Motion Magnification of Vibration Image in Estimation of Technical Object Condition-Review
Abstract
:1. Introduction
2. Optical Flow
3. Motion Magnification
3.1. Lagrangean
3.2. Eulerian Linear
3.3. Eulerian Phase Based
4. Examples
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Manikandana, K.G.; Pannirselvam, K.; Kenned, J.J.; Kumar, C.S. Investigations on suitability of MEMS based accelerometer for vibration measurements. Mater. Today Proc. 2021, 45, 6183–6192. [Google Scholar] [CrossRef]
- Xue, X.; Dong, Y.; Wu, X. Motion Induced Eddy Current Sensor for Non-Intrusive Vibration Measurement. IEEE Sens. J. 2020, 20, 735–744. [Google Scholar] [CrossRef]
- Rothberg, S.J.; Allen, M.S.; Castellini, P.; Di Maio, D.; Dirckx, J.J.J.; Ewins, D.J.; Halkon, B.J.; Muyshondt, P.; Paone, N.; Ryan, T.; et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt. Lasers Eng. 2017, 99, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Dorn, C.; Mancini, T.; Talken, Z.; Kenyon, G.; Farrar, C.; Mascareñas, D. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification. Mech. Syst. Signal. Process. 2017, 85, 567–590. [Google Scholar] [CrossRef]
- Yang, Y.; Dorn, C.; Farrar, C.; Mascareñas, D. Blind, simultaneous identification of full-field vibration modes and large rigid-body motion of output-only structures from digital video measurements. Eng. Struct. 2020, 207, 110183. [Google Scholar] [CrossRef]
- Cakar, O.; Sanliturk, K.Y. Elimination of transducer mass loading effects from frequency response functions. Mech. Syst. Signal. Process. 2005, 19, 87–104. [Google Scholar] [CrossRef]
- Yang, Y.S. Measurement of Dynamic Responses from Large Structural Tests by Analyzing Non-Synchronized Videos. Sensors 2019, 19, 3520. [Google Scholar] [CrossRef] [Green Version]
- Seriani, S.; Gallina, P.; Scalera, L.; Lughi, V. Development of n-DoF Preloaded Structures for Impact Mitigation in Cobots. ASME J. Mech. Robot. 2018, 10, 051009. [Google Scholar] [CrossRef]
- Wu, X.; Chen, Z.; Gu, Y.; Chen, W.; Fang, M. Illustrative visualization of time-varying features in spatio-temporal data. J. Vis. Lang. Comput. 2018, 48, 157–168. [Google Scholar] [CrossRef]
- Mather, J.R. Beaufort Wind Scale. In Encyclopedia of World Climatology. Encyclopedia of Earth Sciences Series; Springer: Berlin, Germany, 2005. [Google Scholar] [CrossRef]
- Wadhwa, N.; Chen, J.G.; Sellon, J.B.; Wei, D.; Rubinstein, M.; Ghaffari, R.; Freeman, D.M.; Büyüköztürk, O.; Wang, P.; Sun, S.; et al. Motion microscopy for visualizing and quantifying small motions. Proc. Natl. Acad. Sci. USA 2017, 114, 11639–11644. [Google Scholar] [CrossRef] [Green Version]
- Jähne, B. Digital Image Processing, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Horn, B.K.P.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Barron, J.L.; Fleet, D.J.; Beauchemin, S.S. Performance of optical flow techniques. Int. J. Comput. Vis. 1994, 12, 43–77. [Google Scholar] [CrossRef]
- Bouguet, J.Y. Pyramidal Implementation of the Lucas Kanade Feature Tracker Description. In Technical Report for Intel Corporation Microsoft Research Lab; Intel Corporation Microsoft Research Lab: Redmond, WA, USA, 2000. [Google Scholar]
- Beauchemin, S.S.; Barron, J.L. Th e computation of optical flow. ACM Comput. Surv. 1995, 27, 433–466. [Google Scholar] [CrossRef]
- Fleet, D.J.; Jepson, A.D. Computation of component image velocity from local phase information. Int. J. Comput. Vis. 1990, 5, 77–104. [Google Scholar] [CrossRef]
- Yu, Q.; Yin, A.; Zhang, Q.; Ma, S. Optical flow tracking method for vibration identification of out-of-plane vision. J. Vibroengineering 2017, 19, 2363–2374. [Google Scholar] [CrossRef]
- Lu, M.; Chai, Y.; Liu, Q. Observation of tower vibration based on subtle motion magnification. Int. Fed. Autom. Control. Pap. Line 2019, 52, 346–350. [Google Scholar] [CrossRef]
- Dong, C.Z.; Celik, O.; Catbas, F.N.; O’Brien, E.J.; Taylor, S. A Robust Vision-Based Method for Displacement Measurement under Adverse Environmental Factors Using Spatio-Temporal Context Learning and Taylor Approximation. Sensors 2019, 19, 3197. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, C.; Barnes, N. Performance of Temporal Filters for Optical Flow Estimation in Mobile Robot Corridor Centring and Visual Odometry. In Proceedings of the 2003 Australasian Conference on Robotics & Automation 2003, Brisbane, Australia, 1–3 December 2003. [Google Scholar]
- Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Computer Vision and Pattern Recognition. arXiv 2016, arXiv:1612.01925. [Google Scholar]
- Dong, C.Z.; Celik, O.; Catbas, F.N.; O’Brien, E.J.; Taylor, S. Structural displacement monitoring using deep learning-based full field optical flow methods. Struct. Infrastruct. Eng. 2019, 16, 51–71. [Google Scholar] [CrossRef]
- Spencer, B.F., Jr.; Hoskere, V.; Narazaki, Y. Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. Engineering 2019, 5, 199–222. [Google Scholar] [CrossRef]
- Raghavendra, R.; Avinash, M.; Marcel, S.; Busch, C. Finger vein liveness detection using motion magnification. In Proceedings of the IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS), Arlington, VA, USA, 8–11 September 2015. [Google Scholar] [CrossRef] [Green Version]
- Buyukozturk, O.; Chen, J.G.; Wadhwa, N.; Davis, A.; Durand, F.; Freeman, W.T. Smaller Than the Eye Can See: Vibration Analysis with Video Cameras. In Proceedings of the 19th World Conference on Non-Destructive Testing (WCNDT), Munich, Germany, 13–17 June 2016. [Google Scholar]
- Liu, C.; Torralba, A.; Freeman, W.T.; Durand, F.; Adelson, E.H. Motion magnification. ACM Trans. Graph. 2005, 24, 519–526. [Google Scholar] [CrossRef]
- Wang, J.Y.A.; Adelson, E.H. Representing moving images with layers. IEEE Trans. Image Process. 1994, 3, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Efros, A.A.; Leung, T.K. Texture synthesis by non-parametric sampling. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999. [Google Scholar] [CrossRef] [Green Version]
- Boda, J.; Pandya, D. A Survey on Image Matting Techniques. In Proceedings of the International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 3–5 April 2018. [Google Scholar] [CrossRef]
- Kamble, K.; Jagtap, N.; Patil, R.A.; Bhurane, A.A. A Review: Eulerian Video Motion Magnification. Int. J. Innov. Res. Comput. Commun. Eng. 2015, 3, 2384–2390. [Google Scholar] [CrossRef]
- Wu, H.Y.; Rubinstein, M.; Shih, E.; Guttag, J.V.; Durand, F.; Freeman, W. Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 2012, 31, 65. [Google Scholar] [CrossRef]
- Adelson, E.H.; Anderson, C.H.; Bergen, J.R.; Burt, P.J.; Ogden, J.M. Pyramid methods in image processing. RCA Engineer 1984, 29, 33–41. [Google Scholar]
- Burt, P.J.; Adelson, E.H. The Laplacian Pyramid as a Compact Image Code. In Readings in Computer Vision: Issues, Problems, Principles, and Paradigms; Morgan Kaufmann: Burlington, MA, USA, 1987; pp. 671–679. [Google Scholar] [CrossRef]
- Felsberg, M.; Sommer, G. The monogenic signal. IEEE Trans. Signal. Process. 2001, 49, 3136–3144. [Google Scholar] [CrossRef] [Green Version]
- Simoncelli, E.P.; Freeman, W.T.; Adelson, E.H.; Heeger, D.J. Shiftable multiscale transforms. IEEE Trans. Inf. Theory 1992, 38, 587–607. [Google Scholar] [CrossRef] [Green Version]
- Freeman, W.T.; Adelson, E.H. The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 891–906. [Google Scholar] [CrossRef]
- Simoncelli, E.P.; Freeman, W.T. The steerable pyramid: A flexible architecture for multi-scale derivative computation, Proceedings. Int. Conf. Image Process. 1995, 3, 444–447. [Google Scholar] [CrossRef]
- Freeman, W.T.; Adelson, E.H.; Heeger, D.J. Motion without movement. In Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 5 July 1991. [Google Scholar] [CrossRef]
- Wadhwa, N.; Rubinstein, M.; Durand, F.; Freeman, W.T. Phase-based Video Motion Processing. ACM Trans. Graph. 2013, 32, 80. [Google Scholar] [CrossRef] [Green Version]
- Wadhwa, N.; Wu, H.Y.; Davis, A.; Rubinstein, M.; Shih, E.; Mysore, G.J.; Chen, J.G.; Buyukozturk, O.; Guttag, J.V.; Freeman, W.T.; et al. Eulerian Video Magnification and Analysis. Commun. ACM 2017, 60, 87–95. [Google Scholar] [CrossRef]
- Unser, M.; Sage, S.; Van De Ville, D. Multiresolution Monogenic Signal Analysis Using the Riesz–Laplace Wavelet Transform. IEEE Trans. Image Process. 2009, 18, 2402–2418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arango, C.; Alata, O.; Emonet, R.; Legrand, A.C.; Konik, H. Subtle Motion Analysis and Spotting using the Riesz Pyramid. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and computer Graphics Theory and Applications (VISIGRAPP 2018), Setubal, Portugal, 27–28 January 2018. [Google Scholar]
- Bridge, C.P. Introduction to the Monogenic Signal. Computer Vision and Pattern Recognition. arXiv 2017, arXiv:1703.09199. [Google Scholar]
- Langley, K.; Anderson, S.J. The Riesz transform and simultaneous representations of phase, energy and orientation in spatial vision. Vis. Res. 2010, 50, 1748–1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadhwa, N.; Rubinstein, M.; Durand, F.; Freeman, W.T. Riesz Pyramids for Fast Phase-BasedVideo Magnification. In Proceedings of the IEEE Conference on Computational Photography (ICCP), Santa Clara, CA, USA, 2–4 May 2014. [Google Scholar] [CrossRef] [Green Version]
- Wadhwa, N.; Rubinstein, M.; Durand, F.; Freeman, W.T. Quaternionic Representation of the Riesz Pyramid for Video Magnification. In Computer Science and Artificial Intelligence Laboratory Technical Report; CSAIL: Cambridge, MA, USA, 2014. [Google Scholar]
- Elgharib, M.A.; Hefeeda, M.; Durand, F.; Freeman, W.T. Video Magnification in Presence of Large Motions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar] [CrossRef]
- Kumar, M.; Choudhary, T.; Bhuyan, M.K. Small Motion Magnification Using Automated RoI Selection and Spatial Co-ordinate Approach. In Proceedings of the International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 22–24 March 2018. [Google Scholar] [CrossRef]
- Verma, M.; Raman, S. Interest Region Based Motion Magnification. In Proceedings of the International Conference on Image Analysis and Processing (ICIAP), Catania, Italy, 11–15 September 2017. [Google Scholar] [CrossRef]
- Zhang, Y.; Pintea, S.L.; Van Gemert, J.C. Video Acceleration Magnification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Civera, M.; Fragonara, L.Z.; Surace, C. Video Processing Techniques for the Contactless Investigation of Large Oscillations. J. Phys. Conf. 2019, 1249, 012004. [Google Scholar] [CrossRef]
- Wu, X.; Yang, X.; Jin, J.; Yang, Z. Amplitude-Based Filtering for Video Magnification in Presence of Large Motion. Sensors 2018, 18, 2312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; McDuff, D. DeepMag: Source Specific Motion Magnification Using Gradient Ascent. Computer Vision and Pattern Recognition. arXiv 2018, arXiv:1808.03338. [Google Scholar]
- Takeda, S.; Okami, K.; Mikami, D.; Isogai, M.; Kimata, H. Jerk-Aware Video Acceleration Magnification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 12–23 June 2018. [Google Scholar] [CrossRef]
- Takeda, S.; Akagi, Y.; Okami, K.; Isogai, M.; Kimata, H. Video Magnification in the Wild Using Fractional Anisotropy in Temporal Distribution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar] [CrossRef]
- Le Ngo, A.C.; Phan, R.C.-W. Seeing the Invisible: Survey of Video Motion Magnification and Small Motion Analysis. ACM Comput. Surv. 2020, 52, 114. [Google Scholar] [CrossRef] [Green Version]
- Kupwade-Patil, K.; Chen, J.G.; Uzun, M.; Lau, D.; Johnston, M.L.; Zhou, A.; Smit, D.; Büyüköztürk, O. Corrosion assessment of ductile iron pipes using high-speed camera technique: Microstructural validation. NDT E Int. 2020, 116, 102362. [Google Scholar] [CrossRef]
- Sarrafi, A.; Mao, Z.; Niezrecki, C.; Poozesh, P. Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification. J. Sound Vib. 2018, 421, 300–318. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Q. Automated defect detection in FRP-bonded structures by Eulerian video magnification and adaptive background mixture model. Autom. Constr. 2020, 116, 103244. [Google Scholar] [CrossRef]
- Fioriti, V.; Roselli, I.; Tatì, A.; Romano, R.; De Canio, G. Motion Magnification Analysis for structural monitoring of ancient constructions. Measurement 2018, 129, 375–380. [Google Scholar] [CrossRef]
- Siringoringo, D.M.; Wangchuk, S.; Fujino, Y. Noncontact operational modal analysis of light poles by vision-based motion-magnification method. Eng. Struct. 2021, 244, 112728. [Google Scholar] [CrossRef]
- Shang, Z.; Shen, Z. Multi-point vibration measurement and mode magnification of civil structures using video-based motion processing. Autom. Constr. 2018, 93, 231–240. [Google Scholar] [CrossRef]
- Eshkevari, S.S.; Heydari, N.; Kutz, J.N.; Pakzad, S.N.; Diplas, P.; Eshkevari, S.S. Operational vision-based modal identification of structures: A novel framework. In Proceedings of the 12th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 10–12 September 2019. [Google Scholar] [CrossRef]
- Chen, J.G.; Wadhwa, N.; Cha, Y.J.; Durand, F.; Freeman, W.T.; Buyukozturk, O. Modal identification of simple structures with high-speed video using motion magnification. J. Sound Vib. 2015, 345, 58–71. [Google Scholar] [CrossRef]
- Eitner, M.; Miller, B.; Sirohi, J.; Tinney, C. Effect of broad-band phase-based motion magnification on modal parameter estimation. Mech. Syst. Signal. Process. 2021, 146, 106995. [Google Scholar] [CrossRef]
- Choi, A.J.; Han, J.H. Frequency-based damage detection in cantilever beam using vision-based monitoring system with motion magnification technique. J. Intell. Mater. Syst. Struct. 2018, 29, 3923–3936. [Google Scholar] [CrossRef]
- Branch, E.; Stewart, E.C. Applications of Phase-Based Motion Processing. In Proceedings of the Structures, Structural Dynamics, and Materials Conference (AIAA/ASCE/AHS/ASC), Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar] [CrossRef]
- Ghandil, M.; Dabanli, Ö.; Riahi, H.T. An enhanced indirect video-based measurement procedure for dynamic structural system identification applications. Measurement 2021, 182, 109759. [Google Scholar] [CrossRef]
- Liu, Z.; He, Q.; Peng, Z. Vision-based vibration measurement by sensing motion of spider silk. Procedia Manuf. 2020, 49, 126–131. [Google Scholar] [CrossRef]
- Shang, Z.; Shen, Z. Multi-point Vibration Measurement for Mode Identification of Bridge Structures using Video-based Motion Magnification. Computer Vision and Pattern Recognition. arXiv 2017, arXiv:1712.06566. [Google Scholar]
- Chen, J.G.; Adams, T.M.; Sun, H.; Bell, E.S.; Büyüköztürk, O. Camera-Based Vibration Measurement of the World War I Memorial Bridge in Portsmouth, New Hampshire. J. Struct. Eng. 2018, 144, 04018207. [Google Scholar] [CrossRef]
- Fontanari, T.V.; Oliveira, M.M. Simultaneous magnification of subtle motions and color variations in videos using Riesz pyramids. Comput. Graph. 2021. [Google Scholar] [CrossRef]
- Udroiu, I.; Tache, I.; Angelescu, N.; Caciula, I. Methods of Measure and Analyse of Video Quality of the Image. WSEAS Trans. Signal Process. 2009, 8, 283–291. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamble, K.S.; Patil, R.A. Noise Reduction in Subtle Video Motion Magnification Using Combined Wavelet Domain Spatio-Temporal Video De-Noising by Block Based Motion Detection Method. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2015, 4, 5166–5173. [Google Scholar] [CrossRef]
- Shahadi, H.I.; Albattat, H.J.; Al-allaq, Z.J.; Thahab, A.T. Eulerian video magnification: A review. Indones. J. Electr. Eng. Comput. Sci. 2020, 18, 799–811. [Google Scholar] [CrossRef]
- Shahadi, H.I.; Al-allaq, Z.J.; Albattat, H.J. Efficient denoising approach based Eulerian video magnification for colour and motion variations. Int. J. Electr. Comput. Eng. (IJECE) 2020, 10, 4701–4711. [Google Scholar] [CrossRef]
- Saad, M.A.; Bovik, A.C.; Charrier, C. Blind Prediction of Natural Video Quality. IEEE Trans. Image Process. 2014, 23, 1352–1365. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, S.R.; Rahnamayan, S. Interactive Evolutionary Parameter Optimization for Eulerian Video Magnification. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018; pp. 10–16. [Google Scholar] [CrossRef]
- Komati, R.; Nagmode, M. Comparative Study of Motion Amplification Techniques for Video Sequences. Int. J. Future Gener. Commun. Netw. 2020, 13, 1203–1211. [Google Scholar]
- Popek, M.P.; Danielewska, M.E.; Iskander, D.R. Assessing frequency response of video motion magnification techniques. 2017 Signal Process. Symp. (SPSympo) 2017, 1–4. [Google Scholar] [CrossRef]
- Liu, L.; Lu, L.; Luo, J.; Zhang, J.; Chen, X. Enhanced Eulerian video magnification. In Proceedings of the 7th International Congress on Image and Signal Processing, Dalian, China, 14–16 October 2014; pp. 50–54. [Google Scholar] [CrossRef]
- Yang, J.; Tse, P. Sparse representation of complex steerable pyramid for machine fault diagnosis by using non-contact video motion to replace conventional accelerometers. Measurement 2021, 175, 109104. [Google Scholar] [CrossRef]
- He, J.; Zhou, X.; Lin, Y.; Sun, C.; Shi, C.; Wu, N.; Luo, G. 20,000-fps Visual Motion Magnification on Pixel-parallel Vision Chip. In Proceedings of the 2019 IEEE 13th International Conference on ASIC (ASICON), Chongqing, China, 29 October–1 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, Z.; He, Q.; Chen, S.; Peng, Z.; Zhang, W. Time-Varying Motion Filtering for Vision-Based Nonstationary Vibration Measurement. IEEE Trans. Instrum. Meas. 2020, 69, 3907–3916. [Google Scholar] [CrossRef]
Accelerometer | Video Camera |
---|---|
Contact | Contactless |
Sparse discrete pointwise measurements | Simultaneous multi point location (quasi continuous) |
Close neighborhood impact in assembly point (sensitivity to temperature, chemicals, etc.) | Line of sight disturbance sensitivity (sensitivity to lighting, fog, smoke, etc.) |
Measurement of absolute values | Measurement of relative values (relative to camera base) |
Direct acquisition | In plane 3d to 2d projection (in case of single camera) |
Time consumption | linear | < | phase-based Riesz | < | phase-based complex steerable |
Loss of quality | phase-based complex steerable | < | phase-based Riesz | << | linear |
Limit of magnification factor | linear | < | phase-based Riesz | ≈ | phase-based complex steerable |
Lit. pos. | Method | Recommendations |
---|---|---|
[32] | Linear video magnification | Basic fast application, low magnification fac-tor, magnified noise, numerous artefacts |
[40] | Eulerian phase-based complex steerable | Postprocessing (computationally consuming), very good image quality, good noise performance, high magnification factor |
[47] | Eulerian phase-based Riesz | Less computationally consuming than complex steerable, good image quality, good noise performance, high magnification factor |
[20] | Spatio-Temporal Context Learning and Taylor Approximation | Condition of illumination changes and fog interference |
[18] | Vibration detection based on out-of-plane vision | Motion in the direction perpendicular to the focusing screen plane |
[23] | Structural displacement monitoring using deep learning-based full field optical flow | Reduction of user involvement in OF processing |
[48] | Temporal stabilization followed by layer-based magnification and magnify ROI with Matting | Discount large motion, necessity of manual selection of the region of interest (ROI) |
[53] | Improved Linear EVM algorithm using amplitude-based filtering. | Small motions in the presence of large motions |
[55] | Application of a jerk-aware filter | Small motions in the presence of quick large motions (jerk movement) |
[56] | using the factional anisotropy | Eliminating non-meaningful changes (e.g., neuroscience) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śmieja, M.; Mamala, J.; Prażnowski, K.; Ciepliński, T.; Szumilas, Ł. Motion Magnification of Vibration Image in Estimation of Technical Object Condition-Review. Sensors 2021, 21, 6572. https://doi.org/10.3390/s21196572
Śmieja M, Mamala J, Prażnowski K, Ciepliński T, Szumilas Ł. Motion Magnification of Vibration Image in Estimation of Technical Object Condition-Review. Sensors. 2021; 21(19):6572. https://doi.org/10.3390/s21196572
Chicago/Turabian StyleŚmieja, Michał, Jarosław Mamala, Krzysztof Prażnowski, Tomasz Ciepliński, and Łukasz Szumilas. 2021. "Motion Magnification of Vibration Image in Estimation of Technical Object Condition-Review" Sensors 21, no. 19: 6572. https://doi.org/10.3390/s21196572
APA StyleŚmieja, M., Mamala, J., Prażnowski, K., Ciepliński, T., & Szumilas, Ł. (2021). Motion Magnification of Vibration Image in Estimation of Technical Object Condition-Review. Sensors, 21(19), 6572. https://doi.org/10.3390/s21196572