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Abstract: This study evaluates cardiovascular and cerebral hemodynamics systems by only using
non-invasive electrocardiography (ECG) signals. The Massachusetts General Hospital/Marquette
Foundation (MGH/MF) and Cerebral Hemodynamic Autoregulatory Information System Database
(CHARIS DB) from the PhysioNet database are used for cardiovascular and cerebral hemodynamics,
respectively. For cardiovascular hemodynamics, the ECG is used for generating the arterial blood
pressure (ABP), central venous pressure (CVP), and pulmonary arterial pressure (PAP). Meanwhile,
for cerebral hemodynamics, the ECG is utilized for the intracranial pressure (ICP) generator. A
deep convolutional autoencoder system is applied for this study. The cross-validation method with
Pearson’s linear correlation (R), root mean squared error (RMSE), and mean absolute error (MAE)
are measured for the evaluations. Initially, the ECG is used to generate the cardiovascular waveform.
For the ABP system—the systolic blood pressure (SBP) and diastolic blood pressures (DBP)—the
R evaluations are 0.894 ± 0.004 and 0.881 ± 0.005, respectively. The MAE evaluations for SBP
and DBP are, respectively, 6.645 ± 0.353 mmHg and 3.210 ± 0.104 mmHg. Furthermore, for the
PAP system—the systolic and diastolic pressures—the R evaluations are 0.864 ± 0.003 mmHg and
0.817 ± 0.006 mmHg, respectively. The MAE evaluations for systolic and diastolic pressures are,
respectively, 3.847 ± 0.136 mmHg and 2.964 ± 0.181 mmHg. Meanwhile, the mean CVP evaluations
are 0.916 ± 0.001, 2.220 ± 0.039 mmHg, and 1.329 ± 0.036 mmHg, respectively, for R, RMSE, and
MAE. For the mean ICP evaluation in cerebral hemodynamics, the R and MAE evaluations are
0.914 ± 0.003 and 2.404 ± 0.043 mmHg, respectively. This study, as a proof of concept, concludes that
the non-invasive cardiovascular and cerebral hemodynamics systems can be potentially investigated
by only using the ECG signal.

Keywords: non-invasive system; hemodynamics; electrocardiography; arterial blood pressure; central
venous pressure; pulmonary arterial pressure; intracranial pressure; deep convolutional autoencoder

1. Introduction

In the intensive care unit (ICU), the most precise health monitoring system is utilized
to thoroughly observe the critically ill patients. Hemodynamics is the blood physical phe-
nomena in the circulatory system and a fundamental standard utilized in the ICU. Arterial
blood pressure (ABP), pulmonary arterial pressure (PAP), and central venous pressure
(CVP) are hemodynamics measures related to the cardiovascular system. Meanwhile, the
intracranial pressure (ICP) is applied pressure due to the fluid inside the skull, measured
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for the cerebral hemodynamics system evaluation. These measures are essential for the
patients in the ICU.

For the cardiovascular hemodynamics, CVP evaluation is fundamental for heart failure
patients. It is significant in measuring the cardiac preload and blood volume information.
However, the measurement requires the central venous catheter, which is highly invasive.
Meanwhile, another important investigation of cardiovascular hemodynamics is PAP,
which is the driven force given by the heart to pump the blood from the heart to the
lung. Elevated PAP is detected for pulmonary hypertension. This evaluation, similar
to CVP, is highly invasive through right heart catheterization. Further, ABP is the least
invasive system compared to CVP and PAP in the cardiovascular hemodynamics system.
For the cerebral hemodynamics, ICP is critical to the brain condition. The elevated ICP
can have a significant indication for traumatic brain injury (TBI), and hemorrhagic stroke
patients [1–3]. However, besides their benchmark accuracy, these evaluations are highly
invasive procedures and potentially lead to infection [4]. Therefore, these measurements
are not suitable for a monitoring system.

Recently, non-invasive technologies have been developed for the monitoring of the car-
diovascular and cerebral hemodynamics systems. Specifically, for the cardiovascular-based
hemodynamics, the utilization of artificial intelligence (AI) with photoplethysmography
(PPG) has been widely used for ABP evaluations non-invasively. A study was applied
to a single PPG signal with artificial neural networks (ANN) to predict ABP [5]. Fur-
thermore, electrocardiography (ECG) and PPG, with ANN and long short-term memory
(LSTM) methods were applied for the evaluations [6]. Backpropagation with a genetic
algorithm (GA) was also used for hemodynamics evaluation [7]. Meanwhile, another study
utilized ballistocardiography (BCG) and ECG alongside the PPG with convolutional neural
networks (CNN) and a gated recurrent units (GRU)-based technique [8]. Additionally,
other studies investigated the continuous arterial blood pressure evaluation based on the
single PPG signal using the LSTM network [9] and hybrid GA-based optimization with a
convolutional autoencoder [10]. However, even though the PPG provides a well-classified
result of the blood pressure estimation, the sensor is very sensitive to motion artifacts for
vertical movement and several typical activities [11,12].

Several previous studies have also been conducted for non-invasive CVP and PAP
measurements. An ultrasound-based system was developed for the non-invasive CVP
without central venous access [13]. In addition, a linear regression method by utilizing
ICU patient data was implemented for evaluating the CVP signal using echocardiography
with comparison to right heart catheterization [14]. Another study also performed a
linear regression method from heart failure patients. The patients were under right heart
catheterization for the CVP evaluation. The inferior vena cava utilizing echocardiography
was applied for the input signal. For the non-invasive PAP system, a study utilized
electrical impedance tomography of the input of the system [15]. This previous study
was initiated for healthy subjects. However, a single-lead ECG system is more suitable
compared to these methods for an intensive monitoring system.

For the cerebral hemodynamics, several previous studies were investigated. Most
of them used the ABP and cerebral blood flow velocity (CBFV). A study by Jaishankar
et al. [2] utilized ABP and CBFV as inputs for interpreting the ICP and the frequency-
based method was selected for the evaluation. Another study applying a Bayesian-based
approach was conducted by Imaduddin et al. [3] from the patients with TBI, hydrocephalus,
and hemorrhagic stroke, using ABP and CBFV signals in order to evaluate the ICP. The
utilization of ABP makes these previous studies less invasive, but not fully non-invasive.

In general, ECG is the more regularly used measurement to evaluate the cardiovascular
activities for a longer period. Most importantly, ECG is a non-invasive system. Furthermore,
it has been fundamentally applied for the physiological signal evaluation of arrhythmia [16],
anesthesia [17,18], and sleep-related evaluations [19–21].

Prior studies have investigated the interconnection between ECG alterations and
cardiovascular hemodynamics. It was an indication of increased P wave incidence from
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the ECG that correlates to hypertension [22]. The P wave also appeared later from the ECG,
especially when the diastolic blood pressure was greater than 120 mmHg in hypertensive
patients compared to the normal subjects. Another P wave phenomenon was also revealed.
A study depicted that the hypertensive patients have a wider P wave compared to the
normal subjects [23]. Furthermore, a higher T wave with extended PR intervals was also
seen on hypertensive patients [24]. In addition, ST segment depression [25] and higher QRS
amplitude also exhibited the information of hypertension [26]. Meanwhile, the ECG can be
potentially used for pulmonary hypertension evaluation [27,28]. Recently, a single ECG
signal has been utilized to investigate the hypertension system [29,30]. As it can be seen,
some previously conducted studies have morphologically enlightened some relationship
between cardiac electricity and blood pressure.

On the other hand, an ECG also shows several promising results when evaluating
the cerebrovascular hemodynamics. The brain–heart interaction studies revealed several
relationships between these associating signals. ECG abnormalities—increased corrected
QT (QTc) interval, much higher P wave amplitude, higher QRS amplitude, and longer ST
segment—appeared in patients with head injury compared to healthy subjects [31,32]. Fur-
thermore, another study also revealed that the more obvious the abnormalities, the more
deteriorated the consciousness level of the patients. Meanwhile, subarachnoid hemorrhage
condition (SAH) can be seen morphologically in T and R wave abnormalities [33]. Specifi-
cally, in head trauma, abnormalities are discovered from prolonged QTc [34]. Furthermore,
this previous study also depicted that the more severe SAH, the more prolonged QTc. For
intracranial investigation, morphologically, some changes appeared in the ECG—U wave,
T wave, ST-T segment, QT interval, J wave [35,36]. In addition, ECG is considered as the
secondary effect of traumatic brain injury (TBI) [37].

As previously mentioned, the evaluation of hemodynamics is significant, especially for
cardiovascular- and cerebral-related conditions. However, most of the precise procedures
are measured invasively. Therefore, the aim of this study is to generate cardiovascular and
cerebral hemodynamics monitoring systems non-invasively using the ECG signal and a
deep convolutional autoencoder system.

2. Materials and Methods

This study used two databases from PhysioNet [38]: Massachusetts General Hospi-
tal/Marquette Foundation (MGH/MF) Waveform Database [39] and Cerebral Hemody-
namic Autoregulatory Information System Database (CHARIS DB) [40]. For the hemo-
dynamics system, the shorter window size was evaluated, and the better prediction was
obtained. This compensates for the rapid change in some circumstances. However, the
ECG is unpractical to be analyzed in very short period. This is due to, for normal subjects,
the QRS cycle being sometimes not fully formed within a too short period. Therefore, the
2 s window of signal was selected for the input and output system. It was then combined
and randomly separated from all the patients for training and testing with no overlapping
selection.

A deep convolutional autoencoder (DCAE) system was used for the signal generation
model. The DCAE model is a modified model from the original U-Net model used in a
biomedical image generator segmentation system [41]. This modified model deploys a
multi-atrous U-Net based deep convolutional autoencoder (MA-UDCAE) system, which
was originally applied by [10]. Figures 1 and 2 show the MA-UDCAE model structures for
both cardiovascular and cerebral hemodynamics systems.

Figure 1 shows the convolutional autoencoder system applied to the cardiovascular
hemodynamics system. For the first half, the encoder system decreases the shape of the
layer. Meanwhile, the decoder increases the shape of the layer. This structure consists
of several layers: convolution layer (CV), down pooling layer (DP), up sampling layer
(UP), and merging layer (ME). Initially, the input of this system is the ECG. The next layer,
the first convolution layer (CV_01) with multi dilation is applied. The next layer of this
multi-dilation layer is merged into ME_01 followed by the down pooling (DP_01) layer. For
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the down pooling, this study utilizes the max pooling system. The second convolution layer
(CV_02) is used and merged into the ME_02 layer. Later, the ME_02 layer is down pooled
into DP_02. This block—the convolution layer, concatenation, and down pooling—is
replicated until the 4th layer. For the decoder, this system is identical to the encoder system.
However, the down sampling system is switched into the up sampling. Furthermore, the
U-Net based system is also applied into this system. A layer in encoder is merged with the
decoder layer. There are four merging layers: DP_03-ME_07, DP_02-ME_09, DP_01-ME_11,
and input layer ME_14. Finally, several convolution layers are applied before the output
layer, which has three channels: ABP, CVP, and PAP signals.
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Figure 1. Cardiovascular hemodynamics MA-UDCAE model structure. Note: CV: convolution layer;
ME: merge layer; DP: down pooling layer; UP: up sampling layer.

Figure 2 shows the cerebral hemodynamics system, which is identical to Figure 1.
However, this figure has two merged layers. Furthermore, this system only has a single
output channel—intracranial pressure signal (ICP). Initially for the encoder, the ECG input
processed by the multi-altrous convolution system (CV_01), followed by the merging layer
(ME_01), and a down pooling layer (DP_01). The next block is identical—the convolutional
layer is followed by the concatenating layer and down pooling layer. For the decoder block,
the first up sampling layer (UP_01) is also processed by the convolutional layer (CV_04)
and concatenating layer (ME_04). Moreover, in this decoder system, the ME_02 is merged
with ME_04 to form the ME_05 layer, similar to ME_07 by combining between ME_01 and
ME_06 layers. Finally, the last layer is the ICP waveform.
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Initially, the Massachusetts General Hospital/Marquette Foundation (MGH/MF)
Waveform Database was used for the cardiovascular hemodynamics system. It contains
several physiological signals: ECG, ABP, CVP, and PAP. This system was uniformly sampled
for 360 Hz. From this database, this study uses only the lead II ECG signal, as the input
signal, to initially generate the waveforms of ABP, CVP, and PAP, as the outputs. The
utilization of the lead II ECG signal is due to this lead being mostly utilized in ECG record
consideration [42]. Furthermore, the systolic and diastolic pressures of ABP and PAP were
calculated by taking the maximum and minimum values, respectively, from the signal.
Meanwhile, the mean CVP value was taken from averaging the 2 s CVP waveform. There
were 59,401 and 14,850 of 2 sec segments, respectively, for training and testing.

Furthermore, the Cerebral Hemodynamic Autoregulatory Information System Database
(CHARIS DB) was used for the intracranial pressure (ICP) evaluation. This database was
sampled for 50 Hz. The input signal was the ECG signal, meanwhile the output signal
was the ICP signal. A 2 s window was also selected, both for the input and output sys-
tems. Furthermore, there were 1,451,281 and 362,560 of 2 sec segments, respectively, for
training and testing. Even though this database contains smaller number of patients, the
data collection was much longer compared to the dataset utilized for the cardiovascular
hemodynamics system.

For pre-processing the data and post-processing the result, MATLAB R2014b (Math-
Works, Inc., Natick, MA, USA) was utilized. The data were initially filtered manually
by visualization. The input and output signal must be appropriate for the training and
testing. If either the input or output signal is noisy, both will be deleted. For training the
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deep convolutional autoencoder system, Python 3.6 was utilized with TensorFlow (Ver.
1.15.2) [43] and Keras (Ver. 2.3.1) under Google Colaboratory (Google Inc., 1600 Amphithe-
atre Parkway Mountain View, CA, USA). In more detail, the training of both cardiovascular
and cerebral hemodynamics systems were conducted with the checkpoint system.

For the evaluation, a 5-fold cross-validation was performed with shuffled training
data. Generally, this strategy is performed to evaluate the regularity of the data to the
model. Furthermore, Pearson’s linear correlation (R), root mean squared error (RMSE), and
mean absolute error (MAE) evaluations were conducted. Furthermore, the Bland–Altman
plot was conducted for the further evaluation. R, RMSE, and MAE evaluations are shown
in Equations (1)–(3).

Rx,y =
∑n

i=1(xi − x)(yi − y)√[
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

] (1)

MAE =
1
n

n

∑
i=1
|xi − yi| (2)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (3)

where xi is the reference, yi is the predicted result, n is the number of samples, x is the
mean of the reference, and y is the mean of the predicted result.

3. Results

The multi-atrous deep convolutional autoencoder models were applied to both cardio-
vascular and cerebral hemodynamics systems using a single ECG signal. Pearson’s linear
correlation, root mean squared error, and mean absolute error evaluations were deployed
as performance indicators. Finally, a Bland-Altman plot was conducted to investigate the
performance of the deep learning for both cardiovascular and cerebral hemodynamics
models. The models initially generated the hemodynamics waveform. This waveform gen-
erating system is fundamental due to it accommodating the morphological cardiovascular
conditions [44]. Finally, from the generated waveform, the systolic, diastolic, or the mean
values were extracted.

3.1. Cardiovascular Hemodynamics

The Massachusetts General Hospital/Marquette Foundation (MGH/MF) Waveform
Database was used for this cardiovascular hemodynamics system. The ECG was used
to generate the ABP, CVP, and PAP signals. The model was trained for 500 epochs, as
shown in Figure 3. As it can be seen, the model starts to saturate at 400 epochs. The
training and validation curves are relatively stable. The 5-fold cross-validation results
show 0.942 ± 0.001, 7.833 ± 0.061 mmHg, and 4.959 ± 0.044 mmHg, respectively, for the R,
RMSE, and MAE of ABP waveform evaluations. Furthermore, the CVP evaluation records
are: 0.852 ± 0.002, 3.155 ± 0.018 mmHg, 2.024 ± 0.020 mmHg for R, RMSE, and MAE,
respectively. Finally, for the PAP waveform evaluation, the evaluations of R, RMSE, and
MAE are 0.873 ± 0.002, 4.853 ± 0.031 mmHg, and 3.263 ± 0.034 mmHg. The detail about
the waveform evaluations is given in Table 1.

Furthermore, the systolic and diastolic pressures were calculated for the ABP and
PAP. Meanwhile, the mean CVP value was also predicted from the waveform. For the
ABP system, the systolic and diastolic pressures, the R evaluations are 0.894 ± 0.004
and 0.881 ± 0.005, respectively. The RMSE evaluations are 8.997 ± 0.401 mmHg and
4.726± 0.129 mmHg, respectively. The MSE evaluations are, respectively, 6.645± 0.353 mmHg
and 3.210 ± 0.104 mmHg. Furthermore, for the PAP system, the systolic and diastolic
pressures, the R evaluations are 0.864± 0.003 mmHg and 0.817± 0.006 mmHg, respectively.
The RMSE evaluations are 5.833 ± 0.075 mmHg and 4.360 ± 0.179 mmHg, respectively.
The MSE evaluations are 3.847 ± 0.136 mmHg and 2.964 ± 0.181 mmHg, respectively.
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Meanwhile, the mean CVP evaluations are 0.916 ± 0.001, 2.220 ± 0.039 mmHg, and
1.329 ± 0.036 mmHg for R, RMSE, and MSE, respectively. The details about these evalua-
tions are shown in Tables 2–4.
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Figure 3. MA-UDCAE model convergence for cardiovascular hemodynamics.

Table 1. Waveform evaluations of cardiovascular hemodynamics.

CV
ABP CVP PAP

R RMSE (mmHg) MAE (mmHg) R RMSE (mmHg) MAE (mmHg) R RMSE (mmHg) MAE (mmHg)

1 0.941 7.874 4.950 0.850 3.168 2.032 0.871 4.863 3.270
2 0.942 7.915 5.036 0.854 3.124 1.994 0.874 4.805 3.207
3 0.941 7.819 4.927 0.851 3.156 2.015 0.872 4.863 3.262
4 0.942 7.797 4.938 0.852 3.165 2.045 0.872 4.888 3.295
5 0.943 7.761 4.945 0.855 3.162 2.032 0.875 4.847 3.281

Mean 0.942 7.833 4.959 0.852 3.155 2.024 0.873 4.853 3.263
STD 0.001 0.061 0.044 0.002 0.018 0.020 0.002 0.031 0.034

Table 2. Systolic and diastolic arterial blood pressure evaluations.

CV

Arterial Blood Pressure

R RMSE (mmHg) MAE (mmHg)

SBP DBP SBP DBP SBP DBP

1 0.890 0.875 8.980 4.906 6.517 3.344
2 0.894 0.884 9.640 4.575 7.260 3.093
3 0.892 0.878 8.926 4.782 6.593 3.217
4 0.895 0.881 8.905 4.638 6.482 3.123
5 0.900 0.888 8.534 4.730 6.371 3.272

Mean 0.894 0.881 8.997 4.726 6.645 3.210
STD 0.004 0.005 0.401 0.129 0.353 0.104

Table 3. Mean central venous pressures.

CV
Central Venous Pressure

R RMSE (mmHg) MAE (mmHg)

1 0.916 2.232 1.332
2 0.918 2.156 1.277
3 0.915 2.219 1.312
4 0.916 2.228 1.369
5 0.917 2.264 1.353

Mean 0.916 2.220 1.329
STD 0.001 0.039 0.036
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Table 4. Systolic and diastolic pulmonary arterial pressure evaluations.

CV

Pulmonary Arterial Pressure

R RMSE (mmHg) MAE (mmHg)

SBP DBP SBP DBP SBP DBP

1 0.859 0.818 5.864 4.295 3.863 2.892
2 0.864 0.813 5.769 4.457 3.766 3.042
3 0.863 0.810 5.819 4.329 3.817 2.938
4 0.864 0.817 5.766 4.598 3.717 3.218
5 0.868 0.827 5.947 4.122 4.070 2.730

Mean 0.864 0.817 5.833 4.360 3.847 2.964
STD 0.003 0.006 0.075 0.179 0.136 0.181

The waveform evaluation result is shown in Figure 4. This figure also investigates
the information of systolic, diastolic, and mean pressures from ABP, CVP, and PAP. Most
importantly, the ability of MA-UDCAE deals with several conditions of the ECG, ABP, CVP,
and PAP signals within two seconds and is also given in this figure. From Figure 4a, it can
be seen how a relatively normal heartbeat generates normal ABP, CVP, and PAP signals.
From this figure, the model predicts accurate systolic, diastolic, and mean values. In
Figure 4b, ECG has a higher heart rate. In this case, the subject has very low ABP infor-
mation, high CVP, and high PAP measures. A high error is given from the systolic ABP
in the last period of the CVP waveform. However, the PAP is relatively good. Normal
heart rate ECG is given in Figure 4c. However, this subject has relatively high systolic ABP,
and relatively high CVP and PAP. Furthermore, Figure 4d shows relatively higher ECG
heartbeat for generating normal ABP, normal CVP, and high PAP. It can be seen that the
systolic PAP has a relatively high error.
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tolic reference (Dr); systolic prediction (Sp); diastolic prediction (Dp); mean reference (Mr); mean
prediction (Mp).
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Finally, the Pearson’s linear correlation and Bland–Altman plot are given in Figures 5 and 6.
Figure 5 shows the Pearson’s linear correlation result. It can be seen that the correlation
coefficient of systolic ABP and diastolic ABP are 0.89 and 0.86, respectively. Meanwhile,
the SPAP and DPAP are, respectively, 0.86 and 0.81. Finally, the mean CVP is 0.92. Figure 6
shows the Bland–Altman plot for the cardiovascular hemodynamics system. For systolic
ABP, the reference and prediction have the mean difference of −4.182 mmHg, −1.96 STD
of −21.268 mmHg, and +1.96 STD of 12.904. For the diastolic ABP, it has a mean difference
of 0.202 mmHg, −1.96 STD of −9.987 mmHg, and +1.96 STD of 10.391. Furthermore,
for the systolic PAP, the mean difference is 0.668 mmHg, −1.96 STD of −10.563 mmHg,
and +1.96 STD of 11.899 mmHg. For diastolic PAP, the mean difference is −1.827 mmHg,
−1.96 STD of 6.140 mmHg, and +1.96 STD of −9.794 mmHg. Finally, the mean CVP has
mean difference of −0.121 mmHg, −1.96 STD of 4.099, and +1.96 STD of −4.341 mmHg.
The graphs show some negative values appearing in the prediction. This situation likely
happens due to the complexity of patient monitoring, and the method for selecting the
systolic and diastolic peaks using maximum and minimum values.
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3.2. Intracranial Pressure

For the intracranial pressure evaluation, the Cerebral Hemodynamic Autoregulatory
Information System Database (CHARIS DB) was utilized. The MA-UDCAE model was
also applied for the ECG signal to understand the ICP pattern. For the evaluation of the
deep learning system from the ECG to ICP, the MA-UDCAE model was applied. This
system was conducted for 20 epochs. The mean absolute error was used for the evaluation.
The ICP training convergence is shown in Figure 7.

After the training season, the testing data were subsequently evaluated into the trained
model. Some of the ECG-generated ICP waveforms can be seen in Figure 8. These results
are selected based on the variation of the reference ICP. From this figure, it can be seen that
the model is not only reasonably robust in handling the data that has either a relatively
low or high ICP index, but also gives some information on how the model decodes the
ICP waveform.
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Furthermore, in more detail, for the intracranial pressure waveform evaluations, the
cross-validation results generate 0.887± 0.003, 5.306± 0.041 mmHg, and 2.765± 0.026 mmHg,
respectively, for R, RMSE, and MAE. For the mean ICP evaluation, the R, RMSE and MAE
evaluations are 0.914 ± 0.003, 4.582 ± 0.044 mmHg, and 2.404 ± 0.043 mmHg, as shown in
Table 5. The intracranial evaluations for Pearson’s linear correlation and Bland–Altman are
shown in Figure 9. Pearson’s linear correlation for the ICP is 0.89, as given in Figure 9a.
From this figure, it can be seen that the model likely starts to generate a bigger error when
dealing with an ICP higher than 30 mmHg. In addition, Figure 9b shows the Bland–Altman
plot for ICP evaluations. Results in Figure 9b support Pearson’s linear correlation. As it can
be seen, the mean difference is 0.492 mmHg, −1.96 STD of −8.32 mmHg, and +1.96 STD of
9.310 mmHg. Even though it has relatively low prediction error, the model gives lower
accuracy on higher ICP measures. The entire ICP evaluation is shown in Table 5, indicating
that all evaluations of R, MAE, and RMSE have fairly low standard deviation values.
However, some negative values can be seen appearing in the prediction. This situation
likely happens due to the complexity of the patient data.

Table 5. Intracranial pressure evaluations.

CV
R RMSE (mmHg) MAE (mmHg)

Waveform Mean Waveform Mean Waveform Mean

1 0.890 0.917 5.330 4.592 2.786 2.435
2 0.884 0.912 5.342 4.603 2.762 2.398
3 0.885 0.910 5.333 4.637 2.758 2.393
4 0.888 0.914 5.254 4.550 2.792 2.453
5 0.889 0.915 5.269 4.526 2.726 2.343

Mean 0.887 0.914 5.306 4.582 2.765 2.404
STD 0.003 0.003 0.041 0.044 0.026 0.043
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4. Discussion

The novelty in this study is the utilization of a non-invasive ECG signal to investigate
cardiovascular and cerebral hemodynamics. Initially, the models generated the cardiovas-
cular hemodynamics ABP, PAP, and CVP from MGHDB. This study used two databases
from PhysioNet: Massachusetts General Hospital/Marquette Foundation (MGH/MF)
Waveform Database and Cerebral Hemodynamic Autoregulatory Information System
Database (CHARIS DB). The MA-UDCAE deep learning model was deployed for model-
ing these systems.

Most of the previously conducted studies as shown in Table 6 utilized PPG signal as an
input of the model. Slapničar et al. [45] used PPG signal of 510 subjects of MIMIC III from a
PhysioNet and ResNet-based model to investigate hypertension. This previous study had
a MAE of 9.43 mmHg and 6.88 mmHg, respectively, for SBP and DBP. Chowdhury et al.
administered the PPG signal of 126 subjects and a regression model. Their results achieved
a correlation coefficient of 0.95 and 0.96, respectively, for SBP and DBP, and MAE of SBP
and DBP are, respectively, 3.02 mmHg and 1.74 mmHg [46]. Meanwhile, Zadi et al. [47]
applied the ARMA algorithm to PPG signals from 15 subjects. They achieved an RMSE of
7.21 mmHg and 5.12 mmHg for SBP and DBP, respectively. However, none of these studies
provides information about the continuous waveform evaluation.

Table 6. Cardiovascular hemodynamics evaluations. Note: RMSE and MAE are in mmHg.

Studies Dataset Input
Signal Cont. ABP Method Perf. Eval. Waveform SBP DBP

Tanveer et al.
[6]

39 subjects, MIMIC,
PhysioNet ECG + PPG No ANN + LSTM

RMSE N/A 1.26 0.73
MAE N/A 0.93 0.52

R N/A 0.999 0.998

Wu et al. [7] 27 subjects ECG + PPG No RMSE N/A 3.404 3.289

Eom et al. [8] 15 subjects ECG + PPG
+ BCG No CNN + Bi-GRU +

Attention
MAE N/A 4.06 ± 4.04 3.33 ± 3.42

R2 N/A 0.52 0.49

Sideris et al.
[9]

42 subjects, MIMIC,
PhysioNet PPG Yes LSTM

RMSE 6.04 ± 3.26 2.58 ± 1.23 1.98 ± 1.06
R 0.95 ± 0.05 N/A N/A

Sadrawi et al.
[10]

18 Patients, NTUH,
Taiwan PPG Yes GDCAE

RMSE 3.46 3.41 2.14
MAE 2.33 2.54 1.48

R 0.984 0.981 0.979

Fan et al. [30]
MIMIC II,
PhysioNet ECG No BiLSTM + FCN

RMSE N/A 12.3 6.88
MAE N/A 7.69 4.36

Slapničar et al.
[45]

510 subjects, MIMIC
III, PhysioNet PPG No Spectro

temporal ResNet MAE N/A 9.43 6.88

Chowdhury
et al. [46]

222 records, 126
subjects PPG No

Gaussian process
regression

RMSE N/A 6.74 3.59
MAE N/A 3.02 1.74

R N/A 0.95 0.96
MSE N/A 45.49 12.89

Aguirre et al.
[48]

1131 subjects,
MIMIC, PhysioNet PPG Yes Seq2seq +

Attention

RMSE 8.67 15.96 7.4
MAE 7.39 12.08 5.56

R 0.98 N/A N/A
R2 N/A 0.39 0.41

Zadi et al. [47] 15 subjects PPG No ARMA RMSE N/A 7.21 5.12

Proposed
250 subjects,
MGH/MF,
PhysioNet

ECG Yes MA-UDCAE
RMSE 7.83 ± 0.06 8.99 ± 0.40 4.73 ± 0.13
MAE 4.95 ± 0.04 6.64 ± 0.35 3.21 ± 0.10

R 0.94 ± 0.00 0.89 ± 0.00 0.88 ± 0.01

Several previous studies, shown in Table 6, have utilized PPG signal as their input,
and investigated the waveform evaluation. Sideris et al. [9] performed evaluation of con-
tinuous blood pressure using PPG signals with the LSTM method, delivering an RMSE
of 6.04 ± 3.26 mmHg, 2.58 ± 1.23 mmHg, and 1.98 ± 1.06 mmHg, respectively, on SBP
and DBP evaluations, and a waveform correlation coefficient of 0.95 ± 0.045. Meanwhile,
Sadrawi et al. [10] utilized PPG for arterial blood pressure estimation, reporting 0.984 lin-
ear correlation and MAEs of 2.54 mmHg and 1.48 mmHg for the systolic and diastolic,
respectively. Furthermore, Aguirre et al. [48] utilized PPG signal of 1131 subjects from
the PhysioNet database using the Seq2seq algorithm to evaluate the hemodynamics. This
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study also investigated the arterial blood pressure waveform. The generated waveform
had a correlation coefficient of 0.98. Meanwhile, the MAE of systolic and diastolic were
12.08 mmHg and 5.56 mmHg, respectively [48].

On the other hand, prior studies as shown in Table 6 also correlated ECG signal
with blood pressure estimation. Tanveer et al. [6] used a combination of ECG and PPG,
utilizing ANN and LSTM. This study reported 0.93 mmHg and 0.52 mmHg for SBP and
DBP, respectively, on the MAE estimations. This earlier study has very high correlation
coefficients, 0.999 and 0.998, respectively, for the SBP and DBP. Another study by Wu
et al. [7] also used ECG and PPG with the hybrid ANN method, and produced 3.404 mmHg
and 3.289 mmHg, respectively, for SBP and DBP. Meanwhile, a study by Eom et al. [8]
conducted an investigation of multiple input signals, ECG, PPG, and BCG, combined
with CNN, Bi-GRU, and attention methods. This previous study produced an MAE of
4.06 ± 4.04 and 3.33 ± 3.42, respectively, for SBP and DBP evaluations. Meanwhile, it had
0.52 and 0.49 for the R2 evaluations for the SBP and DBP, respectively. The study that only
used the ECG signal to investigate hypertension was conducted by Fan et al. [23]. This
previously conducted study reported the MAE for the systolic and diastolic as 7.69 and
4.36 mmHg, respectively.

For a comparison of intracranial pressure evaluation, this study is compared to several
sub-studies, given in Table 7. These previously conducted works were undertaken by
utilizing the ABP and cerebral blood flow velocity (CBFV). Imaduddin et al. [3] used these
signals to estimate the ICP from 13 patients with the Bayesian system. This previous study
provided an RMSE of 3.7 mmHg. Another study conducted by Jaishankar et al. [4] had
RMSEs of 5.1 mmHg and 4.5 mmHg, respectively, for 13 pediatric and 5 adult subjects. This
prior study utilized the spectral method. Even though the CBFV is a non-invasive system,
the ABP is classified as an invasive technique. This study reported 4.582 ± 0.044 mmHg
RMSE from five cross-validation systems. This result is slightly inferior compared to the
previously compared study. However, the novelty of this study is the utilization of the
non-invasive ECG signal as the input signal to generate the ICP waveform with further
evaluation of the mean ICP.

Table 7. Intracranial pressure evaluations. Note: RMSE and MAE are in mmHg.

Studies Dataset Input Signal Method Performance Evaluation Mean ICP (mmHg)

Imaduddin et al. [3] 13 subjects ABP + CBFV Bayesian
model RMSE 3.7

Jaishankar et al. [4]
13 pediatric

subjects ABP + CBFV
Spectral

approach RMSE
5.1

5 adult subjects 4.5

Proposed
13 subjects,
CHARISD,
PhysioNet

ECG MAUDCAE
RMSE 4.582 ± 0.044
MAE 2.404 ± 0.043

R 0.914 ± 0.003

The association between ECG and hemodynamics is related to the fact that ECG and
ABP have a very close relationship in time-related terms, especially in the evaluation of
the heart-related system. This may have some similarity in CVP, PAP, and ICP due to
the blood circulation. Furthermore, the systolic peak and the R peak intervals are shifted
in some transmitting time. However, more investigation is required to be performed
morphologically for the full cycle between the ECG and cardiovascular and cerebral
hemodynamics signals, especially for CVP and ICP.

In order to evaluate the network performance, an ablation study was performed. The
autoencoder structure was utilized based on [10]. From this previous study, specifically for
hemodynamics, the UNET-based model provided a better result compared to the classical
autoencoder network. Hence, based on reference [10], the structure was modified by
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utilizing the multi-atrous system. For simplification, this study investigates the results only
at 25 and 5 epochs, respectively, for the cardiovascular and cerebral hemodynamics systems.

The ablation network evaluation was also conducted in our study, given in Figure 10. For
the cardiovascular system, the ablated network convergence is shown in Figure 10a. Several
ablations were conducted. The decreased layers are sequentially the layer connections
between DP_04 and CV_05, DP_03 and CV_06, DP_02 and CV_07, DP_01 and CV_08, and
the input layer and CV_09. From this figure, it can be seen that the first ablated layer
attaching between DP_03 and CV_06 tends to have a faster convergence rate compared to
others. However, the results are relatively similar at the 25th epoch. For testing, the deleted
connection systems tend to have some oscillation during this early period compared to the
non-ablated networks.
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The cerebral hemodynamics ablation study was conducted by removing the concate-
nating layers. The first deleted layer is the connection between ME_02 and CV_04. The
next one is between ME_01 and CV_05. The results are shown in Figure 10b, where in the
training phase, most of the cross-validation models without ablation have relatively lower
MAE values at the 5th epoch compared to the ablated models. In this system, the deleted
connection models tend to saturate earlier compared to the system without any ablated
connection. Furthermore, the ablated networks also have a slower convergence rate at
the testing.

This study has several limitations due to the selection of systolic and diastolic tech-
niques being sensitive to noise. In more detail, the noise has a positive effect on the systolic
and a negative effect on the diastolic pressure. This phenomenon will generate higher error
during the evaluation.

Due to the data limitations, one of the main limitations of this study is the testing data
separated randomly from all patients instead of patient-based partition. Even though the
data were not fully interpreted, this strategy will let the model learn and memorize some
patterns of the output through the input. Another limitation is the high dependency on the
quality of the ECG signal. The mitigations of the dataset unbalancing can be investigated
further [49] and other deep learning structures can be applied in future [50–52].
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There are also concerns regarding the evaluations of arrhythmia conditions. In this
study, some of the arrhythmia ECG factors affecting the cardiovascular and cerebral hemo-
dynamics systems have been investigated. In addition, the cardiovascular hemodynamics
dataset was well annotated for some arrhythmia conditions. However, for the cerebral
hemodynamics, the heartbeat in the dataset was not labeled. Nevertheless, it is still possible
for the rapid and irregular beats to be investigated. The premature ventricular contraction
(PVC) and supraventricular premature/ectopic beats were evaluated. Figure 11 shows
how arrhythmia affects the cardiovascular hemodynamics. It can be seen that most of the
abnormal ECG signals are relatively good in generating the ABP. However, there are some
shifts in the SBP and DBP, as shown in Figure 11a,f. Bigger differences are shown for CVP
and PAP signals. The generated ICP from the abnormal ECG is shown in Figure 12. From
Figure 12a,b, the R-R interval irregularity has a worse effect on the ICP prediction com-
pared to the arrhythmia generated from the rapid R interval. However, deeper evaluation
with many more additional arrhythmia cases to investigate the effect of arrhythmia on the
hemodynamics should be performed in the future.
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Figure 11. Arrhythmic ECG predictions for cardiovascular hemodynamics. (a) rapid R waves with
premature beat; (b) rapid heart rate with downward R waves; (c) Slow heart rate with relatively
small downward R wave; (d) Slow heart rate with bigger downward R wave; (e) Rapid upward R
wave with irregular interval; (f) Rapid heart rate with multiple downward R wave.
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Since this study is preliminary and a proof of concept, it may not provide superior
results compared to previous studies that used multi-input signals such as the combination
of PPG and ECG, in which the shape of the PPG signal is much more identical to ABP
signal compared to the ECG and ABP signal. However, as with preliminary and proof of
concept studies, this study can be a finding of using the ECG in hemodynamics investi-
gations. Finally, the cross-validation test using the same group of subjects in our current
study was inner loop cross-validation, which only rotates the validation data and training
data. However, to make the results more convincing, the testing data need to be rotated
into training and validation, which is known as outer loop cross-validation, and is to be
considered in future works. In addition, the pre-processing of the data was initially filtered
manually by visualization. This manual filter may not be practical for the study. We still
need further investigation about using automatic filtering to filter all these vital signs for
future work.

5. Conclusions

In order to design the most precise health monitoring system to solve the hemodynam-
ics system in ICU, in this study, as a proof of concept, a deep convolutional autoencoder
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system has been implemented for a non-invasive system by only using a single ECG sig-
nal and utilizing two databases for cardiovascular and cerebrovascular hemodynamics
systems. For the preliminary result, it can be seen that ECG has great potential in generat-
ing the ABP, CVP, PAP, and ICP waveform, as well as their essential information for the
extensive evaluations.
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