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Abstract: Road traffic accidents have been listed in the top 10 global causes of death for many decades.
Traditional measures such as education and legislation have contributed to limited improvements in
terms of reducing accidents due to people driving in undesirable statuses, such as when suffering
from stress or drowsiness. Attention is drawn to predicting drivers’ future status so that precautions
can be taken in advance as effective preventative measures. Common prediction algorithms include
recurrent neural networks (RNNs), gated recurrent units (GRUs), and long short-term memory
(LSTM) networks. To benefit from the advantages of each algorithm, nondominated sorting genetic
algorithm-III (NSGA-III) can be applied to merge the three algorithms. This is named NSGA-
III-optimized RNN-GRU-LSTM. An analysis can be made to compare the proposed prediction
algorithm with the individual RNN, GRU, and LSTM algorithms. Our proposed model improves
the overall accuracy by 11.2–13.6% and 10.2–12.2% in driver stress prediction and driver drowsiness
prediction, respectively. Likewise, it improves the overall accuracy by 6.9–12.7% and 6.9–8.9%,
respectively, compared with boosting learning with multiple RNNs, multiple GRUs, and multiple
LSTMs algorithms. Compared with existing works, this proposal offers to enhance performance by
taking some key factors into account—namely, using a real-world driving dataset, a greater sample
size, hybrid algorithms, and cross-validation. Future research directions have been suggested for
further exploration and performance enhancement.

Keywords: at-risk driving; driver drowsiness; driver stress; gated recurrent unit; intelligent trans-
portation; long short-term memory network; multi-objective optimization; NSGA-III; recurrent
neural network

1. Introduction

According to The Global Status Report On Road Safety 2018 [1], annual road traffic
crashes have led to 1.35 million and 50 million deaths and injuries, respectively. These
figures have slightly increased by 0.2 million and decreased by 0.6 million, respectively,
compared with those in 2000. Among different age groups, road traffic crashes are the
leading cause of death for people aged 5 to 29. This can wreak havoc on economic and
social development. For all age groups, car crashes are the 8th leading cause of deaths. The
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members of the United Nations agreed in the 2030 Agenda For Sustainable Development
to work on the aforementioned issue in Target 3.6: by 2020, to halve the number of global
deaths and injuries caused by road traffic accidents [2]. Nevertheless, we have failed to
meet this target. Common road accident prevention methods include [3,4] (i) education:
promote good driving behaviors which avoid risky driving behaviors such as road hogging,
expressing anger to other road users, distracted driving, drowsy driving, and stress driving;
and (ii) legislation: various laws have been made concerning, for instance, driving speed,
drink-driving, and the use of seat belts. In this paper, our research focus is on drowsy
driving and stress driving due to their high prevalence. A systematic review and meta-
analysis was conducted on drowsy driving [5], showing the significant percentages of
people falling asleep while driving—for instance, 25% in New Zealand, 29% in UK, and
58% in Canada. A large-scale survey by National Sleep Foundation also suggested that
there was a high prevalence of drowsy driving, with 54% in the US [6]. Regarding stress
driving, 90% of drivers were found to experience at least one road rage incident per year [7].
An analysis from the AAA Foundation for Traffic Safety revealed that more than half of
fatal crashes were due to aggressive driving as a result of stress [8]. There is a pressing
need to propose effective measures to reduce the number of road traffic crashes.

To create a breakthrough in the reduction in road traffic crashes, machine learning
models have been introduced for the purposes of driver drowsiness detection and driver
stress detection, where the models output the driver’s current status. For a thorough
literature review, please refer to the following review articles [9–11]. However, even though
the driver’s current status can be accurately detected using these methods, traffic accidents
can occur before the average time in which humans are able to respond and control their
vehicles, which is about 0.5 to 2 s [12,13]. As a result, an extended range of prediction
models are needed to predict drivers’ future status in order to provide sufficient time to
drivers from focusing back to normal driving.

In the following, we have summarized the methodology, performance, and limitations
of the related works on driver drowsiness and stress prediction models. This is followed
by a discussion of the research contributions of our work.

1.1. Related Works

In this section, the existing works on driver drowsiness prediction [14–18] and driver
stress prediction [19–23] are summarized from the perspectives of their methodology and
results. It is worth noting that all the works [14–23] are related to models for predicting the
driver’s future status instead of models for detecting the driver’s current status.

Various approaches have been proposed for the prediction of driver drowsiness.
In [14], a non-linear autoregressive exogenous network was proposed that used an image-
based feature calculating the percentage of time the eyelids are closed for a 13.8–16.4 s
in-advance prediction. The authors’ results reported the recall and precision to be 96.1%
and 98.6%, respectively. Another work extracted the features of images using convolutional
neural networks (CNNs) and built a prediction model using a long short-term memory
(LSTM) network [15]. An accuracy of 75% was achieved for a prediction of 3–5 s in advance.
Furthermore, CNN-LSTM was adopted in [16], with multiple inputs using the blood
volume pulse, skin temperature, skin conductance, and respiration of the drivers. The
results of a 8 s in-advance prediction showed an average recall, specificity, and sensitivity
of 82%, 71%, and 93%, respectively. Lin et al. [17] presented a 4-D CNN algorithm for a 6 s
in-advance prediction. The 2-D spatial information, temporal information, and frequency
of the electroencephalogram (EEG) signal were extracted. This approach achieved an
error rate of 0.283. Apart from EEG signal, three more inputs—namely, image, heart rate
variability (HRV), and electrooculography (EOG)—were chosen as the inputs of the driver
drowsiness prediction model [18]. Fisher’s linear discriminant analysis (FLDA) algorithm
was utilized, with the performance evaluation showing an accuracy of 79.2% for a 5 s
in-advance prediction.
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For driver stress prediction models, CNN-LSTM was proposed to incorporate the
inputs of contextual data, vehicle data, and electrocardiogram (ECG) signal [19]. The
accuracy was 92.8% for a 5 s in-advance prediction. Mou et al. [20] extended this work
in [19] with a self-attention mechanism and replaced the inputs with environment, vehicle
dynamics, and eye data. The improvement in accuracy obtained was 2.91%. Another
work [21] implemented a deep belief network (DBN) using the speed and intensity of the
turning of the vehicle and HRV to predict driver stress. The specificity and sensitivity were
83.6% and 82.3%, respectively, with a deviation range of 25–38% under different scenarios.
Data on weather and HRV served as the inputs of the Naive Bayes prediction model [22].
An accuracy of 78.3% was achieved. In [23], logistic regression was applied to build the
prediction model based on photoplethysmography (PPG), electrodermal activity (EDA),
and an accelerometer. The specificity and sensitivity were 86.7% and 60.9%, respectively,
indicating a challenge in biased prediction.

1.2. Inadequacies of Related Works

Various existing works [14–23] have been presented, however, there is room for
improvement. Generally, the inadequacies can be categorized into three parts: (i) simulated
dataset, (ii) single-split validation, and (iii) time of in-advance prediction.

• Simulated dataset: Most works [14–22] implement and evaluate prediction models
using simulated datasets (driving simulator). These reduce the practicality and relia-
bility of the models because simulated datasets are comprised of data obtained from
simulated environments where danger and nervousness cannot be realized.

• Single-split validation: Some works did not adopt cross-validation as model validation
in which one split validation [14] and not specified [15,18,19] were found. Limited data
were evaluated or biased results may have obtained with certain groups of training
and testing datasets.

• Time of in-advance prediction: The specific time (5, 6, 8, 30, and 60 s; e.g., the model
predict the driver’s status in time t + 5 s) [16–22] and distinct time ranges (3–5 and
13.8–16.4 s; e.g., the model predict the driver’s status in time t + time range with
certain step size) [14,15] of in-advance prediction were observed. Attributed to the
individual variation in the mental and psychological status (drowsiness and stress) of
the drivers, the requirements for the time range of in-advance prediction vary among
drivers. For examples, some drivers may fall asleep quickly and some some may
become angry easily.

1.3. Research Contributions

To address the aforementioned inadequacies (Section 1.2), we proposed the use of a
nondominated sorting genetic algorithm-III (NSGA-III) to optimally design a prediction
model using recurrent neural networks (RNNs), gated recurrent units (GRUs), and long
short-term memory (LSTM). This was named NSGA-III optimized RNN-GRU-LSTM.

The research contributions of this paper are summarized as follows.

• The proposed NSGA-III optimized RNN-GRU-LSTM makes use of the advantages of
each algorithm to achieve extended range prediction, with the algorithm achieving a
1–60 s (step size of 1 s) in-advance prediction so that it allows sufficient time (more
than the reaction time of humans) to drivers from focusing back to normal driving.

• Compared with baseline models namely stand-alone RNN, stand-alone GRU, and
stand-alone LSTM, the NSGA-III optimized RNN-GRU-LSTM enhances the over-
all accuracy by 11.2–13.6% and 10.2–12.2% for driver stress prediction and driver
drowsiness prediction.

• Compared with boosting learning of multiple RNNs, multiple GRUs, and multiple
LSTMs, the NSGA-III optimized RNN-GRU-LSTM enhances the overall accuracy by
6.9–12.7% and 6.9–8.7% for driver stress prediction and driver drowsiness prediction.
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2. Methodology of Proposed NSGA-III Optimized RNN-GRU-LSTM Model

The conceptual diagram of the proposed NSGA-III optimized RNN-GRU-LSTM model
is given in Figure 1. Both the driver stress prediction and driver drowsiness prediction
models are implemented using identical approaches. Green boxes refer to the driver stress
prediction model, whereas blue boxes refer to the driver drowsiness prediction model. The
ECG signal of the driver is continually measured and serves as the input of the trained
NSGA-III optimized RNN-GRU-LSTM model. ECG beat segmentation is performed on
the ECG signal to obtain the individual ECG beat. The key steps are to: (i) eliminate the
direct current (DC) offset; (ii) apply a digital bandpass filter; (iii) detect the QRS complex
(combination of Q wave, R wave, and S wave) of the ECG signal; (iv) detect the R wave;
and (v) define ECG beats as the constituents of two consecutive R waves. After ECG
beat segmentation, the features of the ECG beats are extracted. NSGA-III is applied to
optimally design the RNN-GRU-LSTM prediction model. We define high stress levels
and medium stress levels as undesirable driving statuses in driver stress prediction; if
detected, a warning message can be initiated to alert drivers. Regarding driver drowsiness
prediction, the initiation of sleep stage 1 or sleep stage 2 will lead to a warning message.

This section is divided into four parts. It starts with Section 2.2, which summarizes the
procedures of the ECG beat segmentation. This is followed by the feature extraction process
in Section 2.3. Lastly, the NSGA-III optimized RNN-GRU-LSTM model is presented.
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neural network (RNN), gated recurrent unit (GRU), and long short-term memory (LSTM) model.

2.1. Real-world Driving Datasets

The real-world driving datasets used for driver stress and drowsiness events were
collected from two public datasets. In the datasets, various signals were measured—for
instance, ECG, EOG, electromyography (EMG), galvanic skin response (GSR), respiration,
and arterial oxygen saturation. ECG signal was chosen as the input signal of the prediction
model because it has demonstrated robustness (in terms of measurement stability) in noisy
conditions [24].
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• The Stress Recognition in Automobile Drivers Database [25,26]: 18 drivers participated
in a real-world driving experiment in the USA. An ECG signal was collected based
on three scenarios which form three stress levels—namely, a low stress level (LSL), a
medium stress level (MSL), and a high stress level (HSL). The LSL was contributed by
drivers sitting at rest and closing their eyes 15 min before and after driving. Therefore,
it contributed to an overall of total of 30 min. The MSL was generated between a toll
at the on-ramp and preceding the off-ramp during highway driving. The HSL was
conducted using the driving scenario of a winding and narrow lame in main and side
streets. The MSL and HSL of the drivers contributed to 20–60 min of the record length.

• The Cyclic Alternating Pattern (CAP) Sleep Database [26,27]: This comprises 108
records of ECG signals from six sleep stages. These are: (i) normal stage; (ii) sleep
stage 1; (iii) sleep stage 2; (iv) sleep stage 3; (v) sleep stage 4; and (vi) rapid eye
movement stage. Based on the definitions of these stages, sleep stage 1 and sleep stage
2 are related to drowsiness and thus were selected as driver drowsiness samples.

2.2. ECG Beat Segmentation

The records of the ECG signals in the datasets cannot readily serve as the inputs of
prediction models because a proper window size is needed to fulfill the requirements of
timely model output and the full characterization of signals. Hence, individual ECG beat
was chosen as the smallest unit of input. It is characterized by P wave, QRS complex, and
R wave. The ECG beat segmentation was achieved by detecting the QRS complex and thus
the R wave. It is worth noting that a P wave or T wave is not a better option to segment
ECG beats because the accuracy of segmentation is lowered and more complex techniques
are required [28,29].

In this paper, a traditional QRS complex-based ECG beat segmentation approach is
employed [30,31]. As this is not the focus and contribution of our work, only the key
procedures are summarized. To begin with, all records of the two databases carry out DC
offset elimination. The frequency of the QRS complex is 10–30 Hz. A digital bandpass
filter is applied. To amplify the slopes of the Q-R and R-S portions, the signal is further
processed by a derivative filter. The locations of Q and S waves are detected using signal
squaring and moving window integration. Along with the information of the slopes of the
Q-R and R-S portions, R waves can be located. The ECG beat (one sample) is defined as the
portion of signal between two consecutive R waves.

Table 1 presents the sample sizes of the classes in two datasets. Each of the datasets
is comprised of three classes: class 0, class 1, and class 2. It can be seen from the table
that there is an issue of an imbalanced dataset. The prediction model tends to have bias
(have better performance) in favor of the majority class, as reported in various review
articles [32,33]. Inspired by previous works [34–36], we formulated the proposed RNN-
GRU-LSTM prediction model as a multiobjective optimization problem that maximizes the
accuracy of each class and the overall accuracy.

Table 1. Summary of the classes and sample sizes of the real-world driving datasets after ECG beat
segmentation.

Datasets Classes Sample Sizes

The Stress Recognition in
Automobile Drivers Database

[25,26]

Class 0: LSL 40,000
Class 1: MSL 38,000
Class 2: HSL 16,000

The Cyclic Alternating Pattern
(CAP) Sleep Database [26,27]

Class 0: Normal stage 76,000
Class 1: Sleep stage 1 35,000
Class 2: Sleep stage 2 20,000
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The convolution and cross-correlation coefficient of the ECG beats are computed as
features that can capture the symmetric and asymmetric information of ECG signals [37].
Consider two ECG beats X1[n] = {x1,1, x1,2, . . . , x1,100} and X2[n] = {x2,1, x2,2, . . . , x2,100},
which have length L = 100 using zero padding. The formula for the convolution between
X1[n] and X2[n] is given by:

X1[n] ∗ X2[n] = ∑L−1
k=0 X1[k]X2[n− k], (1)

where ∗ is the symbol of the convolution operator.
The cross-correlation with a ⊗ operator between X1[n] and X2[n] can be obtained

using:

X1[n]⊗ X2[n] =

{
∑

L−|k|−1
n=0 X1[k]X2[n− k] k < 0

∑L−1
n=k X1[k]X2[n− k] k ≥ 0

. (2)

2.3. NSGA-III Optimized RNN-GRU-LSTM Model

Figure 2 highlights the conceptual diagram of the three key algorithms RNN, GRU,
and LSTM, which will be optimally integrated by NSGA-III. Based on Section 2.2, the data
inputs are convolution and cross-correlation coefficients, in a length of 199 × 2 = 398. The
outputs (60 outputs) will be a corresponding class (Class 0, Class 1, and Class 2), in each of
the coming seconds in the following minute (1–60 s).
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Section 2.3 is divided into four parts in which the formulations of RNN, GRU, and
LSTM will be discussed. This is followed by NSGA-III.

It is worth noting that the rationales of the selection of algorithms RNN, GRU, LSTM,
and NSGA-III are explained as follows:

• RNN is less complex and requires less training time compared with GRU and LSTM.
However, RNN suffers from the issue of vanishing gradient, in which the gradient
between the current and previous layers keeps decaying [38,39]. This has led to
the inefficiency of RNN in learning early inputs and thus supporting short-term
prediction.



Sensors 2021, 21, 6412 7 of 20

• Both the GRU and LSTM avoid the issue of vanishing gradient [40]. The former offers
a less complex structure because individual memory cells are not included, whereas
the latter has better control of memory through the use of three gates (input, forget,
and output gates).

• Attributed to the advantages and disadvantages of the RNN, GRU, and LSTM al-
gorithms, optimally merging the algorithms would enhance the performance of the
prediction model compared with the stand-alone-based algorithm. The optimization
problem is solved by NSGA-III because it not only enhances the diversity of the new
population but also requires computing power with a small population size [41,42].

• There are some previous works adopted hybrid algorithms such as GRU and LSTM
for credit card fraud detection [43], RNN and LSTM for spoken language understand-
ing [44], RNN and GRU for state-of-charge detection for lithium-ion battery [45], and
RNN, GRU, and LSTM for rumor detection in social media [46]. These support the
applicability and effectiveness of merging RNN, GRU, and LSTM algorithms which
takes advantages from each of the algorithm.

2.3.1. RNN Algorithm

The previous input at time t− 1 helped us to generate the current output value at time
t. We adopted the Elman network, which is the mainstream method used in the research
field and supports flexible extension to deep learning [47]. The hidden layer intakes the
inputs (features) and creates a copied version in the context unit. Therefore, previous
information can be moved forward. Among various types of recurrent neural networks,
we use fully recurrent networks in which all elements have weighting factors connected
between elements.

We define the vector in the hidden layer at previous time ht−1 and at current time
ht. The weight matrix between the input layer and hidden layer is Wih, that between the
hidden layers is Wh, and that between the hidden layer and output layer is Who. The
activation function in the hidden layer is σh and that in the output layer is σo. The bias
vector in the hidden layer is bh and that in the output layer is bo.

At the current time, given the input xt, the vectors in the hidden layer ht and output
layer yt are given by:

ht = σh(Wihxt + Whht−1 + bh), (3)

yt = σo(Whoht + bo). (4)

The selection of activation functions is related to the convergence of the solutions.
Existing studies have reported a slow convergence using typical activation functions—for
instance, rectified linear unit, hyperbolic tangent function, and sigmoid [48,49]. In this
paper, power-sigmoid σ(x) is chosen to enhance the convergence [50,51].

σ(x) =

 xα |x| ≥ 1
(1+e−β)(1−e−βx)
(1−e−β)(1+e−βx)

|x| < 1
, (5)

where α ≥ 3 and β > 2. Typically, a grid-search approach is adopted to select α and β.

2.3.2. GRU Algorithm

GRU is lightweight in terms of computational power and training time compared
with LSTM [52]. There are two gates—namely, ab update gate and a reset gate—in the
GRU architecture. The former controls the transfer of information from the previous input
to the current input, whereas the latter controls the memory of the previous input.
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Define the input at time t xt; the outputs at time t − 1 ht−1 and at time t ht; the output
of the update gate at time t ut; the output of the reset gate at time t rt; the weight matrix of
the update gate Wu, that of the reset gate Wr, that of the estimated output Wĥt

, and that
of the output Wo; and the activation function for update gate σu and that for reset gate
σr. The activations functions are sigmoid function and tanh is hyperbolic tangent. The
formulations of GRU are governed by:

ut = σu(Wu × [ht−1, xt]), (6)

rt = σr(Wr × [ht−1, xt]), (7)

ĥt = tanh
(

Wĥt
× [rt ∗ ht−1, xt]

)
, (8)

ht = (1− ut) ∗ ht−1 + ut ∗ ĥt, (9)

where ∗ is the Hadamard product.

2.3.3. LSTM Algorithm

The three-gate-based architecture of LSTM is characterized by an input gate, a forget
gate, and an output gate. A memory cell is included to retrain the information when the
information is decided to not be ignored.

Define the input at time t xt, the outputs at time t − 1 ht−1 and at time t ht; the output
of the input gate it; the output of the forget gate ft; the output of the output gate ot; the
memory cell state vector at t − 1 Ct−1 and at t Ct; the new candidate vector of the memory
cell C̃t; the activation function (sigmoid function) of the input gate σi, that of the forget gate
σf , and that of σo; and the weight between the cell and input wcx, that between the cell and
previous output wch, that between the input and input gate wix, that between the previous
output and input gate wih, that between the input and forget gate w f x, that between the
previous output and forget gate w f h, that between the input and output gate wox, and that
between the previous output and output gate woh.

it = σi(wixxt + wihht−1), (10)

ft = σf

(
w f xxt + w f hht−1

)
, (11)

ot = σo(woxxt + wohht−1), (12)

C̃t = tanh(wcxxt + wchht−1), (13)

Ct = it ∗ C̃t + ft, (14)

ht = ot ∗ tanh(Ct). (15)

2.3.4. Optimal Design of RNN-GRU-LSTM Model Using NSGA-III

As mentioned before, the issue of class imbalance could be addressed by a multiob-
jective optimization problem that maximizes the accuracy of each class and the overall
accuracy. The formula is given by:

Max F1 = OAall
Max F2 = OAclass0
Max F3 = OAclass1
Max F4 = OAclass2

, (16)

where OAall , OAclass1, OAclass2, and OAclass3 are the overall accuracy of all classes, Class 1,
Class 2, and Class 3 of the datasets, respectively.



Sensors 2021, 21, 6412 9 of 20

NSGA-III is employed to solve the multi-objective optimization problem [41,42]. The
workflow of the NSGA-III is shown in Figure 3. We would like to highlight a few points:
(i) the multi-objective optimization problem is a set of Pareto optimal solutions which
follows an even distribution and has a good convenience and extension; (ii) the diversity is
maintained by a set of reference directions; (iii) the convergence is ensured by the uniformly
distributed reference points on the hyperplane; (iv) if there are multiple members of the
population associated with the reference point, the one with the minimal perpendicular
distance is selected; and (v) the reference point is neglected in the current generation when
there is one member of the population associated with it.
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3. Results and Comparison

The performance evaluation of the driver stress prediction and driver drowsiness
prediction is comprised of six parts: (i) based on the proposed NSGA-III optimized RNN-
GRU-LSTM algorithm; (ii) based on the individual RNN, GRU, and LSTM algorithms; (iii)
based on boosting learning of multiple RNNs, GRUs, and LSTMs (iv) comparison between
(i) and (ii); (v) comparison between (i) and (iii); and (vi) comparison between the proposed
algorithm and existing works.

In the rest of the studies, it is worth mentioning that the algorithm is applied to
both driver stress prediction and driver drowsiness prediction. We adopted k-fold cross-
validation with k = 10 as common practice [53,54].

3.1. NSGA-III Optimized RNN-GRU-LSTM Algorithm

The time range of the in-advance prediction is set as 1–60 s with a step size of 1 s. The
rationale of the extended range of in-advance prediction is that the actual occurrence of
undesirable driving status (stressed driving and drowsy driving) may vary across drivers.
Hence, the prediction model should cater for an extended range of predictability.

Figure 4 shows the OAall , OAclass1, OAclass2, and OAclass3 of the driver stress predic-
tion model and driver drowsiness prediction model with 1–60 s in-advance prediction. The
following observations are made:

• The best OAall for driver stress prediction is 93.1% for 2 s in-advance prediction,
whereas that for driver drowsiness prediction is 94.2% for 1 s in-advance prediction.

• The worst OAall for driver stress prediction is 71.2% for 60 s in-advance prediction,
whereas that for driver drowsiness prediction is 75.3% for 60 s in-advance prediction.

• The overall accuracies (OAall , OAclass1, OAclass2, and OAclass3) drop along with the
increase in the time of the in-advance prediction. This is an expected phenomenon
because more unseen information may occur when the time increases.

• The average discrepancy of −2.91% (less accurate) in the OAall of the minority class
(class 3) is found in the driver stress prediction. For driver drowsiness prediction, the
average discrepancies are −1.15% and −4.92% for minority classes, class 2, and class
3, respectively. The major reason for the discrepancy is the issue of class-imbalance,
which was reduced by formulating the prediction model using multi-objective opti-
mization.
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3.2. Individual RNN, GRU, and LSTM Algorithms

To reveal the benefits of NSGA-III, we carried out a study on the performance of the
prediction model when the individual RNN, GRU, and LSTM algorithms are used. In other
words, there is no involvement of NSGA-III in Section 3.2.

To show the results of the three individual algorithms using the figure, using a style
similar to that of Figure 4 would not be appropriate because 12 curves in the figure are
messy. Instead, Figure 5 provides the results of the OAall of the individual algorithm for
the driver stress prediction and driver drowsiness prediction models.
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Additionally, Table 2 highlights the maximum and minimum of OAall , OAclass1,
OAclass2, and OAclass3.

Table 2. Summary of the maximum and minimum OAall , OAclass1, OAclass2, and OAclass3 for the driver stress prediction
and driver drowsiness prediction models using individual RNN, GRU, and LSTM algorithms.

Overall
Accuracy

Driver Stress Prediction Driver Drowsiness Prediction

Minimum Maximum Minimum Maximum

RNN GRU LSTM RNN GRU LSTM RNN GRU LSTM RNN GRU LSTM

OAall (%) 60.9 63.7 66.8 83.0 81.3 82.2 63.6 65.5 67.5 84.5 83.1 83.9
OAclass1 (%) 61.2 65 67.7 83.2 82 82.8 63.6 66 68 84.9 83.3 84.2
OAclass2 (%) 61.3 63.2 67 83.6 81.3 82.4 64.8 66.2 68.1 85.3 83.8 84.6
OAclass3 (%) 59 61.6 64.2 81.3 79.5 80.2 61.8 62.7 64.3 82.5 81.4 81.8

The following observations are made:

• The best OAall using the individual RNN, GRU, and LSTM algorithms for driver
stress prediction are 83%, 81.3%, and 82.2%, respectively, at 1 s in-advance predic-
tion, whereas those for driver drowsiness prediction are 84.5%, 83.1%, and 83.9%,
respectively, at 1 s in-advance prediction.

• The worst OAall using the individual RNN, GRU, and LSTM algorithms for driver
stress prediction are 60.9%, 63.7%, and 66.8%, respectively, at 60 s in-advance pre-
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diction, whereas those for driver drowsiness prediction are 63.6%, 65.5%, and 67.5%,
respectively, at 60 s in-advance prediction.

• As there is more unseen information when the time of in-advance prediction increases,
the overall accuracies (OAall , OAclass1, OAclass2, and OAclass3) drop.

• For the driver stress prediction model, the average discrepancies are −3.12%, −3.10%,
and −2.33% (less accurate) in the OAall of the minority class (class 3) using the
individual RNN, GRU, and LSTM algorithms, respectively. For the driver drowsiness
prediction model, they are (−1.34%, −1.76%, −1.05%) and (−4.16%, −4.71%, −4.38%)
for minority classes, class 2, and class 3, respectively.

• Driver stress prediction: The RNN algorithm performs better in short-term prediction
compared with the GRU and LSTM algorithms. In terms of OAall , the average lead is
1.31% for 1–11 s in-advance prediction compared with the GRU algorithm. Compared
with the LSTM algorithm, the average lead is 0.5% for 1–9 s in-advance prediction. The
rate of deterioration of OAall with the increase in the time of in-advance prediction
is more severe in the RNN algorithm, followed by the GRU and LSTM algorithms.
As a result, LSTM yields a higher result for OAall in medium-term and long-term
predictions, followed by the GRU and RNN algorithms.

• Driver drowsiness prediction: Similar to driver stress prediction, the RNN algorithm
is the best for short-term prediction. The average lead in OAall is 1.63% for 1–21 s
compared with the GRU algorithm. Compared with LSTM, the average lead is 0.53%
for 1–10 s in-advance prediction.

3.3. Boosting Learning of Multiple RNNs, GRUs, and LSTMs Algorithms

Apart from the baseline models in Section 3.2, the ideas of boosting algorithm of
multiple RNNs, GRUs, and LSTMs algorithms have been analyzed in order to verify the
effectiveness of our proposal, i.e., merging RNN, GRU, and LSTM by NSGA-III.

Similar to the concern of Figure 5, only the results of the OAall of the algorithms for
the driver stress prediction and driver drowsiness prediction models are presented, in
Figure 6. Table 3 summarizes the maximum and minimum of OAall , OAclass1, OAclass2,
and OAclass3.

Key observations are made:

• The best OAall using the boosting learning with multiple RNNs, GRUs, and LSTMs
algorithms for driver stress prediction are 87.1%, 82.6%, and 85.2%, respectively, at
1 s in-advance prediction, whereas those for driver drowsiness prediction are 88.1%,
86.5%, and 87.2%, respectively, at 1 s in-advance prediction.

• The worst OAall using the individual RNN, GRU, and LSTM algorithms for driver
stress prediction are 63.2%, 65.5%, and 70.1%, respectively, at 60 s in-advance pre-
diction, whereas those for driver drowsiness prediction are 65.3%, 67.3%, and 69.5%,
respectively, at 60 s in-advance prediction.

• As expected, the overall accuracies (OAall , OAclass1, OAclass2, and OAclass3) drop along
with the increase in the time of in-advance prediction.

• For the driver stress prediction model, the average discrepancies are −2.48%, −2.57%,
and −1.95% (less accurate) in the OAall of the minority class (class 3) using multiple
RNNs, GRUs, and LSTMs algorithms, respectively. For the driver drowsiness predic-
tion model, they are (−0.42%, −0.44%, −0.48%) and (−3.01%, −2.38%, −1.98%) for
minority classes, class 2, and class 3, respectively.

• Driver stress prediction: The multiple RNNs algorithm performs better in short-term
prediction compared with the multiple GRUs and multiple LSTMs algorithms. In
terms of OAall , the average lead is 3.29% for 1–13 s in-advance prediction compared
with the multiple GRUs algorithm. Compared with the multiple LSTMs algorithm,
the average lead is 1.58% for 1–10 s in-advance prediction. The rate of deterioration
of OAall with the increase in the time of in-advance prediction is more severe in
the multiple RNNs algorithm, followed by the multiple GRUs and multiple LSTMs
algorithms. As a result, multiple LSTMs yield a higher result for OAall in medium-
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term and long-term predictions, followed by the multiple GRUs and multiple RNNs
algorithms.

• Driver drowsiness prediction: Similar to driver stress prediction, the multiple RNNs
algorithm is the best for short-term prediction. The average lead in OAall is 1.57% for
1–14 s compared with the multiple GRUs algorithm. Compared with multiple LSTMs,
the average lead is 0.74% for 1–11 s in-advance prediction.
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Table 3. Summary of the maximum and minimum OAall , OAclass1, OAclass2, and OAclass3 for the driver stress prediction
and driver drowsiness prediction models based on boosting learning of multiple RNNs, GRUs, and LSTMs algorithms.

Overall
Accuracy

Driver Stress Prediction Driver Drowsiness Prediction

Minimum Maximum Minimum Maximum

RNNs GRUs LSTMs RNNs GRUs LSTMs RNNs GRUs LSTMs RNNs GRUs LSTMs

OAall (%) 63.2 65.5 70.1 87.1 82.6 85.2 65.3 67.3 69.5 88.1 86.5 87.2
OAclass1 (%) 63.8 66 70.3 87.5 83.3 85.5 66.1 68 71 88.8 87 87.7
OAclass2 (%) 63.5 65.7 70.5 87.3 82.6 85.6 65 67 69 87.7 86.2 87
OAclass3 (%) 61.2 63.6 68.6 85.4 80.8 83.6 62.8 65.4 68.1 85.9 84.8 85.4
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3.4. Comparison between NSGA-III Optimized RNN-GRU-LSTM Algorithm and Individual
RNN, GRU, and LSTM Algorithms

Based on the results of Sections 3.1 and 3.2, we compare the performance between
the proposed NSGA-III optimized RNN-GRU-LSTM algorithm with that of the individual
RNN, GRU, and LSTM algorithms. In terms of the maximum OAall , the improvement
achieved by the proposed algorithm is summarized in Table 4. The improvement is most
significant for the GRU algorithm, followed by the LSTM and RNN algorithms in both
prediction models. The results reveal that our proposed algorithm merges the advantages
of the RNN, GRU, and LSTM algorithms to achieve extended range prediction (short-term,
medium-term, and long-term).

Table 4. The improvement of OAall achieved by the proposed algorithm, compared with the perfor-
mance of the individual RNN, GRU, and LSTM algorithms.

Driver Stress Prediction Driver Drowsiness Prediction

RNN GRU LSTM RNN GRU LSTM

Improvement (%) 11.2 13.6 12.3 10.2 12.2 11.2

3.5. Comparison between NSGA-III Optimized RNN-GRU-LSTM Algorithm and Boosting
Learning of RNNs, GRUs, and LSTMs Algorithms

Compared the results of Sections 3.1 and 3.3, the performance between the proposed
NSGA-III optimized RNN-GRU-LSTM algorithm and boosting learning of multiple RNNs,
GRUs, and LSTMs. Table 5 summarizes the improvement of maximum OAall by proposed
method.

Table 5. The improvement of OAall achieved by the proposed algorithm, compared with the perfor-
mance of the boosting learning of multiple RNNs, GRUs, and LSTMs algorithms.

Driver Stress Prediction Driver Drowsiness Prediction

RNN GRU LSTM RNN GRU LSTM

Improvement (%) 6.9 12.7 9.3 6.9 8.9 8.0

The results in Sections 3.2 and 3.3 reveal the effectiveness of boosting learning of
multiple RNNs, GRUs, and LSTMs algorithms which improves the OAs of the prediction
models. Particularly, a better enhancement is observed in short-term prediction for multiple
RNNs. Both of the multiple GRUs and LSTMs provide better enhancement in medium-term
and long-term prediction, with a larger extent using multiple LSTMs.

3.6. Comparison between NSGA-III Optimized RNN-GRU-LSTM Algorithm and Existing Works

Attention is drawn into the comparison between our proposal and existing works [14–23].
Table 6 summarizes the crucial information of the works, including the nature of the
dataset, dataset, features, methodology, time of in-advance prediction, cross-validation,
and results. Although the works have carried out evaluations using distinct datasets,
identical applications—i.e., driver drowsiness prediction or driver stress prediction—are
considered. We have discussed this issue from each perspective.
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Table 6. Comparison between the proposed algorithm and existing works for driver drowsiness prediction.

Work Nature of
Dataset Dataset Features Methodology

Time of
In-Advance
Prediction

(s)

Cross-
Validation Results

[14] Simulated 20 participants;
10,303 samples

The percentage
of time of the

eyelids closure
NLAEN 13.8–16.4 No

Recall =
96.1%;

Precision =
98.6%

[15] Simulated

18 participants;
731 drowsy

and 496 normal
samples

CNN extracts
features from

images
CNN; LSTM 3–5 No Accuracy =

95%

[16] Simulated
45 participants;

unspecified
samples

blood volume
pulse; skin

temperature;
skin

conductance;
respiration

CNN; LSTM 8 5-fold

Recall = 82%;
Specificity =

71%;
Sensitivity =

93%

[17] Simulated 37 participants;
4680 samples

2-D spatial
information,

temporal, and
frequency of

the EEG signal

4-D CNN 6 Leave-one-
subject-out

Error rate =
0.283

[18] Simulated 11 participants;
120 samples

Image; EEG;
HRV; EOG FLDA 5 No Accuracy =

79.2%

Proposed Real-world

108
participants;

76,000 normal
samples, 35,000

sleep stage 1
samples, and
20,000 sleep

stage 2 samples

ECG

NSGA-III
optimized

RNN-GRU-
LSTM

algorithm

1–60 10-fold Accuracy =
75.3–94.2%

Convolutional neural network (CNN); electrocardiogram (ECG); electroencephalogram (EEG); electrooculography (EOG); Fisher’s linear
discriminant analysis (FLDA); heart rate variability (HRV); long short-term memory (LSTM); non-linear autoregressive exogenous network
(NLAEN).

3.6.1. In the Perspective of Driver Drowsines Prediction Model

Nature of dataset: The existing works [14–18] utilized data from a simulated environ-
ment, in which the data may not reflect the real-world environment. Our work considered
a real-world dataset, which verifies the validity of the prediction model in real-world
deployment.

Dataset: 11–45 participants contributed the datasets in existing works [14–18]. Al-
though the dataset in our work included 108 participants, all of them are small-scale
datasets. It has been a challenging issue to recruit participants in research studies. In
existing works, the datasets are divided into two classes: normal and drowsy. In contrast,
the dataset used in our work further breaks down the drowsy stage into two classes—sleep
stage 1 and sleep stage 2—based on the definitions of sleep stages. Regarding the sample
size, the dataset used in our work is about 13–1092 times larger compared with the datasets
used in existing works.

Features: The feature extraction approaches can be categorized into image-based
[14,15,18] and biometric-signal-based approaches [16,17] (and ours). Statistics or signal
processing techniques were involved to compute the features in [14,17,18] (and ours),
whereas deep learning was adopted in [15,16]. One study reported on the issue of data
quality for images and EEG [51]. Accordingly, 40% and 15% of the data may have been
distorted during data collection. The study also revealed the robustness of ECG.
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Methodology: Two types of architectures—namely, single core (one core algorithm)
[14–18] and hybrid (multiple core algorithms) (our proposal that links the RNN, GRU,
and LSTM algorithms) approaches—were adopted. As demonstrated in Sections 3.1–3.3,
the hybrid approach is superior for enhancing the performance as it benefits from the
advantages of multiple algorithms. This is aligned with the fact that there is no algorithm
that fits all applications.

Time of in-advance prediction: Limited considerations regarding the specific
time [16–18] and time range [14,15] of in-advance predictions are found in existing works.
The prediction models are not designed to cater for varying requirements concerning the
extended range of in-advance prediction, given the nature of the variation in drivers’ status.
On the contrary, our model is customized to provide an extended range of in-advance
predictions.

Cross-validation: Some works [14,15,18] did not employ cross-validation in their per-
formance evaluation of the prediction model. The validity of the results may not reflect the
practice, because only one set (training and testing datasets) of verification was carried out.

Results: The results of our work are comparable to those of existing works. Taking the
factors of the real-world dataset, more samples, extended range of in-advance prediction,
and 10-fold cross-validation into account, our work is suggested to offer a better approach.

3.6.2. In the Perspective of Driver Stress Prediction Model

Likewise, Table 7 presents a comparison between the proposed algorithm and existing
works for driver stress prediction. The analysis of each metric is summarized as follows.

Table 7. Comparison between the proposed algorithm and existing works for driver stress prediction.

Work Nature of
Dataset Dataset Features Methodology

Time of
In-Advance

Prediction (s)

Cross-
Validation Results

[19] Simulated 27 participants;
20,160 samples

Contextual
data; vehicle

data; ECG
CNN; LSTM 5 No Accuracy =

92.8%

[20] Simulated 27 participants;
20,160 samples

Environmental
data; vehicle

dynamics; eye
data

CNN; LSTM;
self-attention
mechanism

5 10-fold Accuracy =
95.5%

[21] Simulated

3 participants; 150
normal samples
and 150 stressed

samples

HRV; speed
and intensity
of turning of

vehicle

DBN 60 10-fold

Specificity =
62.7–83.6%;

Sensitivity =
61.7–82.3%

[22] Simulated
5 participants;

unspecified
samples

HRV; weather NB 30 10-fold Accuracy =
78.3%

[23] Real-world

1 participant; 64
low stress

samples and 75
high stress

samples

Accelerometer;
EDA; PPG LR 60 10-fold

Specificity =
86.7%;

Sensitivity =
60.9%

Proposed Real-world

18 participants;
40,000 LSL

samples, 38,000
MSL samples,

16,000 HSL
samples

ECG

NSGA-III
optimized

RNN-GRU-
LSTM

algorithm

1–60 10-fold Accuracy =
71.2–93.1%

Convolutional neural network (CNN); deep belief network (DBN); electrocardiogram (ECG); electrodermal activity (EDA); heart rate
variability (HRV); high stress level (HSL); logistic regression (LR); low stress level (LSL); long short-term memory (LSTM); medium stress
level (MSL); Naive Bayes (NB); photoplethysmography (PPG).
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Nature of dataset: Some works [19–22] relied on datasets from simulated environ-
ments, whereas our work and [23] considered real-world datasets. The validity of the
prediction models using real-world datasets is better.

Dataset: All works utilized small-scale datasets, with the number of participants
ranging from 1 to 27. In existing works, the number of classes is two, whereas we defined
three classes: LSL, MSL, and HSL. The sample size of our work is about 5–676 times greater
compared with that of existing works.

Features: There are three types of features that are involved in existing works: vehicle-
based [19–21,23], image-based [20], and biometric-signal-based approaches [19,21–23] (and
ours). Deep learning was employed to extract the features in [19,20].

Methodology: A single-core approach was adopted in existing works [19–23], which
is different from our work using a hybrid approach.

Time of in-advance prediction: Only specific times of in-advance prediction were
considered in existing works.

Cross-validation: Except for the work in [19] that did not adopt cross-validation, other
existing works [20–23] and our proposal utilized 10-fold cross-validation, which ensures
the robustness of the model in real-world deployment.

Results: Taking the factors of using a real-world dataset, more samples, extended range
of in-advance prediction, and 10-fold cross-validation into account, our work outperforms
the existing works in this field.

3.7. Implications of the Results

Once drowsy event is predicted by driver drowsiness prediction model, warning can
be executed (could be in varying ways such as beep sound, warning message, vibration
of driver’s seat, and text message on the display unit). When it comes to stressed event
managed by driver stress prediction model, warning increases the level of stress and
aggression. Alternative measures should be utilized to relieve driver’s stress, for instance,
listen to soothing music, chew gum, and take a few deep breaths [55].

With the advent of artificial intelligence, many pilot and commercial studies have
been conducted for autonomous vehicles and intelligent vehicles [56,57]. We could embed
the prediction models to the central processor of the vehicles.

For autonomous vehicles, the system takes the lead of driving while driver is drowsy
and having high stress level, certainly, driver could confirm in the display unit if he/she can
resume driving. For intelligent vehicles, with the aid of intelligent transport infrastructure
(internet-of-things network), the information of the status of drivers nearby could be shared
so that vehicle could be automatically lowering the speed to a safer level when the driver
is with undesired status. Simultaneously, other drivers nearby could move farther away
from the driver. Overall, the traffic safety can be enhanced by prediction models, and if
there are autonomous/intelligent vehicles, so that the number of road traffic accidents can
be reduced.

4. Conclusions

The dangers of drowsy driving and stressed driving, as two of the leading causes of
road traffic accidents, could be alleviated by introducing an artificial intelligence prediction
model that gives advance predictions of undesirable driving status. In this paper, we
proposed an NSGA-III optimized RNN-GRU-LSTM prediction model. NSGA-III optimally
merges the RNN, GRU, and LSTM algorithms to provide an extended range of in-advance
predictions which cater to the different statuses of drivers relating to drowsiness and stress.
Compared with the individual RNN, GRU, and LSTM algorithms, our proposed model
improves the overall accuracy by 11.2–13.6% and 10.2–12.2% in driver stress prediction and
driver drowsiness prediction, respectively. Likewise, comparison is made with boosting
learning of multiple RNNs, GRUs, and LSTMs algorithms, the improvement in overall
accuracies are 6.9–12.7% and 6.9–8.9%, respectively. Further comparison is made with
existing works, taking into account seven perspectives. It is concluded that the proposed



Sensors 2021, 21, 6412 18 of 20

work outperforms existing works in terms of the major issues of using a real-world dataset;
increasing the sample size; using a hybrid approach to merge RNN, GRU, and LSTM;
achieving an extended range of in-advance prediction; and using 10-fold cross-validation.
There is room for improvement in the overall accuracy of the prediction model, particularly
in terms of increasing the time of in-advance prediction. Suggested future research direc-
tions include (i) increasing the number of data points used through data generation and
augmentation techniques [58,59]; (ii) incorporating deep learning to extract features from
the input data [60,61]; (iii) investigating the enhancement of algorithms through boosting
techniques such as multiple RNNs, multiple GRUs, and multiple LSTMs [62,63]; and (iv)
investigating the transition between classes.
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