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Abstract: Visual tracking task is divided into classification and regression tasks, and manifold features
are introduced to improve the performance of the tracker. Although the previous anchor-based
tracker has achieved superior tracking performance, the anchor-based tracker not only needs to set
parameters manually but also ignores the influence of the geometric characteristics of the object
on the tracker performance. In this paper, we propose a novel Siamese network framework with
ResNet50 as the backbone, which is an anchor-free tracker based on manifold features. The network
design is simple and easy to understand, which not only considers the influence of geometric features
on the target tracking performance but also reduces the calculation of parameters and improves the
target tracking performance. In the experiment, we compared our tracker with the most advanced
public benchmarks and obtained a state-of-the-art performance.

Keywords: visual object tracking; geometric characteristics; Siamese network; manifold features

1. Introduction

As a general object tracker, visual target tracking is one of the most important research
contents in computer vision and has been widely concerned by more and more scholars.
Visual object tracking technology has been widely used in security, video surveillance,
and robot vision [1,2]. Although many high-performance trackers have been proposed
in recent years, visual object tracking is still facing great challenges such as occlusion,
deformation, and blur. Therefore, designing a high-performance tracker has very important
research significance.

Recently, with the rise of deep learning convolutional neural networks, a growing
number of scholars [3,4] have applied it to the field of object tracking and achieved good
performance, of which Siamese network architecture is the most widely used. Siamese
network framework can be regarded as a template target matching problem. The tracking
task is realized by learning the similarity between a template branch and search branch,
and the region with the highest similarity score is considered as the tracking object. Al-
though the Siamese network tracker led by the SINT [5] algorithm achieved good results
at the time, it was limited by the strict translation invariance restriction of the backbone
network AlexNet [6], and the AlexNet with a shallower network depth was still used in
the feature extraction stage. Although the performance of the later Siamese networks such
as SiamRPN [7] has been greatly improved, the backbone network still adopts AlexNet.

Obviously, the Siamese network object tracker based on deep learning is mainly
dedicated to the exploring and exploration of image semantic information and has achieved
gratifying results. However, when the object is challenged by rapid deformation, the rich
semantic information will also be subject to certain restrictions. Based on this, we increase
the exploration of manifold information in the network structure. In this work, we propose
a widely accepted manifold space hypothesis based on the concept that high-dimensional
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data is locally smooth when embedded in the manifold space. This hypothesis proves that
when the semantic information is not enough to fully express the object characteristics,
the manifold attribute can be used as a supplement to reflect the object characteristics
more comprehensively. In terms of visual object tracking, we can regard a continuous
video image sequence as different points in the manifold space, and objects with similar
appearance characteristics should have the shortest distance in the embedded manifold
space. In the manifold space, we use the distance between different points to express
the degree of similarity of the geometric structure of the object, so that the manifold
characteristics of the object can be observed.

In this paper, we combine the semantic information and geometric attributes of the
object to propose a novel anchor-free design based on a Siamese network visual object
tracker. We embed manifold components in the Siamese network structure to effectively
combine the semantic information of objects with manifold features. By exploring the
characteristics of the object, the Gaussian Mixture Model (GMM) is used to construct the
manifold sample pool to make the manifold template more robust. In order to better apply
manifold components to the network structure, we designed a deep architecture based on
SiamRPN++, which adds a novel manifold template branch in parallel. In addition, in the
semantic branch structure, we use an anchor-free tracker, which greatly reduces the number
of parameters and computational complexity, making the tracker more robust. Finally, in
order to verify the performance of our algorithm, we compared our proposed tracker with
the state-of-the-art trackers on the OTB, GOT-10K, and UAV123 public benchmarks.

The main contributions of this work are as follows:

(1) Based on the manifold feature assumption of image data, an end-to-end so-called
Siamese classification and regression framework for visual target tracking is proposed.
The framework integrates the manifold sample branches of objects and inherits the
advantages of semantic information and geometric attributes of objects.

(2) The proposed tracker is both anchor and proposal free, which greatly reduces the
design of hyper-parameters and the influence of human factors, and makes the
calculation more simple and fast, especially in training.

(3) Compared with the state-of-the-art trackers, our proposed algorithm SiamMFC has
obtained a competitive advantage on three public benchmark datasets.

2. Manifold Fully Convolutional Siamese Networks

In this section, we will mainly introduce the Siamese network tracker based on the
anchor-free design, and then we propose the manifold network to improve the tracking
performance of the tracker.

2.1. Siamese Network Based on Anchor-Free

Siamese neural network refers to two or more neural network structures of the same
subnet with the same parameters and weights, in which the input is two pictures, and the
output is the similarity score between them. Visual target tracking regards tracking as a
template matching problem, divides the video sequence into template branch and search
branch, and finds the tracked object through the similarity measurement of the search
branch on the template branch. The tracked object is the place with the highest similarity
score. The tracking process can be expressed by Equation (1):

f (z, x) = ϕ(z) ∗ ϕ(x) + b` (1)

where ϕ denotes the cross-correlation operation, and b` indicates that the score map for
each position is not a single score value.

SiamRPN++ [8] has made a deep analysis of Siamese networks and found that
the tracking accuracy is reduced because of the destruction of translation invariance in
AlexNet [6] network when using deep networks. Therefore, the author proposes a simple
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and efficient sampling strategy to break the limitation of space invariance and successfully
train the Siamese tracker with deep network ResNet-50 [9].

2.2. Manifold Learning Background
2.2.1. Glassman Manifold

The advantages of smoothness and differentiability of Grassmann manifolds [10] allow
us to use them to derive geometric properties of image sets. The Grassmann manifold is all
linear subspaces of a given position number in a vector space V. CN is an N-dimensional
complex Euclidean vector space. The Grassmann manifold G(k, n), k < n, refers to
the set of all k-dimensional subspaces in Rn. A more mathematical representation is
Gn,k = O(n)/O(k)×O(n− k) , where O(n) is determined by orthogonal group quotient
space composed of n× n orthogonal matrices [11].

Supposing that there is a point p in G(k, n), and its n × k-dimensional orthogonal
basis matrix is represented by U, and the full basis matrix in Rn is represented by Q (where
Q = [U|U⊥] and UTU⊥ = 0). Then, the entire equivalence class can be expressed by
matrix Un×k as:

[U] = {UYk : Yk ∈ Q(k)} (2)

Meanwhile, the entire equivalence class representation of the Grassmann manifold
can also be obtained in the quotient space:

[Q] =

{
Q
(

Yk 0
0 Yn−k

)
:
(

Yk ∈ O(k)
Yn−k ∈ O(n−k)

)}
(3)

2.2.2. Geodesics

The geodesic is the curve with the shortest distance between two points in manifold
space. In Euclidean space, the shortest path between two points is a straight line, and the
shortest path between two points on a sphere is the arc length connecting the two points.
For a Grassmann manifold, the distance between two points on the manifold is a geodesic,
the calculation process is shown in Figure 1.
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Figure 1. Visualization of 2-D manifold G embedded in R3. Tm is the tangent plane at point m, and
γ(t) is the geodesic distance between any two points m and n on the manifold space.

Suppose that m and n are two points in the popular space, and Tm is the tangent
plane between the point m and the manifold surface, which is composed of all the tangent
vectors ∆ at this point. Then the Grassmann manifold geodesic of the curve δ(t) = Yt can
be expressed by the following differential equation:

..
Yt + Yt

(( .
Yt

)T .
Yt

)
= 0 (4)
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whose non-European canonical solution is:

Y(t) = Y(0)expAt (5)

where A =

(
0 −BT

BT 0

)
is n-by-n skew-symmetric and B is (n− p)-by-n skew-symmetric.

Given Equation (4), under the premise of initial conditions U(0) = U and U(0) = H, a
simple method of calculating the geodesic is:

Grassmann geodesics U(t) =
(

UV R
)( cos ∑t

sin ∑t

)
VT (6)

the R in the formula represents the compact singular value decomposition (SVD) of H.

2.3. Manifold Siamese Network Based on Anchor-Free
2.3.1. Overall Network Structure

SiamRPN++ employs a Siamese network structure to explore the rich semantic infor-
mation of objects and has achieved good performance in visual object tracking. However,
in challenges such as the fast motion of objects, the potential geometric features of the
objects can make our algorithm performance more robust, so we add manifold branches
on the basis of the Siamese network to better explore the geometric features of objects, as
shown in Figure 2. Among them, 255 × 255 × 3 is the search image, and the 3 here refers
to the three color channels of r, g, and b of the image.
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Figure 2. The pipeline of the proposed SiamMFC tracker, where the left side is the semantic feature and geometric feature
extraction sub-network, and the right side is the classification and regression sub-network.

The network structure after joining the manifold branch can be expressed as:

f (z, x) = [G(z)⊕ ϕ(z)] ∗ ϕ(x) + b` (7)

Here, b represents the manifold feature extracted from the template branch and
⊕ represents the fusion operation of the semantic feature and geometric feature of the
template branch.

In the manifold template branch, the template image passes through the manifold
sample pool to extract geometric features and then merges with the semantic information
extracted by the template branch and the search branch through the backbone network
ResNet50 to obtain 25 × 25 × 256 feature maps, which pass through two conv layers
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performing classification and regression of objects, respectively. Different from Siamsrpn++,
in order to more accurately reflect the score of the classification result, the center-ness branch
is introduced in the classification branch, and the classification score is weighted by the
score, away from the center of the object the closer the point is, the higher the score is. In
the regression branch, the distance between the anchor point and the four edges is used to
return the accurate position information.

2.3.2. Manifold Template Branch

In the tracking process, if we start sampling a new sample dataset, it will bring
complex and redundant calculations. However, almost all sampling strategies at this stage
are similar samples containing the same semantic information, which seriously affects our
tracking speed. In order to eliminate and avoid this phenomenon, and to better achieve
a compact description of the data, we introduce a manifold sample pool in the Siamese
network. In a given video sequence, the visual object in each frame can be regarded as
a point on the Grassmann manifold, and the similarity between adjacent frames can be
represented by a geodesic line between two points. The schematic diagram is shown in
Figure 3.
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points on the Grassman manifold.

In this work, because the base matrix U is controlled by the dominant feature vector of
the image, it can well reflect the geometric characteristics of the sample, so we use the base
matrix to describe the performance of the objects in the video sequence on the manifold.
Suppose Z is an observation matrix constructed from a given video sequence Q:

Z = [z̃1, z̃2, z̃3 . . . z̃Q]
T (8)

Here, z represents the vector corresponding to each frame of image in the video
sequence, l = 1/Q ∑Q

i=1 zi is the average vector, and z̃i = zi − l represents the average
observation value extracted from the i-th frame image. The sample covariance matrix
C = ZZT can generate k principal eigenvectors from the basic matrix U ∈ Rn,k. There are
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many methods to calculate the main eigenvalues. We consider the SVD decomposition
method from the perspective of calculation efficiency as follows:

ŨD̃Ṽ = SVD(Z) (9)

Here, the sample U in the manifold space of each frame of the video sequence can be
obtained by k principal vectors Ũ. Then we can construct the manifold sample pool p and
manifold sample feature t in the entire video sequence.

In order to more comprehensively reflect the contribution of different geometric fea-
tures in the manifold sample pool to the continuous video sequence, we employ Gaussian
Mixture Model(GMM) in probability model estimation to estimate the sample weight to
reflect the different geometric attributes presented by different weight samples, whose
standard expression formula of this model is as follows:

pM(x) =
k

∑
i=1

αi N
(

x; µi; ∑i

)
(10)

where k represents the total number of samples, each sample corresponds to a Gaussian
distribution, µi and ∑i are the parameters of the i-th sample, and αi represents the sample
weight. In this work, we convert the covariance matrix C to the identity matrix I in order to
reduce the computational cost of high-dimensional samples.

In the online update of GMM components, in order to reflect the effectiveness and
convenience of the algorithm, we apply the simplified algorithm proposed by Declercq
and Piater [12] to replace the classic expectation maximization (EM) iterative optimization
algorithm. Assuming that the new sample given in the initial stage is ωj, the parameters of
the corresponding new Gaussian component n are αn = γ, µn = ωj, respectively. When
simplifying and updating the GMM, compare the existing number of components with
the set maximum value k of the number of components. If the sample weight αi is less
than the set threshold Kmax, then the sample model does not meet the requirements. If the
sample weight αi is greater than the set threshold Kmax, the two closest samples p and q in
the manifold sample pool are merged into a new sample s. The specific calculation process
is expressed by the following formula:{

αs = αp + αq

µs =
αpµp + αqµq

αp + αq

(11)

In particular, the distance between p and q needs to be calculated using the geodesic
distance in the manifold space. Since the calculation process of GMM is a two-step nested
loop, which only includes a path search and a merge operation, the algorithm embodies
the advantage of fast calculation speed.

2.3.3. Siamese Sub-Network and Classification Regression Sub-Network Branch

Siamese Sub-network: The semantic branch employs the classic fully convolutional
Siamese network, namely the template branch Z and the search branch X. As the shallow
neural network has good visual attributes, which can extract good position information,
and the deep network can extract rich semantic information, which has a good discriminat-
ing effect, and both are essential to the improvement of tracking accuracy. Therefore, the
backbone network during feature extraction applies the modified ResNet-50 that aggre-
gates multiple layers of features. In order to locate the object more accurately, we perform
multi-level feature extraction in the last three residuals of ResNet-50 to achieve hierarchical
aggregation, and the output features are F3(x), F4(x) and F5(x), respectively. Since the
outputs of these three modules have the same spatial resolution, Equation (12) can be used
for direct addition during weighted fusion.

ϕ(x) = cat(F3(x), F4(x), F5(x)) (12)
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where ϕ(x) and F3−5(x) both contain 256 channels. After the deep cross-correlation
between the search branch and template branch, a multi-channel corresponding graph
was obtained. The convolution dimension reduction of the response graph and the
1× 1 convolution kernel was carried out to 3× 256 channels, which significantly reduced
the number of parameters and accelerated the calculation in the following stages. Finally,
the response graphR∗ obtained from the template branch and search branch is applied to
the subsequent classification regression subnetwork.

Classification Regression Sub-network: SiamRPN++ adopts the center of the anchor-
based on multi-scale design as the corresponding position of the object on the search area,
and applies these anchors to return to the true bounding box of the object. Although
the performance of SiamRPN++ is already state-of-the-art, the anchor-based tracker not
only needs lots of human experience, and the huge parameter design also increases the
complexity of the calculation. In order to overcome the above problems, our network
applies anchor points to classify and regress objects.

There are two subtasks in the classification-regression sub-network, one is the clas-
sification task used to distinguish the foreground and the background, and the other is
the regression sub-network used to obtain the precise position of the object. In particular,
in order to more accurately reflect the accuracy of different anchor points for the return
position of the object bounding box, we proposed a center-ness branch in the classification
subtask. The higher the score, the closer to the object center point, the more accurate
the return position. The response map R∗w×h×m obtained by the Siamese network after
feature extraction passes through the classification branch and the regression branch to
obtain the feature maps of Acls

w×h×2 and Areg
w×h×4, respectively, where h and w represent

the height and width of the feature maps, respectively. For each image data, Acls
w×h×2 is

a two-dimensional vector representing the score of the foreground and background, and
Areg

w×h×4 is a four-dimensional vector t(i, j) = (l, t, r, b) representing the position of the
regression bounding box.

Since the proportion of foreground and background in the search area is not very
large, the loss function does not involve the imbalance problem. Hence, the cross-entropy
loss and IOU loss functions are employed for classification and regression, respectively.

For any point (i, j), (x, y) represents its corresponding position coordinates, assuming
that (x1, y1) and (x∗, y∗) represent the coordinates of the left-top corner and the right-
bottom corner of the ground truth bounding box, respectively. Then the regression target
at Areg

w×h×4(i, j, :) can be calculated by the following formula:

t̃0
(i,j) = l̃ = x− x1, t̃1

(i,j) = t̃ = y− y1

t̃2
(i,j) = r̃ = x∗ − x, t̃3

(i,j) = b̃ = y∗ − y
(13)

With the formula t of IOU between the ground-truth bounding box and the predicted
bounding box, the loss function of the regression task is calculated as follows:

Lreg =
1

∑
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(

t̃(i,j)
) ∑i,j
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t̃(i,j)
)

LIOU

(
Areg(i, j, :), t̃(x,y)

)
(14)

Inspired by [13], the calculation of LIOU adopts the same loss method as Unitbox, and
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t̃(i,j)
)
=

{
1 i f t̃k

(i,j) > 0, k = 0, 1, 2, 3

0 otherwise
(15)

Although anchor point prediction reduces the number of parameters and calculation,
after many bounding box predictions, it is found that the prediction effect of the 78uposition
far away from the center of the object is not good, which directly leads to the degradation
of the tracker’s performance. To this end, inspired by FCOS [14], we added a center-
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ness feature map Acen
w×h×1 in the classification branch to eliminate low-quality prediction

bounding boxes. The score map C(i, j) in Acen
w×h×1 is between 0 and 1, which can be

calculated by the following formula:

C(i, j) =
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(

t̃(i,j)
)
∗

√√√√√min
(

l̃, r̃
)

max
(

l̃, r̃
) × min

(
t̃, b̃
)

max
(

t̃, b̃
) (16)

The value of C(i, j) reflects the distance between the position point (x, y) and the
center of the object. The higher the value of C(i, j), the closer the anchor point (x, y) is
to the center of the object, and the better the prediction effect. If the anchor point is in
the background, then C(i, j) is set to 0. The calculation formula of the loss function of the
center-ness score is:

Lcen =
−1

∑
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subsequent classification regression subnetwork. 

Classification Regression Sub-network: SiamRPN++ adopts the center of the anchor-
based on multi-scale design as the corresponding position of the object on the search area, 
and applies these anchors to return to the true bounding box of the object. Although the 
performance of SiamRPN++ is already state-of-the-art, the anchor-based tracker not only 
needs lots of human experience, and the huge parameter design also increases the com-
plexity of the calculation. In order to overcome the above problems, our network applies 
anchor points to classify and regress objects. 

 There are two subtasks in the classification-regression sub-network, one is the clas-
sification task used to distinguish the foreground and the background, and the other is 
the regression sub-network used to obtain the precise position of the object. In particular, 
in order to more accurately reflect the accuracy of different anchor points for the return 
position of the object bounding box, we proposed a center-ness branch in the classification 
subtask. The higher the score, the closer to the object center point, the more accurate the 
return position. The response map 𝑅௪××∗  obtained by the Siamese network after feature 
extraction passes through the classification branch and the regression branch to obtain the 
feature maps of 𝐴௪××ଶ௦  and 𝐴௪××ସ , respectively, where h and w represent the height 
and width of the feature maps, respectively. For each image data, 𝐴௪××ଶ௦  is a two-dimen-
sional vector representing the score of the foreground and background, and 𝐴௪××ସ  is a 
four-dimensional vector 𝑡(𝑖, 𝑗) = (𝑙, 𝑡, 𝑟, 𝑏)  representing the position of the regression 
bounding box. 

 Since the proportion of foreground and background in the search area is not very 
large, the loss function does not involve the imbalance problem. Hence, the cross-entropy 
loss and IOU loss functions are employed for classification and regression, respectively. 

 For any point (𝑖, 𝑗), (𝑥,𝑦) represents its corresponding position coordinates, assum-
ing that (𝑥ଵ,𝑦ଵ)  and (𝑥∗,𝑦∗) represent the coordinates of the left-top corner and the 
right-bottom corner of the ground truth bounding box, respectively. Then the regression 
target at 𝐴௪××ସ (𝑖, 𝑗, : ) can be calculated by the following formula: �̃�(,) = 𝑙ሚ = 𝑥 − 𝑥ଵ, �̃�ଵ(,) = �̃� = 𝑦 − 𝑦ଵ �̃�ଶ(,) = �̃� = 𝑥∗ − 𝑥, �̃�ଷ(,) = 𝑏෨ = 𝑦∗ − 𝑦 

(13)

With the formula t of IOU between the ground-truth bounding box and the predicted 
bounding box, the loss function of the regression task is calculated as follows: ℒ = 1∑𝕝൫�̃�(,)൯∑,𝕝(�̃�(,))𝐿ூை(𝐴(𝑖, 𝑗, : ), �̃�(௫,௬)) (14)

Inspired by [13], the calculation of 𝐿ூை adopts the same loss method as Unitbox, and 𝕝(∙) is calculated by the following formula: 𝕝൫�̃�(,)൯ = ൜1 𝑖𝑓 �̃�(,) > 0, 𝑘 = 0,1,2,30 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (15)(t̃(i,j))==1 C(i, j) ∗ logAcen
w×h×1(i, j) + (1− C(i, j) ∗ log

(
1− logAcen

w×h×1(i, j)
)

(17)

The overall loss function of the network is:

L = Lcls + λ1Lcen + λ2Lreg (18)

It is particularly noted that λ1 and λ2 are weight hyperparameters that balance center-
ness loss and the regression loss, which are set to λ1 = 1 and λ2 = 3 empirically.

3. Experiments
3.1. Implementation Details

The proposed SiamMFC was trained on two 1080ti GPUs using pytorch for 7 days.
The training phase uses four datasets of COCO [15], ImageNet DET [6], ImageNet VID [6],
and YouTube-BB [16], and the template branch and search branch images use 127 and
255 pixel image pairs, respectively. The backbone network uses modified ResNet-50 to
perform convolution operations on the randomly initialized 1× 1 convolutional layer with
conv3, conv4, conv5 to reduce the feature dimension to 256. SiamMFC uses stochastic
gradient descent (SGD) to optimize the training of the network. Considering the memory
of GPU, the batch size is set to 48, and a total of 20 epochs are trained. The first 5 epochs
are used to train the RPN branch with a learning rate of 0.001, and the learning rate of
the next 15 epochs decays from 0.005 to 0.0005 in the form of exponential decay, which
employs end-to-end training. A weight decay of 0.0005 and momentum of 0.9 are adopted
throughout the training process.

3.2. Results on OTB

(1) Global Performance: The OTB dataset is a fair and robust evaluation benchmark
platform proposed by Wu Yi [17], which is divided into two data sets, OTB50 and OTB100.
Among them, OTB50 contains 50 video sequences, and OTB100 is composed of 100 video
sequences including OTB50. This dataset has artificially labeled groundtruth and contains
25% grayscale datasets. Figure 4 shows the intuitive comparison between our proposed
tracker algorithm SiamMFC and the state-of-the-art algorithms SiamRPN++ [8], ECO [18],
MUSTER [19], STAPLE [20], STRUCK [21], DSST2 [22], and SiamRPN [7]. It can be seen that
our algorithm ranks first, and the AUC performance exceeds the benchmark SiamRPN++
by 2.3% and 1.6% respectively.

In order to further demonstrate the advantages of our algorithm, we compared
SiamMFC with SiamRPN++, ECO, MUSTER, STAPLE, STRUCK, DSST, and SiamRPN in
the more challenging OTB50 video sequence. Figure 5 shows that the SiamMFC tracker
ranks first with a competitive advantage in the challenges of in-plane rotation, out-of-view,
and scale variation.
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(2) Qualitative Analysis: Figure 6 shows a comprehensive and intuitive qualitative
comparison between the SiamMFC tracker and the seven state-of-the-art trackers men-
tioned above on several challenging video sequences. Sequence 1 is a young man riding a
bicycle on a railroad track. Although the tracking effect of all the trackers was very good in
the initial stage, after the young man turned around, only the tracking of SiamMFC was the
most accurate. Sequence 2 is a moving car. After frequent occlusion and deformation of the
car, although some trackers have good tracking results, because we adopt an anchor-free
tracking strategy, only the SiamMFC tracker is the most compact. Deformation is one
of the huge challenges in visual object tracking. After the divers in video 3 are flipped
and deformed in the air, the SiamMFC shows a good tracking effect. In the three video
sequences of 4, 5, and 6, the SiamMFC can still track the object well after the fast-moving,
background clutter, and occlusion of the tracked object.

Figure 6. Visualization of the qualitative analysis results of SiamMFC and the remaining seven state-of-the-art trackers on
the OTB dataset.

3.3. Results on UAV123

UAV-123 is a dataset composed of videos captured by low-altitude drones, which is
essentially different from the video captured by OTB50 and other mainstream tracking
datasets. A subset of the dataset is used for long-term air tracking, which contains a total
of 123 video sequences and more than 110 k frames. All sequences in the dataset can be an-
notated with a manual box and can be easily integrated with the visual tracker benchmark,
which contains all ground-truth boxes and attribute annotations of the UAV dataset.

In order to better verify the performance of our tracker, we compared SiamMFC on
the UAV123 dataset with the benchmark algorithm SiamRPN++ and the state-of-the-art
performance trackers SiamRPN, ECO, DaSiamRPN [23], and ECO-HC [18]. The comparison
results are shown in Table 1, in which it can be clearly seen that our proposed SiamMFC
ranks first in AUC score by 7% higher than the baseline SiamRPN++.

Table 1. Comparison results on UAV-123 benchmark.

ECO-HC SiamRPN++ SiamRPN ECO DaSiamRPN SiamMFC

AUC (%) 0.506 0.613 0.527 0.525 0.586 0.620
P (%) 0.725 0.807 0.748 0.741 0.796 0.811

3.4. Results on GOT-10K

GOT-10k [24] is a large-scale target tracking dataset based on WordNet, which widely
covers 560 types of common outdoor moving objects. The bounding boxes of the objects
are all manually labeled, and the number of bounding boxes exceeds 1.5 million, which
realizes the unified training of the depth tracker and stable evaluation. GOT-10k has the
advantages of large-scale, general-purpose, single-sample learning, uniform training data,
additional labeling, and effective evaluation.
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We evaluated our proposed algorithm SiamMFC on GOT-10k and compared it with the
six advanced trackers SiamFC, CCOT [25], ECO, MDNet [26], SiamRPN++, and SiamMFC,
as shown in Table 2. The performance of our algorithm is highlighted in red.

Table 2. Comparison results on GOT-10k benchmark.

Tracker AO SR0.5 SR0.75 Hardware Language FPS

SiamFC 0.374 0.404 0.144 Titan X Matlab 25.81
CCOT 0.325 0.328 0.107 CPU Matlab 0.68

CFNet [27] 0.293 0.265 0.087 Titan X Matlab 35.62
SPM [28] 0.513 0.593 0.359 Titan XP Python 72.3

BACF [29] 0.260 0.262 0.101 CPU Matlab 14.44
MEEM [30] 0.253 0.235 0.068 CPU Matlab 20.59

ECO 0.316 0.309 0.111 CPU Matlab 2.62
MDNet 0.299 0.303 0.099 Titan X Python 1.52

SiamRPN++ 0.517 0.616 0.325 RTX 1080ti Python 49.83
SiamMFC 0.554 0.668 0.413 RTX 1080ti Python 51.13

3.5. Ablation Studies

As a kind of geometric information, manifold brings superior performance improve-
ment to our tracking algorithm. In order to more clearly show the change of manifold
characteristics, we conducted ablation research on the variation of our algorithm on the
UAV-123 algorithm, as shown in Table 3. The results of using only ResNet-50 and manifold
are not as high as the effective fusion index of the two.

Table 3. The results of the ablation experiment.

Component
UAV-123

AUC (%) P (%)

SiamRPN++ 0.613 0.807
SiamRPN++ (anchor-free) 0.617 0.809
SiamRPN++ and manifold 0.615 0.808

Ours 0.620 0.811

4. Conclusions

In this work, we combine the rich geometric properties of objects with semantic infor-
mation and propose a novel end-to-end visual object tracker, SiamMFC. In the manifold
branch, the application of manifold learning and the Gaussian Mixture Model (GMM)
to update the sample template is a good way to exploit the geometric attributes of the
object. In the semantic branch, in addition to the modified ResNet-50 network in the feature
extraction stage, the application of the anchor-free tracker idea in the classification and
regression stage not only greatly reduces the amount of parameters and the rigidity of
human experience, but also reduces the complexity of the calculation method, establishing
a good foundation for the application of more practical scenarios. Compared with baseline
algorithm SiamRPN++, our algorithm has a 2.3% higher success rate and 1.4% higher
accuracy on challenging OTB50 datasets. The success rate on GOT-10K datasets is 3.7%
higher than SiamRPN++. In future work, we will continue to explore the deeper potential
of the geometric attributes and semantic information of objects, and apply them to visual
target tracking.
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