Optical Transmission Properties of Si3N4 Add-Drop Micro-Ring Resonator Induced by a Fabry–Perot Resonance Effect
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Analysis of an Add-Drop MRR without F-P Cavity Effect
2.2. Analysis of an Add-Drop MRR with a F-P Cavity Effect
3. Experimental Results and Optimization
3.1. Experimental Results and Discussion
3.2. Optimization Scheme
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guarino, A.; Poberaj, G.; Rezzonico, D.; Degl’Innocenti, R.; Gunter, P. Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics 2007, 1, 407–410. [Google Scholar] [CrossRef]
- Chen, X.; Milosevic, M.M.; Stankovic, S.; Reynolds, S.; Bucio, T.D.; Li, K.; Thomson, D.J.; Gardes, F.; Reed, G.T. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 2018, 106, 2101–2116. [Google Scholar] [CrossRef] [Green Version]
- Green, W.M.J.; Rooks, M.J.; Sekaric, L.; Vlasov, Y.A. Ultra-compact, low RF power, 10 gb/s silicon Mach-Zehnder modulator. Opt. Express 2007, 15, 17106–17113. [Google Scholar] [CrossRef]
- Won, R.; Paniccia, M. Integrating silicon photonics. Nat. Photonics 2010, 4, 498–499. [Google Scholar] [CrossRef]
- Kumar, A.; Nambiar, S.; Kallega, R.; Ranganath, P.; Ea, P.; Selvaraja, S.K. High-efficiency vertical fibre-to-polymer waveguide coupling scheme for scalable polymer photonic circuits. Opt. Express 2021, 29, 9699–9710. [Google Scholar] [CrossRef]
- Yi, H.X.; Citrin, D.S.; Zhou, Z.P. Highly sensitive athermal optical microring sensor based on intensity detection. IEEE J. Quantum Electron. 2011, 47, 354–358. [Google Scholar] [CrossRef]
- Wan, L.; Chandrahalim, H.; Chen, C.; Chen, Q.S.; Mei, T.; Oki, Y.; Nishimura, N.; Guo, L.J.; Fan, X.D. On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers. Appl. Phys. Lett. 2017, 111, 061109. [Google Scholar] [CrossRef]
- Javanshir, S.; Pourziad, A.; Nikmehr, S. Optical temperature sensor with micro ring resonator and graphene to reach high sensitivity. Optik 2019, 180, 442–446. [Google Scholar] [CrossRef]
- Ding, Z.Q.; Liu, P.H.; Chen, J.Y.; Dai, D.X.; Shi, Y.C. On-chip simultaneous sensing of humidity and temperature with a dual-polarization silicon microring resonator. Opt. Express 2019, 27, 28649–28659. [Google Scholar] [CrossRef]
- Jali, M.H.; Rahim, H.R.A.; Johari, M.A.M.; Hamid, S.S.; Yusof, H.H.M.; Thokchom, S.; Wang, P.F.; Harun, S.W. Optical characterization of different waist diameter on microfiber loop resonator humidity sensor. Sens. Actuator A Phys. 2018, 285, 200–209. [Google Scholar] [CrossRef]
- Wang, P.; Gu, F.X.; Zhang, L.; Tong, L.M. Polymer microfiber rings for high-sensitivity optical humidity sensing. Appl. Opt. 2011, 50, G7–G10. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, J.H.; Ma, T.; Sang, X.Z.; Yan, B.B.; Wang, K.R.; Yu, C.X. Design and optimization of silicon concentric dual-microring resonators for refractive index sensing. Opt. Commun. 2017, 395, 212–216. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Highly sensitive refractive index sensor based on hybrid plasmonic waveguide microring resonator. Waves Random Complex Media 2020, 30, 292–299. [Google Scholar] [CrossRef]
- Yalcin, A.; Popat, K.C.; Aldridge, J.C.; Desai, T.A.; Hryniewicz, J.; Chbouki, N.; Little, B.E.; King, O.; Van, V.; Chu, S.; et al. Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 148–155. [Google Scholar] [CrossRef]
- Xu, Q.F.; Fattal, D.; Beausoleil, R.G. Silicon microring resonators with 1.5-μm radius. Opt. Express 2008, 16, 4309–4315. [Google Scholar] [CrossRef] [Green Version]
- Goebuchi, Y.; Kato, T.; Kokubun, Y. Multiwavelength and multiport hitless wavelength-selective switch using series-coupled microring resonators. IEEE Photonics Technol. Lett. 2007, 19, 671–673. [Google Scholar] [CrossRef]
- Wirth, J.C. Silicon Grating Couplers for Low Loss Coupling between Optical Fiber and Silicon Nanowires. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2011. [Google Scholar]
- Chao, C.Y.; Fung, W.; Guo, L.J. Polymer microring resonators for biochemical sensing applications. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 134–142. [Google Scholar] [CrossRef]
- Robinson, J.T.; Chen, L.; Lipson, M. On-chip gas detection in silicon optical microcavities. Opt. Express 2008, 16, 4296–4301. [Google Scholar] [CrossRef] [PubMed]
- Song, J.F.; Luo, X.S.; Tu, X.G.; Park, M.K.; Kee, J.S.; Zhang, H.J.; Yu, M.B.; Lo, G.Q.; Kwong, D.L. Electrical tracing-assisted dual-microring label-free optical bio/chemical sensors. Opt. Express 2012, 20, 4189–4197. [Google Scholar] [CrossRef] [PubMed]
- Bauters, J.F.; Heck, M.J.R.; John, D.D.; Barton, J.S.; Bruinink, C.M.; Leinse, A.; Heideman, R.G.; Blumenthal, D.J.; Bowers, J.E. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 2011, 19, 24090–24101. [Google Scholar] [CrossRef]
- Rahim, A.; Ryckeboer, E.; Subramanian, A.Z.; Clemmen, S.; Kuyken, B.; Dhakal, A.; Raza, A.; Hermans, A.; Muneeb, M.; Dhoore, S.; et al. Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits. J. Lightwave Technol. 2017, 35, 639–649. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Gu, L.; Huang, P.; Gan, X.; Wang, N.; Zhu, Y.; Zhang, J. Optical Transmission Properties of Si3N4 Add-Drop Micro-Ring Resonator Induced by a Fabry–Perot Resonance Effect. Sensors 2021, 21, 6370. https://doi.org/10.3390/s21196370
Chen X, Gu L, Huang P, Gan X, Wang N, Zhu Y, Zhang J. Optical Transmission Properties of Si3N4 Add-Drop Micro-Ring Resonator Induced by a Fabry–Perot Resonance Effect. Sensors. 2021; 21(19):6370. https://doi.org/10.3390/s21196370
Chicago/Turabian StyleChen, Xinyang, Linpeng Gu, Peijian Huang, Xuetao Gan, Ning Wang, Yong Zhu, and Jie Zhang. 2021. "Optical Transmission Properties of Si3N4 Add-Drop Micro-Ring Resonator Induced by a Fabry–Perot Resonance Effect" Sensors 21, no. 19: 6370. https://doi.org/10.3390/s21196370
APA StyleChen, X., Gu, L., Huang, P., Gan, X., Wang, N., Zhu, Y., & Zhang, J. (2021). Optical Transmission Properties of Si3N4 Add-Drop Micro-Ring Resonator Induced by a Fabry–Perot Resonance Effect. Sensors, 21(19), 6370. https://doi.org/10.3390/s21196370