Non-Invasive Hemodynamics Monitoring System Based on Electrocardiography via Deep Convolutional Autoencoder
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cardiovascular Hemodynamics
3.2. Intracranial Pressure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chesnut, R.M.; Temkin, N.; Carney, N.; Dikmen, S.; Rondina, C.; Videtta, W.; Petroni, G.; Lujan, S.; Pridgeon, J.; Barber, J.; et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N. Engl. J. Med. 2012, 367, 2471–2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaishankar, R.; Fanelli, A.; Filippidis, A.; Vu, T.; Holsapple, J.; Heldt, T. A spectral approach to model-based noninvasive intracranial pressure estimation. IEEE J. Biomed. Health Inform. 2019, 24, 2398–2406. [Google Scholar] [CrossRef] [PubMed]
- Imaduddin, S.M.; Fanelli, A.; Vonberg, F.W.; Tasker, R.C.; Heldt, T. Pseudo-Bayesian model-based noninvasive intracranial pressure estimation and tracking. IEEE Trans. Biomed. Eng. 2019, 67, 1604–1615. [Google Scholar] [CrossRef]
- Merrer, J.; De Jonghe, B.; Golliot, F.; Lefrant, J.Y.; Raffy, B.; Barre, E.; Rigaud, J.P.; Casciani, D.; Misset, B.; Bosquet, C.; et al. Complications of femoral and subclavian venous catheterization in critically ill patients: A randomized controlled trial. JAMA 2001, 286, 700–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadrawi, M.; Shieh, J.S.; Fan, S.Z.; Lin, C.H.; Haraikawa, K.; Chien, J.C.; Abbod, M.F. Intermittent blood pressure prediction via multiscale entropy and ensemble artificial neural networks. In Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 4–7 December 2016; pp. 356–359. [Google Scholar]
- Tanveer, M.S.; Hasan, M.K. Cuffless blood pressure estimation from electrocardiogram and photoplethysmogram using waveform based ANN-LSTM network. Biomed. Signal Process. Control 2019, 51, 382–392. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Ji, Z.; Li, M. Non-Invasive Continuous Blood-Pressure Monitoring Models Based on Photoplethysmography and Electrocardiography. Sensors 2019, 19, 5543. [Google Scholar] [CrossRef] [Green Version]
- Eom, H.; Lee, D.; Han, S.; Hariyani, Y.S.; Lim, Y.; Sohn, I.; Park, K.; Park, C. End-To-End Deep Learning Architecture for Continuous Blood Pressure Estimation Using Attention Mechanism. Sensors 2020, 20, 2338. [Google Scholar] [CrossRef] [Green Version]
- Sideris, C.; Kalantarian, H.; Nemati, E.; Sarrafzadeh, M. Building continuous arterial blood pressure prediction models using recurrent networks. In Proceedings of the 2016 IEEE International Conference on Smart Computing (SMARTCOMP), St. Louis, MO, USA, 18–20 May 2016; pp. 1–5. [Google Scholar]
- Sadrawi, M.; Lin, Y.T.; Lin, C.H.; Mathunjwa, B.; Fan, S.Z.; Abbod, M.F.; Shieh, J.S. Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography. Sensors 2020, 20, 3829. [Google Scholar] [CrossRef]
- Sadrawi, M.; Shieh, J.S.; Haraikawa, K.; Chien, J.C.; Lin, C.H.; Abbod, M.F. Ensemble empirical mode decomposition applied for PPG motion artifact. In Proceedings of the 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 4–7 December 2016; pp. 266–269. [Google Scholar]
- Salehizadeh, S.; Dao, D.; Bolkhovsky, J.; Cho, C.; Mendelson, Y.; Chon, K.H. A novel time-varying spectral filtering algorithm for reconstruction of motion artifact corrupted heart rate signals during intense physical activities using a wearable photoplethysmogram sensor. Sensors 2016, 16, 10. [Google Scholar] [CrossRef] [Green Version]
- Thalhammer, C.; Aschwanden, M.; Odermatt, A.; Baumann, U.A.; Imfeld, S.; Bilecen, D.; Marsch, S.C.; Jaeger, K.A. Noninvasive central venous pressure measurement by controlled compression sonography at the forearm. J. Am. Coll. Cardiol. 2007, 50, 1584–1589. [Google Scholar] [CrossRef] [Green Version]
- Szymczyk, T.; Sauzet, O.; Paluszkiewicz, L.J.; Costard-Jäckle, A.; Potratz, M.; Rudolph, V.; Gummert, J.F.; Fox, H. Non-invasive assessment of central venous pressure in heart failure: A systematic prospective comparison of echocardiography and Swan-Ganz catheter. Int. J. Cardiovasc. Imaging 2020, 36, 1821–1829. [Google Scholar] [CrossRef]
- Proença, M.; Braun, F.; Lemay, M.; Solà, J.; Adler, A.; Riedel, T.; Messerli, F.H.; Thiran, J.P.; Rimoldi, S.F.; Rexhaj, E. Non-invasive pulmonary artery pressure estimation by electrical impedance tomography in a controlled hypoxemia study in healthy subjects. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Sadrawi, M.; Lin, C.H.; Lin, Y.T.; Hsieh, Y.; Kuo, C.C.; Chien, J.C.; Haraikawa, K.; Abbod, M.F.; Shieh, J.S. Arrhythmia evaluation in wearable ECG devices. Sensors 2017, 17, 2445. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Ma, L.; Chiu, R.C.; Fan, S.Z.; Abbod, M.F.; Shieh, J.S. HRV-derived data similarity and distribution index based on ensemble neural network for measuring depth of anaesthesia. PeerJ 2017, 5, e4067. [Google Scholar] [PubMed]
- Sadrawi, M.; Fan, S.Z.; Abbod, M.F.; Jen, K.K.; Shieh, J.S. Computational depth of anesthesia via multiple vital signs based on artificial neural networks. BioMed Res. Int. 2015, 2015, 536863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varon, C.; Caicedo, A.; Testelmans, D.; Buyse, B.; Van Huffel, S. A novel algorithm for the automatic detection of sleep apnea from single-lead ECG. IEEE Trans. Biomed. Eng. 2015, 62, 2269–2278. [Google Scholar] [CrossRef]
- Penzel, T.; Kantelhardt, J.W.; Lo, C.C.; Voigt, K.; Vogelmeier, C. Dynamics of heart rate and sleep stages in normals and patients with sleep apnea. Neuropsychopharmacology 2003, 28, S48–S53. [Google Scholar] [CrossRef] [PubMed]
- Penzel, T.; Kantelhardt, J.W.; Grote, L.; Peter, J.H.; Bunde, A. Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. Biomed. Eng. 2003, 50, 1143–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, G. Effect of hypertension on the P wave of the electrocardiogram. Br. Heart J. 1963, 25, 460. [Google Scholar] [CrossRef] [Green Version]
- Tarazi, R.C.; Miller, A.; Froklich, E.D.; Dustan, H.P. Electrocardiographic changes reflecting left atrial abnormality in hypertension. Circulation 1966, 34, 818–822. [Google Scholar] [CrossRef] [Green Version]
- Abou Farha, K.; van Vliet, A.; van Marle, S.; Vrijlandt, P.; Westenbrink, D. Hypertensive crisis-induced electrocardiographic changes: A case series. J. Med. Case Rep. 2009, 3, 1–6. [Google Scholar]
- Hedblad, B.; Janzon, L. Hypertension and ST segment depression during ambulatory electrocardiographic recording. Results from the prospective population study’men born in 1914’from Malmö, Sweden. Hypertension 1992, 20, 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Ende, M.Y.; Hendriks, T.; Van Veldhuisen, D.J.; Snieder, H.; Verweij, N.; Van Der Harst, P. Causal Pathways from Blood Pressure to Larger QRS Amplitudes: A Mendelian Randomization Study. Sci. Rep. 2018, 8, 1–7. [Google Scholar]
- Kovacs, G.; Avian, A.; Foris, V.; Tscherner, M.; Kqiku, X.; Douschan, P.; Bachmaier, G.; Olschewski, A.; Matucci-Cerinic, M.; Olschewski, H. Use of ECG and other simple non-invasive tools to assess pulmonary hypertension. PLoS ONE 2016, 11, e0168706. [Google Scholar] [CrossRef] [Green Version]
- Waligóra, M.; Tyrka, A.; Podolec, P.; Kopeć, G. ECG markers of hemodynamic improvement in patients with pulmonary hypertension. BioMed Res. Int. 2018, 2018, 4606053. [Google Scholar] [CrossRef] [Green Version]
- Rajput, J.S.; Sharma, M.; San Tan, R.; Acharya, U.R. Automated detection of severity of hypertension ECG signals using an optimal bi-orthogonal wavelet filter bank. Comput. Biol. Med. 2020, 123, 103924. [Google Scholar] [CrossRef]
- Fan, X.; Wang, H.; Zhao, Y.; Li, Y.; Tsui, K.L. An Adaptive Weight Learning-Based Multitask Deep Network for Continuous Blood Pressure Estimation Using Electrocardiogram Signals. Sensors 2021, 21, 1595. [Google Scholar] [CrossRef] [PubMed]
- Hersch, C. Electrocardiographic changes in head injuries. Circulation 1961, 23, 853–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittebole, X.; Hantson, P.; Laterre, P.F.; Galvez, R.; Duprez, T.; Dejonghe, D.; Renkin, J.; Gerber, B.L.; Brohet, C.R. Electrocardiographic changes after head trauma. J. Electrocardiol. 2005, 38, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S. ECG changes in subarachnoid haemorrhage: A synopsis. Neth. Heart J. 2011, 19, 31–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collier, B.R.; Miller, S.L.; Kramer, G.S.; Balon, J.A.; Gonzalez, L.S., III. Traumatic subarachnoid hemorrhage and QTc prolongation. J. Neurosurg. Anesthesiol. 2004, 16, 196–200. [Google Scholar] [CrossRef]
- Jachuck, S.J.; Ramani, P.S.; Clark, F.; Kalbag, R.M. Electrocardiographic abnormalities associated with raised intracranial pressure. Br. Med. J. 1975, 1, 242–244. [Google Scholar] [CrossRef] [Green Version]
- Milewska, A.; Guzik, P.; Rudzka, M.; Baranowski, R.; Jankowski, R.; Nowak, S.; Wysocki, H. J-wave formation in patients with acute intracranial hypertension. J. Electrocardiol. 2009, 42, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Lenstra, J.J.; Kuznecova-Keppel Hesselink, L.; la Bastide-van Gemert, S.; Jacobs, B.; Nijsten, M.W.N.; van der Horst, I.C.C.; van der Naalt, J. The association of early electrocardiographic abnormalities with brain injury severity and outcome in severe traumatic brain injury. Front. Neurol. 2021, 11, 1840. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, J.; Ford, P.; Teplick, R.; Rubsamen, R. The Massachusetts General Hospital-Marquette Foundation hemodynamic and electrocardiographic database–comprehensive collection of critical care waveforms. J. Clin. Monit. 1991, 7, 96–97. [Google Scholar]
- Kim, N.; Krasner, A.; Kosinski, C.; Wininger, M.; Qadri, M.; Kappus, Z.; Danish, S.; Craelius, W. Trending autoregulatory indices during treatment for traumatic brain injury. J. Clin. Monit. Comput. 2016, 30, 821–831. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Meek, S.; Morris, F. Introduction. I—Leads, rate, rhythm, and cardiac axis. BMJ 2002, 324, 415–418. [Google Scholar] [CrossRef]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Avolio, A.P.; Butlin, M.; Walsh, A. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment. Physiol. Meas. 2009, 31, R1. [Google Scholar] [CrossRef] [PubMed]
- Slapničar, G.; Mlakar, N.; Luštrek, M. Blood pressure estimation from photoplethysmogram using a spectro-temporal deep neural network. Sensors 2019, 19, 3420. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, M.H.; Shuzan, M.N.I.; Chowdhury, M.E.; Mahbub, Z.B.; Uddin, M.M.; Khandakar, A.; Reaz, M.B.I. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Sensors 2020, 20, 3127. [Google Scholar] [CrossRef]
- Zadi, A.S.; Alex, R.; Zhang, R.; Watenpaugh, D.E.; Behbehani, K. Arterial blood pressure feature estimation using photoplethysmography. Comput. Biol. Med. 2018, 102, 104–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre, N.; Grall-Maës, E.; Cymberknop, L.J.; Armentano, R.L. Blood pressure morphology assessment from photoplethysmogram and demographic information using deep learning with attention mechanism. Sensors 2021, 21, 2167. [Google Scholar] [CrossRef] [PubMed]
- Sadrawi, M.; Sun, W.Z.; Ma, M.H.M.; Yeh, Y.T.; Abbod, M.F.; Shieh, J.S. Ensemble genetic fuzzy neuro model applied for the emergency medical service via unbalanced data evaluation. Symmetry 2018, 10, 71. [Google Scholar] [CrossRef] [Green Version]
- Litjens, G.; Ciompi, F.; Wolterink, J.M.; de Vos, B.D.; Leiner, T.; Teuwen, J.; Išgum, I. State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc. Imaging 2019, 12 Pt 1, 1549–1565. [Google Scholar] [CrossRef]
- Wang, J.; Ding, H.; Bidgoli, F.A.; Zhou, B.; Iribarren, C.; Molloi, S.; Baldi, P. Detecting cardiovascular disease from mammograms with deep learning. IEEE Trans. Med. Imaging 2017, 36, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Munir, K.; Elahi, H.; Ayub, A.; Frezza, F.; Rizzi, A. Cancer diagnosis using deep learning: A bibliographic review. Cancers 2019, 11, 1235. [Google Scholar] [CrossRef] [Green Version]
CV | ABP | CVP | PAP | ||||||
---|---|---|---|---|---|---|---|---|---|
R | RMSE (mmHg) | MAE (mmHg) | R | RMSE (mmHg) | MAE (mmHg) | R | RMSE (mmHg) | MAE (mmHg) | |
1 | 0.941 | 7.874 | 4.950 | 0.850 | 3.168 | 2.032 | 0.871 | 4.863 | 3.270 |
2 | 0.942 | 7.915 | 5.036 | 0.854 | 3.124 | 1.994 | 0.874 | 4.805 | 3.207 |
3 | 0.941 | 7.819 | 4.927 | 0.851 | 3.156 | 2.015 | 0.872 | 4.863 | 3.262 |
4 | 0.942 | 7.797 | 4.938 | 0.852 | 3.165 | 2.045 | 0.872 | 4.888 | 3.295 |
5 | 0.943 | 7.761 | 4.945 | 0.855 | 3.162 | 2.032 | 0.875 | 4.847 | 3.281 |
Mean | 0.942 | 7.833 | 4.959 | 0.852 | 3.155 | 2.024 | 0.873 | 4.853 | 3.263 |
STD | 0.001 | 0.061 | 0.044 | 0.002 | 0.018 | 0.020 | 0.002 | 0.031 | 0.034 |
CV | Arterial Blood Pressure | |||||
---|---|---|---|---|---|---|
R | RMSE (mmHg) | MAE (mmHg) | ||||
SBP | DBP | SBP | DBP | SBP | DBP | |
1 | 0.890 | 0.875 | 8.980 | 4.906 | 6.517 | 3.344 |
2 | 0.894 | 0.884 | 9.640 | 4.575 | 7.260 | 3.093 |
3 | 0.892 | 0.878 | 8.926 | 4.782 | 6.593 | 3.217 |
4 | 0.895 | 0.881 | 8.905 | 4.638 | 6.482 | 3.123 |
5 | 0.900 | 0.888 | 8.534 | 4.730 | 6.371 | 3.272 |
Mean | 0.894 | 0.881 | 8.997 | 4.726 | 6.645 | 3.210 |
STD | 0.004 | 0.005 | 0.401 | 0.129 | 0.353 | 0.104 |
CV | Central Venous Pressure | ||
---|---|---|---|
R | RMSE (mmHg) | MAE (mmHg) | |
1 | 0.916 | 2.232 | 1.332 |
2 | 0.918 | 2.156 | 1.277 |
3 | 0.915 | 2.219 | 1.312 |
4 | 0.916 | 2.228 | 1.369 |
5 | 0.917 | 2.264 | 1.353 |
Mean | 0.916 | 2.220 | 1.329 |
STD | 0.001 | 0.039 | 0.036 |
CV | Pulmonary Arterial Pressure | |||||
---|---|---|---|---|---|---|
R | RMSE (mmHg) | MAE (mmHg) | ||||
SBP | DBP | SBP | DBP | SBP | DBP | |
1 | 0.859 | 0.818 | 5.864 | 4.295 | 3.863 | 2.892 |
2 | 0.864 | 0.813 | 5.769 | 4.457 | 3.766 | 3.042 |
3 | 0.863 | 0.810 | 5.819 | 4.329 | 3.817 | 2.938 |
4 | 0.864 | 0.817 | 5.766 | 4.598 | 3.717 | 3.218 |
5 | 0.868 | 0.827 | 5.947 | 4.122 | 4.070 | 2.730 |
Mean | 0.864 | 0.817 | 5.833 | 4.360 | 3.847 | 2.964 |
STD | 0.003 | 0.006 | 0.075 | 0.179 | 0.136 | 0.181 |
CV | R | RMSE (mmHg) | MAE (mmHg) | |||
---|---|---|---|---|---|---|
Waveform | Mean | Waveform | Mean | Waveform | Mean | |
1 | 0.890 | 0.917 | 5.330 | 4.592 | 2.786 | 2.435 |
2 | 0.884 | 0.912 | 5.342 | 4.603 | 2.762 | 2.398 |
3 | 0.885 | 0.910 | 5.333 | 4.637 | 2.758 | 2.393 |
4 | 0.888 | 0.914 | 5.254 | 4.550 | 2.792 | 2.453 |
5 | 0.889 | 0.915 | 5.269 | 4.526 | 2.726 | 2.343 |
Mean | 0.887 | 0.914 | 5.306 | 4.582 | 2.765 | 2.404 |
STD | 0.003 | 0.003 | 0.041 | 0.044 | 0.026 | 0.043 |
Studies | Dataset | Input Signal | Cont. ABP | Method | Perf. Eval. | Waveform | SBP | DBP |
---|---|---|---|---|---|---|---|---|
Tanveer et al. [6] | 39 subjects, MIMIC, PhysioNet | ECG + PPG | No | ANN + LSTM | RMSE | N/A | 1.26 | 0.73 |
MAE | N/A | 0.93 | 0.52 | |||||
R | N/A | 0.999 | 0.998 | |||||
Wu et al. [7] | 27 subjects | ECG + PPG | No | RMSE | N/A | 3.404 | 3.289 | |
Eom et al. [8] | 15 subjects | ECG + PPG + BCG | No | CNN + Bi-GRU + Attention | MAE | N/A | 4.06 ± 4.04 | 3.33 ± 3.42 |
R2 | N/A | 0.52 | 0.49 | |||||
Sideris et al. [9] | 42 subjects, MIMIC, PhysioNet | PPG | Yes | LSTM | RMSE | 6.04 ± 3.26 | 2.58 ± 1.23 | 1.98 ± 1.06 |
R | 0.95 ± 0.05 | N/A | N/A | |||||
Sadrawi et al. [10] | 18 Patients, NTUH, Taiwan | PPG | Yes | GDCAE | RMSE | 3.46 | 3.41 | 2.14 |
MAE | 2.33 | 2.54 | 1.48 | |||||
R | 0.984 | 0.981 | 0.979 | |||||
Fan et al. [30] | MIMIC II, PhysioNet | ECG | No | BiLSTM + FCN | RMSE | N/A | 12.3 | 6.88 |
MAE | N/A | 7.69 | 4.36 | |||||
Slapničar et al. [45] | 510 subjects, MIMIC III, PhysioNet | PPG | No | Spectro temporal ResNet | MAE | N/A | 9.43 | 6.88 |
Chowdhury et al. [46] | 222 records, 126 subjects | PPG | No | Gaussian process regression | RMSE | N/A | 6.74 | 3.59 |
MAE | N/A | 3.02 | 1.74 | |||||
R | N/A | 0.95 | 0.96 | |||||
MSE | N/A | 45.49 | 12.89 | |||||
Aguirre et al. [48] | 1131 subjects, MIMIC, PhysioNet | PPG | Yes | Seq2seq + Attention | RMSE | 8.67 | 15.96 | 7.4 |
MAE | 7.39 | 12.08 | 5.56 | |||||
R | 0.98 | N/A | N/A | |||||
R2 | N/A | 0.39 | 0.41 | |||||
Zadi et al. [47] | 15 subjects | PPG | No | ARMA | RMSE | N/A | 7.21 | 5.12 |
Proposed | 250 subjects, MGH/MF, PhysioNet | ECG | Yes | MA-UDCAE | RMSE | 7.83 ± 0.06 | 8.99 ± 0.40 | 4.73 ± 0.13 |
MAE | 4.95 ± 0.04 | 6.64 ± 0.35 | 3.21 ± 0.10 | |||||
R | 0.94 ± 0.00 | 0.89 ± 0.00 | 0.88 ± 0.01 |
Studies | Dataset | Input Signal | Method | Performance Evaluation | Mean ICP (mmHg) |
---|---|---|---|---|---|
Imaduddin et al. [3] | 13 subjects | ABP + CBFV | Bayesian model | RMSE | 3.7 |
Jaishankar et al. [4] | 13 pediatric subjects | ABP + CBFV | Spectral approach | RMSE | 5.1 |
5 adult subjects | 4.5 | ||||
Proposed | 13 subjects, CHARISD, PhysioNet | ECG | MAUDCAE | RMSE | 4.582 ± 0.044 |
MAE | 2.404 ± 0.043 | ||||
R | 0.914 ± 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadrawi, M.; Lin, Y.-T.; Lin, C.-H.; Mathunjwa, B.; Hsin, H.-T.; Fan, S.-Z.; Abbod, M.F.; Shieh, J.-S. Non-Invasive Hemodynamics Monitoring System Based on Electrocardiography via Deep Convolutional Autoencoder. Sensors 2021, 21, 6264. https://doi.org/10.3390/s21186264
Sadrawi M, Lin Y-T, Lin C-H, Mathunjwa B, Hsin H-T, Fan S-Z, Abbod MF, Shieh J-S. Non-Invasive Hemodynamics Monitoring System Based on Electrocardiography via Deep Convolutional Autoencoder. Sensors. 2021; 21(18):6264. https://doi.org/10.3390/s21186264
Chicago/Turabian StyleSadrawi, Muammar, Yin-Tsong Lin, Chien-Hung Lin, Bhekumuzi Mathunjwa, Ho-Tsung Hsin, Shou-Zen Fan, Maysam F. Abbod, and Jiann-Shing Shieh. 2021. "Non-Invasive Hemodynamics Monitoring System Based on Electrocardiography via Deep Convolutional Autoencoder" Sensors 21, no. 18: 6264. https://doi.org/10.3390/s21186264
APA StyleSadrawi, M., Lin, Y. -T., Lin, C. -H., Mathunjwa, B., Hsin, H. -T., Fan, S. -Z., Abbod, M. F., & Shieh, J. -S. (2021). Non-Invasive Hemodynamics Monitoring System Based on Electrocardiography via Deep Convolutional Autoencoder. Sensors, 21(18), 6264. https://doi.org/10.3390/s21186264