniuk, S.; Ruotsalainen, H.; Tavolato, P. Anomaly Detection for Simulated IEC-60870-5-104 Traffic. In Proceedings of the 12th International Conference on Availability, Reliability and Security (ARES), Reggio Calabria, Italy, 29 August–1 September 2017. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Giannoulakis, I.; Kafetzakis, E.; Panaousis, E. Attacking IEC-60870-5-104 SCADA Systems. In Proceedings of the 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; Volume 2642. [Google Scholar] [CrossRef]
- Robinson, M. The SCADA Threat Landscape. In Proceedings of the 1st International Symposium for ICS & SCADA Cyber Security Research (ICS-CSR), Leicester, UK, 16–17 September 2013. [Google Scholar] [CrossRef] [Green Version]
- Darwish, I.; Igbe, O.; Celebi, O.; Saadawi, T.; Soryal, J. Smart Grid DNP3 Vulnerability Analysis and Experimentation. In Proceedings of the IEEE 2nd International Conference on Cyber Security and Cloud Computing, New York, NY, USA, 3–5 November 2015. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Y.; Li, T.; Ju, J.; Wang, Q. Review on Cyber Vulnerabilities of Communication Protocols in Industrial Control Systems. In Proceedings of the 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 26–28 November 2017. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. IEC 62351 Standard. Available online: https://webstore.iec.ch/publication/63742 (accessed on 1 September 2021).
- Henze, M. The Quest for Secure and Privacy-preserving Cloud-based Industrial Cooperation. In Proceedings of the 6th IEEE International Workshop on Security and Privacy in the Cloud (SPC), Avignon, France, 29 June–1 July 2020. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. IEC 61850 Standard. Available online: https://webstore.iec.ch/publication/20082 (accessed on 1 September 2021).
- Hummen, R.; Hiller, J.; Henze, M.; Wehrle, K. Slimfit—A HIP DEX Compression Layer for the IP-based Internet of Things. In Proceedings of the 1st International Workshop on Internet of Things Communications and Technologies (IoT), Lyon, France, 7–9 October 2013. [Google Scholar] [CrossRef]
- Hummen, R.; Hiller, J.; Wirtz, H.; Henze, M.; Shafagh, H.; Wehrle, K. 6LoWPAN Fragmentation Attacks and Mitigation Mechanisms. In Proceedings of the Sixth ACM Conference on Security and Privacy in Wireless and Mobile Networks (WiSec), Budapest, Hungary, 17–19 April 2013. [Google Scholar] [CrossRef]
- Hiller, J.; Henze, M.; Serror, M.; Wagner, E.; Richter, J.N.; Wehrle, K. Secure Low Latency Communication for Constrained Industrial IoT Scenarios. In Proceedings of the 43rd IEEE Conference on Local Computer Networks (LCN), Chicago, IL, USA, 1–4 October 2018. [Google Scholar] [CrossRef]
- Hiller, J.; Pennekamp, J.; Dahlmanns, M.; Henze, M.; Panchenko, A.; Wehrle, K. Tailoring Onion Routing to the Internet of Things: Security and Privacy in Untrusted Environments. In Proceedings of the 27th IEEE International Conference on Network Protocols (ICNP), Chicago, IL, USA, 8–10 October 2019. [Google Scholar] [CrossRef]
- Wagner, E.; Bauer, J.; Henze, M. Take a Bite of the Reality Sandwich: Revisiting the Security of Progressive Message Authentication Codes. arXiv 2021, arXiv:2103.08560. [Google Scholar]
- Ackermann, P. Industrial Cybersecurity: Efficiently Secure Critical Infrastructure Systems; Packt: Birmingham, UK, 2017. [Google Scholar]
- Falliere, N.; Murchu, L.O.; Chien, E. W32.Stuxnet Dossier. Symantec Secur. Response 2011, 5, 29. [Google Scholar]
- Farwell, J.P.; Rohozinski, R. Stuxnet and the Future of Cyber War. Survival 2011, 53, 23–40. [Google Scholar] [CrossRef]
- Florida Public Service Commission, Office of Auditing and Performance Analysis. Review of Physical Security Protection of Utility Substations and Control Centers. Available online: https://www.psc.state.fl.us/Files/PDF/Publications/Reports/General/Electricgas/Cyber_Physical_Security.pdf (accessed on 1 September 2021).
- Parfomak, P.W. Physical Security of the U.S. Power Grid: High-Voltage Transformer Substations; Congressional Research Service: Washington, DC, USA, 2014.
- Office of Electricity Delivery and Energy Reliability, U.S. Department of Energy. An Assessment of Copper Wire Thefts from Electric Utilities. 2007. Available online: https://www.oe.netl.doe.gov/docs/copper042707.pdf (accessed on 1 September 2021).
- Kaspersky Lab ICS CERT. Threats Posed by Using RATs in ICS. Available online: https://securelist.com/threats-posed-by-using-rats-in-ics/ (accessed on 1 September 2021).
- ICS-CERT. Internet Accessible Control Systems at Risk. ICS-CERT Monitor Newsletter ICS-MM201404. 2014. Available online: https://us-cert.cisa.gov/ics/monitors/ICS-MM201404 (accessed on 1 September 2021).
- Lee, R.M.; Assante, M.J.; Conway, T. ICS Defense Use Case (DUC) # 4: Analysis of the Recent Reports of Attacks on US Infrastructure by Iranian Actors; SANS ICS: North Bethesda, MD, USA, 2016. [Google Scholar]
- Symantec. Dragonfly: Cyberespionage Attacks against Energy Suppliers. Available online: https://docs.broadcom.com/doc/dragonfly_threat_against_western_energy_suppliers (accessed on 1 September 2021).
- ICS-CERT. Malware Infections in the Control Environment. ICS-CERT Monitor Newsletter ICS-MM201212. 2012. Available online: https://us-cert.cisa.gov/ics/monitors/ICS-MM201212 (accessed on 1 September 2021).
- Brdiczka, O. Insider Attacks Pose a Serious Threat to Critical U.S. Infrastructure. Available online: https://blog.vectra.ai/blog/insider-threats-in-critical-us-infrastructure (accessed on 1 September 2021).
- Ligh, M.; Adair, S.; Hartstein, B.; Richard, M. Malware Analyst’s Cookbook: Tools and Techniques for Fighting Malicious Code; Wiley: Indiana, IN, USA, 2010. [Google Scholar]
- Henze, M.; Matzutt, R.; Hiller, J.; Mühmer, E.; Ziegeldorf, J.H.; van der Giet, J.; Wehrle, K. Practical Data Compliance for Cloud Storage. In Proceedings of the 2017 IEEE International Conference on Cloud Engineering (IC2E), Vancouver, BC, Canada, 4–7 April 2017. [Google Scholar] [CrossRef]
- Henze, M.; Matzutt, R.; Hiller, J.; Mühmer, E.; Ziegeldorf, J.H.; van der Giet, J.; Wehrle, K. Complying with Data Handling Requirements in Cloud Storage Systems. IEEE Trans. Cloud Comput. 2020. [Google Scholar] [CrossRef]
- Lynn, W.F., III. Defending a New Domain: The Pentagon’s Cyberstrategy. Foreign Aff. 2010, 89, 97–108. [Google Scholar]
- Hannan, N. An Assessment of Supply-Chain Cyber Resilience for the International Space Station. RUSI J. 2018, 163, 28–32. [Google Scholar] [CrossRef]
- Cardenas, D.J.S.; Hahn, A.; Liu, C.C. Assessing Cyber-Physical Risks of IoT-Based Energy Devices in Grid Operations. IEEE Access 2020, 8, 61161–61173. [Google Scholar] [CrossRef]
- Pudjianto, D.; Ramsay, C.; Strbac, G. Virtual power plant and system integration of distributed energy resources. IET Renew. Power Gener. 2007, 1, 10–16. [Google Scholar] [CrossRef]
- Rossow, C.; Andriesse, D.; Werner, T.; Stone-Gross, B.; Plohmann, D.; Dietrich, C.J.; Bos, H. SoK: P2PWNED—Modeling and Evaluating the Resilience of Peer-to-Peer Botnets. In Proceedings of the 2013 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 19–22 May 2013. [Google Scholar] [CrossRef] [Green Version]
- Asghari, H.; Ciere, M.; van Eeten, M.J. Post-Mortem of a Zombie: Conficker Cleanup After Six Years. In Proceedings of the 24th USENIX Security Symposium, Washington, DC, USA, 12–14 August 2015. [Google Scholar]
- ThaiCERT. WannaCry Ransomware. TLP:WHITE. 2017. Available online: https://www.nksc.lt/doc/ENISA-WannaCry-v1.0.pdf (accessed on 1 September 2021).
- Herwig, S.; Harvey, K.; Hughey, G.; Roberts, R.; Levin, D. Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet. In Proceedings of the 26th Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 24–27 February 2019. [Google Scholar] [CrossRef]
- Falk, R.; Fries, S. Electric Vehicle Charging Infrastructure – Security Considerations and Approaches. In Proceedings of the Fourth International Conference on Evolving Internet (INTERNET), Venice, Italy, 24–29 June 2012. [Google Scholar]
- Sridhar, S.; Hahn, A.; Govindarasu, M. Cyber-Physical System Security for the Electric Power Grid. Proc. IEEE 2012, 100, 210–224. [Google Scholar] [CrossRef]
- Hittini, H.; Abdrabou, A.; Zhang, L. FDIPP: False Data Injection Prevention Protocol for Smart Grid Distribution Systems. Sensors 2020, 20, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acosta, M.R.C.; Ahmed, S.; Garcia, C.E.; Koo, I. Extremely Randomized Trees-Based Scheme for Stealthy Cyber-Attack Detection in Smart Grid Networks. IEEE Access 2020, 8, 19921–19933. [Google Scholar] [CrossRef]
- Xue, D.; Jing, X.; Liu, H. Detection of False Data Injection Attacks in Smart Grid Utilizing ELM-Based OCON Framework. IEEE Access 2019, 7, 31762–31773. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, P.; Reiter, M.K. False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. (TISSEC) 2011, 14, 13. [Google Scholar] [CrossRef]
- Radoglou Grammatikis, P.; Sarigiannidis, P.; Efstathopoulos, G.; Panaousis, E. ARIES: A Novel Multivariate Intrusion Detection System for Smart Grid. Sensors 2020, 20, 5305. [Google Scholar] [CrossRef]
- Huseinović, A.; Mrdović, S.; Bicakci, K.; Uludag, S. A Survey of Denial-of-Service Attacks and Solutions in the Smart Grid. IEEE Access 2020, 8, 177447–177470. [Google Scholar] [CrossRef]
- Rossow, C. Amplification Hell: Revisiting Network Protocols for DDoS Abuse. In Proceedings of the 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 23–26 February 2014. [Google Scholar]
- Yusof, M.A.M.; Ali, F.H.M.; Darus, M.Y. Detection and Defense Algorithms of Different Types of DDoS Attacks. Int. J. Eng. Technol. 2017, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Gupta, B.; Tyagi, A.; Sharma, A.; Mishra, A. A Recent Survey on DDoS Attacks and Defense Mechanisms. In Proceedings of the International Conference on Parallel Distributed Computing Technologies and Applications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 570–580. [Google Scholar]
- Jin, D.; Nicol, D.M.; Yan, G. An event buffer flooding attack in DNP3 controlled SCADA systems. In Proceedings of the 2011 Winter Simulation Conference (WSC), Phoenix, AZ, USA, 11–14 December 2011; pp. 2614–2626. [Google Scholar]
- Kuipers, D.; Fabro, M. Control Systems Cyber Security: Defense in Depth Strategies; Technical Report INL/EXT-06-11478; Idaho National Laboratory: Idaho Falls, ID, USA, 2006.
- Pranggono, B.; McLaughlin, K.; Yang, Y.; Sezer, S. Intrusion Detection System for Critical Infrastructure. In The State of the Art in Intrusion Prevention and Detection; CRC Press: Florida, FL, USA, 2014. [Google Scholar] [CrossRef]
- Ashok, A.; Govindarasu, M.; Wang, J. Cyber–Physical Attack-Resilient Wide-Area Monitoring, Protection, and Control for the Power Grid. Proc. IEEE 2017, 105, 1389–1407. [Google Scholar] [CrossRef]
- Mo, Y.; Kim, T.H.J.; Brancik, K.; Dickinson, D.; Lee, H.; Perrig, A.; Sinopoli, B. Cyber-physical Security of a Smart Grid Infrastructure. Proc. IEEE 2011, 100, 195–209. [Google Scholar] [CrossRef]
- Fraunhofer FKIE. FACT—The Firmware Analysis and Comparison Tool. Available online: https://fkie-cad.github.io/FACT_core/ (accessed on 1 September 2021).
- Caselli, M.; Kargl, F. A Security Assessment Methodology for Critical Infrastructures. In Proceedings of the 9th International Conference on Critical Information Infrastructures Security (CRITIS), Limassol, Cyprus, 13–15 October 2014. [Google Scholar] [CrossRef]
- Combs-Ford, M. Security Assessment of Industrial Control Supervisory and Process Control Zones. In Proceedings of the 17th Annual Conference on Information Technology Education and the 5th Annual Conference on Research in Information Technology (SIGITE/RIIT), Boston, MA, USA, 28 September–1 October 2016. [Google Scholar] [CrossRef]
- Roepert, L.; Dahlmanns, M.; Fink, I.B.; Pennekamp, J.; Henze, M. Assessing the Security of OPC UA Deployments. In Proceedings of the 1st ITG Workshop on IT Security (ITSec), Tübingen, Germany, 2–3 April 2020. [Google Scholar] [CrossRef]
- McBride, A.J.; McGee, A.R. Assessing Smart Grid Security. Bell Labs Tech. J. 2012, 17, 87–103. [Google Scholar] [CrossRef]
- Winter, E.; Rademacher, M. Fuzzing of SCADA Protocols used in Smart Grids. Energy Inform. 2020, 3 (Suppl. 2), 1–3. [Google Scholar] [CrossRef]
- Reda, H.T.; Ray, B.; Peidaee, P.; Anwar, A.; Mahmood, A.; Kalam, A.; Islam, N. Vulnerability and Impact Analysis of the IEC 61850 GOOSE Protocol in the Smart Grid. Sensors 2021, 21, 1554. [Google Scholar] [CrossRef]
- Henze, M.; Hiller, J.; Hohlfeld, O.; Wehrle, K. Moving Privacy-Sensitive Services from Public Clouds to Decentralized Private Clouds. In Proceedings of the 2016 IEEE International Conference on Cloud Engineering (IC2E) Workshops, Berlin, Germany, 4–8 April 2016. [Google Scholar] [CrossRef]
- Shah, A.; Perrig, A.; Sinopoli, B. Mechanisms to Provide Integrity in SCADA and PCS devices. In Proceedings of the International Workshop on Cyber-Physical Systems-Challenges and Applications (CPS-CA), Santorini Island, Greece, 11 June 2008. [Google Scholar]
- Yang, X.; He, X.; Yu, W.; Lin, J.; Li, R.; Yang, Q.; Song, H. Towards a Low-cost Remote Memory Attestation for the Smart Grid. Sensors 2015, 15, 20799–20824. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Konstantinou, C.; Maniatakos, M.; Karri, R. ConFirm: Detecting Firmware Modifications in Embedded Systemsusing Hardware Performance Counters. In Proceedings of the 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Austin, TX, USA, 2–6 November 2015. [Google Scholar] [CrossRef]
- Wei, D.; Lu, Y.; Jafari, M.; Skare, P.M.; Rohde, K. Protecting Smart Grid Automation Systems Against Cyberattacks. IEEE Trans. Smart Grid 2011, 2, 782–795. [Google Scholar] [CrossRef]
- Anwar, A.; Mahmood, A.N. Cyber Security of Smart Grid Infrastructure. In The State of the Art in Intrusion Prevention and Detection; CRC Press: Florida, FL, USA, 2014. [Google Scholar]
- Dahlmanns, M.; Pennekamp, J.; Fink, I.B.; Schoolmann, B.; Wehrle, K.; Henze, M. Transparent End-to-End Security for Publish/Subscribe Communication in Cyber-Physical Systems. In Proceedings of the ACM Workshop on Secure and Trustworthy Cyber-Physical Systems (SaT-CPS), Virtual Event USA, 28 April 2021. [Google Scholar] [CrossRef]
- Federal Republic of Germany. Energiewirtschaftsgesetz (EnWG), § 11. Available online: https://www.buzer.de/gesetz/2151/v214074-2018-12-21.htm (accessed on 1 September 2021).
- Serror, M.; Henze, M.; Hack, S.; Schuba, M.; Wehrle, K. Towards In-Network Security for Smart Homes. In Proceedings of the 2nd International Workshop on Security and Forensics of IoT (IoT-SECFOR), Hamburg, Germany, 27–30 August 2018. [Google Scholar] [CrossRef]
- Rademacher, M.; Jonas, K.; Siebertz, F.; Rzyska, A.; Schlebusch, M.; Kessel, M. Software-Defined Wireless Mesh Networking: Current Status and Challenges. Comput. J. 2017, 60, 1520–1535. [Google Scholar] [CrossRef]
- Dong, X.; Lin, H.; Tan, R.; Iyer, R.K.; Kalbarczyk, Z. Software-Defined Networking for Smart Grid Resilience: Opportunities and Challenges. In Proceedings of the 1st ACM Workshop on Cyber-Physical System Security (CPSS), Singapore, 14 April 2015. [Google Scholar] [CrossRef]
- White, K.J.; Pezaros, D.P.; Johnson, C.W. Using Programmable Data Networks to Detect Critical Infrastructure Challenges. In Proceedings of the 9th International Conference on Critical Information Infrastructures Security (CRITIS), Limassol, Cyprus, 13–15 October 2014. [Google Scholar] [CrossRef] [Green Version]
- Radoglou-Grammatikis, P.I.; Sarigiannidis, P.G. Securing the Smart Grid: A Comprehensive Compilation of Intrusion Detection and Prevention Systems. IEEE Access 2019, 7, 46595–46620. [Google Scholar] [CrossRef]
- Northcutt, S.; Novak, J. Network Intrusion Detection; New Riders: San Francisco, CA, USA, 2002. [Google Scholar]
- Wolsing, K.; Wagner, E.; Henze, M. Poster: Facilitating Protocol-independent Industrial Intrusion Detection Systems. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (CCS), Virtual Event USA, 9–13 November 2020. [Google Scholar] [CrossRef]
- Uetz, R.; Hemminghaus, C.; Hackländer, L.; Schlipper, P.; Henze, M. Reproducible and Adaptable Log Data Generation for Sound Cybersecurity Experiments. In Proceedings of the 37th Annual Computer Security Applications Conference (ACSAC), Austin, TX, USA, 6–10 December 2021. [Google Scholar]
- Wei, D.; Lu, Y.; Jafari, M.; Skare, P.; Rohde, K. An Integrated Security System of Protecting Smart Grid against Cyber Attacks. In Proceedings of the 2010 Innovative Smart Grid Technologies (ISGT), Gaithersburg, MD, USA, 19–21 January 2010. [Google Scholar] [CrossRef]
- Snapp, S.R.; Brentano, J.; Dias, G.; Goan, T.L.; Heberlein, L.T.; Ho, C.L.; Levitt, K.N. DIDS (Distributed Intrusion Detection System)—Motivation, Architecture, and An Early Prototype. 2017. Available online: http://dl.lib.mrt.ac.lk/handle/123/12232 (accessed on 1 September 2021).
- Chromik, J.J.; Remke, A.; Haverkort, B.R. Bro in SCADA: Dynamic intrusion detection policies based on a system model. In Proceedings of the 5th International Symposium for ICS & SCADA Cyber Security Research (ICS-CSR), Hamburg, Germany, 29–30 August 2018. [Google Scholar] [CrossRef]
- Zeek Network Security Monitor. Available online: https://www.zeek.org/ (accessed on 1 September 2021).
- Appiah-Kubi, J.; Liu, C.C. Decentralized Intrusion Prevention (DIP) Against Co-Ordinated Cyberattacks on Distribution Automation Systems. IEEE Open Access J. Power Energy 2020, 7, 389–402. [Google Scholar] [CrossRef]
- Newman, R.C. Computer Security: Protecting Digital Resources; Jones & Bartlett Publishers: Burlington, MA, USA, 2009. [Google Scholar]
- Liu, C.C.; Stefanov, A.; Hong, J.; Panciatici, P. Intruders in the Grid. IEEE Power Energy Mag. 2011, 10, 58–66. [Google Scholar] [CrossRef]
- Biswas, P.P.; Tan, H.C.; Zhu, Q.; Li, Y.; Mashima, D.; Chen, B. A Synthesized Dataset for Cybersecurity Study of IEC 61850 based Substation. In Proceedings of the 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, 21–23 October 2019; pp. 1–7. [Google Scholar]
- Cheh, C.; Thakore, U.; Chen, B.; Temple, W.G.; Sanders, W.H. Leveraging Physical Access Logs to Identify Tailgating: Limitations and Solutions. In Proceedings of the 2019 15th European Dependable Computing Conference (EDCC), Naples, Italy, 17–20 September 2019. [Google Scholar] [CrossRef]
- Palomino, A.; Parvania, M. Data-Driven Risk Analysis of Joint Electric Vehicle and Solar Operation in Distribution Networks. IEEE Open Access J. Power Energy 2020, 7, 141–150. [Google Scholar] [CrossRef]
- Clemente, J.F. Cyber Security for Critical Energy Infrastructure; Technical Report; Naval Postgraduate School Monterey: Monterey, CA, USA, 2018. [Google Scholar]
- Holm, H.; Flores, W.R.; Ericsson, G. Cyber Security for a Smart Grid—What About Phishing? In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), Lyngby, Denmark, 6–9 October 2013. [Google Scholar] [CrossRef]
- Metke, A.R.; Ekl, R.L. Security Technology for Smart Grid Networks. IEEE Trans. Smart Grid 2010, 1, 99–107. [Google Scholar] [CrossRef]
- Information Technology—Security Techniques—Information Security Management Systems—Requirements. ISO/IEC 27001. Available online: https://standards.iteh.ai/catalog/standards/cen/bf42d158-59e2-4f06-8272-4b19c986c443/en-iso-iec-27001-2017 (accessed on 1 September 2021).
- German Bundestag. Gesetz zur Erhöhung der Sicherheit Informationstechnischer Systeme (IT-Sicherheitsgesetz). Bundesgesetzblatt 2015, 1, 1324–1331. [Google Scholar]
- Vellaithurai, C.; Srivastava, A.; Zonouz, S. SECPSIM: A Training Simulator for Cyber-Power Infrastructure Security. In Proceedings of the IEEE Fourth International Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 21–24 October 2013. [Google Scholar] [CrossRef]
- Uetz, R.; Benthin, L.; Hemminghaus, C.; Krebs, S.; Yilmaz, T. BREACH: A Framework for the Simulation of Cyber Attacks on Company’s Networks. In Proceedings of the Digital Forensics Research Conference Europe, Lake Constance, Germany, 21–23 March 2017. [Google Scholar]
- Henze, M.; Bader, L.; Filter, J.; Lamberts, O.; Ofner, S.; van der Velde, D. Poster: Cybersecurity Research and Training for Power Distribution Grids—A Blueprint. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (CCS), Virtual Event USA, New York, NY, USA, 9–13 November 2020. [Google Scholar] [CrossRef]
- Kim, S.K.; Huh, J.H. A Study on the Improvement of Smart Grid Security Performance and Blockchain Smart Grid Perspective. Energies 2018, 11, 1973. [Google Scholar] [CrossRef] [Green Version]
- Pennekamp, J.; Bader, L.; Matzutt, R.; Niemietz, P.; Trauth, D.; Henze, M.; Bergs, T.; Wehrle, K. Private Multi-Hop Accountability for Supply Chains. In Proceedings of the Workshop on Blockchain for IoT and Cyber-Physical Systems (BIoTCPS), Dublin, Ireland, 7–11 June 2020. [Google Scholar] [CrossRef]
- Alladi, T.; Chamola, V.; Rodrigues, J.J.; Kozlov, S.A. Blockchain in Smart Grids: A Review on Different Use Cases. Sensors 2019, 19, 4862. [Google Scholar] [CrossRef] [Green Version]
- Marín-López, A.; Chica-Manjarrez, S.; Arroyo, D.; Almenares-Mendoza, F.; Díaz-Sánchez, D. Security Information Sharing in Smart Grids: Persisting Security Audits to the Blockchain. Electronics 2020, 9, 1865. [Google Scholar] [CrossRef]
- Groß, S.; Lankes, S.; Ponci, F.; Monti, A. Datenmonetarisierung im Energiesystem und dessen Rolle bei der Entwicklung eines kundenorientierten Stromnetzes. In Monetarisierung von Technischen Daten: Innovationen aus Industrie und Forschung; Trauth, D., Bergs, T., Prinz, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 659–669. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Notheisen, B.; Beer, C.; Dauer, D.; Weinhardt, C. A blockchain-based smart grid: Towards sustainable local energy markets. Comput. Sci. Res. Dev. 2018, 33, 207–214. [Google Scholar] [CrossRef]
Scope | Difficulty | Impact | Examples | |
---|---|---|---|---|
Lateral Movement | Single Operator | High | High | [21,56,57] |
Physical Access | Local | Medium | Medium | [24,58,59,60] |
Remote Maintenance Access | Multiple Operators | High | High | [61,62,63] |
Third-Party Exploit | Multiple Operators | High | Medium | [22,64,65] |
Overcoming Air Gap | Local | High | Medium | [56,57] |
Insider Attack | Single Operator | Low | High | [24,66] |
Cascading Effects | Multiple Operators | High | High | [35,36] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krause, T.; Ernst, R.; Klaer, B.; Hacker, I.; Henze, M. Cybersecurity in Power Grids: Challenges and Opportunities. Sensors 2021, 21, 6225. https://doi.org/10.3390/s21186225
Krause T, Ernst R, Klaer B, Hacker I, Henze M. Cybersecurity in Power Grids: Challenges and Opportunities. Sensors. 2021; 21(18):6225. https://doi.org/10.3390/s21186225
Chicago/Turabian StyleKrause, Tim, Raphael Ernst, Benedikt Klaer, Immanuel Hacker, and Martin Henze. 2021. "Cybersecurity in Power Grids: Challenges and Opportunities" Sensors 21, no. 18: 6225. https://doi.org/10.3390/s21186225
APA StyleKrause, T., Ernst, R., Klaer, B., Hacker, I., & Henze, M. (2021). Cybersecurity in Power Grids: Challenges and Opportunities. Sensors, 21(18), 6225. https://doi.org/10.3390/s21186225