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1. Fuzzy Overclustering
1.1. Proof for Cross-Entropy Inverse

We claimed in our paper that we would minimize the entropy H(Φ(x1)) if we mini-
mize CE−1(Φ(x1), Φ(x3)). For two discrete probability distributions p, q over all classes C,
this claim is trivial due to the fact that CE(p, q) = H(p) + K(p, q) with K Kullback-Leibler
divergence. However, Φ(x3) might not be a probability distribution. We show that the
equation still holds for p a probability distribution and q(c) ∈ [0, 1] for all c ∈ C.

CE(p, q) = − ∑
c∈C

p(c) · log(q(c))

= − ∑
c∈C

p(c) · log(
p(c) · q(c)

p(c)
)

= − ∑
c∈C

p(c) · [log(p(c)) + log(
q(c)
p(c)

)]

= − ∑
c∈C

p(c) · log(p(c)) +− ∑
c∈C

p(c) · log(
q(c)
p(c)

)

= H(p) + K(p, q)

(1)

1.2. Restricted Unsupervised Data

As stated in the paper, we restrict the unlabeled data by the fixed ratio r. We restrict
the unlabeled every batch and therefore the unlabeled data per epoch. The ratio r is an
upper bound for the unlabeled data and less unlabeled data can be used in each batch if it
is not available. In Table 1, we give several examples of how much unsupervised data is
used, especially in borderline cases.

2. Implementation Details

In this section, we report additional hyperparameters.
We parallelize the processing of the input instead of the sequential approach of IIC.

This leads to a higher memory usage which we counter by decreasing the repetition of
images per batch to 3 when using the MI part of the loss. Only the overclustering head
uses the additional unlabeled data. We train the framework either on a Titan XP or an
RTX 2080 Ti while the majority is trained on the RTX. In our environment, both GPUs
perform similarly regarding speed and have about 12GB of VRAM. If we need more VRAM
we used multiple GPUs in parallel. The batchsize varied depending on the number of
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Total Batch

r Labeled Unlabeled Labeled Unlabeled

0 100 0 100 0
0 10 90 100 0
0 90 10 100 0
0 50 50 100 0

0.5 100 0 100 0
0.5 10 90 50 50
0.5 90 10 90 10
0.5 50 50 50 50

1.0 100 0 100 0
1.0 10 90 10 90
1.0 90 10 90 10
1.0 50 50 50 50

Table 1: Examples of restricted unsupervised data – The first column describes the ratio r.
All other columns are the percentage of used labeled or unlabeled data relative to the total
number of images or the batch size.

repetitions of the images per batch. The MI part of the loss is calculated over the complete
batch and therefore the batchsize should be at least about the number of output clusters
times repetition. In the unsupervised case, no third input and repetition of 3 is used. We
need 24GB VRAM for a batchsize of 195. In the supervised case, we need 36GB VRAM
for a batchsize of 390. For some ablations, we do not use the MI part of the loss and
repetition of 1. We need 12GB of VRAM for a batchsize of 130. During the training, we
lower the learning rate after 100 epochs by factor 10 if no improvement is visible based on
the proposed metrics in the paper. We stop the training if no improvement is visible for a
third of all epochs.

For the augmentations, we use imgaug1. The source code of the used augmentations
is given in Listing 1. The target_size is a tuple with the target cropping width and height.
We use train_crop as augmentation g1 in the pretext task and train_aug_affine_cutout
in the fine-tuning. We use train_augment_mi as augmentation g2 and val_crop as g3. For
evaluation, we use val_crop for all augmentations.

Listing 1: Used imgaug augmentations

def t r a i n _ c r o p ( t a r g e t _ s i z e ) :
return i a a . Sequent ia l ( [

i a a . CropToFixedSize (
width= t a r g e t _ s i z e [ 0 ] ,
height= t a r g e t _ s i z e [ 1 ] ,
p o s i t i o n =" uniform " ) ,

] )

def train_augment_mi ( t a r g e t _ s i z e ) :
return i a a . Sequent ia l ( [

i a a . CropToFixedSize (
width= t a r g e t _ s i z e [ 0 ] ,

height= t a r g e t _ s i z e [ 1 ] ,
p o s i t i o n =" uniform " ) ,

i a a . F l i p l r ( 0 . 5 ) ,
i a a . AddToHue( ( − 3 0 , 3 0 ) ) ,

1 https://github.com/aleju/imgaug
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i a a . AddToSaturation ( ( − 1 0 0 , 1 0 0 ) ) ,
i a a . GammaContrast (gamma= ( 0 . 6 , 1 . 4 ) )

] )

def t r a i n _ a u g _ a f f i n e _ c u t o u t ( t a r g e t _ s i z e ) :
return i a a . Sequent ia l ( [

i a a . CropToFixedSize (
width= t a r g e t _ s i z e [ 0 ] ,
height= t a r g e t _ s i z e [ 1 ] ,
p o s i t i o n =" uniform " ) ,

i a a . F l i p l r ( 0 . 5 ) ,
i a a . MultiplyHue ( mul = ( 1 − 0 . 1 2 5 , 1 . 1 2 5 ) ) ,
i a a . Mul t ip lySatura t ion ( mul = ( 0 . 6 , 1 . 4 ) ) ,
i a a . Multiply ( mul = ( 0 . 6 , 1 . 4 ) ) ,
i a a . GammaContrast (gamma= ( 0 . 6 , 1 . 4 ) ) ,
i a a . Cutout (

n b _ i t e r a t i o n s =1 ,
f i l l_mode=" constant " ,
cva l =0 ,
s i z e = ( 0 . 2 , 0 . 7 ) ) ,

i a a . Aff ine (
r o t a t e =( −20 , 2 0 ) ,
shear =( −10 , 1 0 ) ,
order =1 ,
cva l =0 ,
mode= ’ constant ’
)

] )

def val_crop ( t a r g e t _ s i z e ) :
return i a a . Sequent ia l ( [

i a a . CropToFixedSize (
width= t a r g e t _ s i z e [ 0 ] ,
height= t a r g e t _ s i z e [ 1 ] ,
p o s i t i o n =" c e n t e r " ) ,

] )

3. Plankton dataset
3.1. Dataset generation

In this subsection, we describe the creation of the plankton dataset in more detail. As
mentioned in the paper, PlanktonID 2 was used to create multiple annotations with the
help of citizen scientists. We use the data generated by version two of PlanktonID. This
version is only available to users which have done at least 1000 annotations in version one.
Therefore, we can assume that the annotators know the differences between the classes
and are dedicated to creating consistent results. The second version of PlanktonID is a
game where example images can be sorted into three proposed classes. If none of the
proposed classes seem to fit, the user has the option to select any other of the 28 classes3 of
PlanktonID (including a ’no fitting category’ class). The initial proposals are generated by
a neural network, hence, a confirmation bias might be introduced.

Some classes of the PlanktonID dataset have very few examples in comparison to
others (e.g. three single images). For this semi-supervised algorithm in contrast to few-shot
learning we picked the largest classes and merged some smaller classes (e.g. different
classes of detritus). All other images are assigned to the class ’no fitting category’. The

2 https://planktonid.geomar.de/en
3 https://planktonid.geomar.de/en/classes



Sensors 2021, 21, 6661 4 of 24

usage of the ’no fitting category’ class has two main reasons. With this class, we can
check how our system performs with a skewed class distribution and a mixture of distinct
subclasses. Moreover, a rescaling of the fuzzy labels is needed if some classes are excluded
from the original assignments. This rescaling leads to a loss of interpretability of the fuzzy
labels by humans. A complete overview of the mapping is given in Table 2. As mentioned
in the paper, we call images certain if the annotations are consistent among all users and
fuzzy if at least one annotation is different. We use only certain images for training and
validation. We aim for 400 training and 200 validation images per class. If not enough
certain images are available, we use random duplicates. The fuzzy labeled images and
not used certain images are used as unlabeled data. The exact number of used images per
class is shown in Table 3. An illustration of the distribution of the data is given in Figure 1.

Label PlanktonID Assigned Label

Bubbles Bubbles
Detritus fluffy - dark Detritus
Detritus compact Detritus
Detritus fluffy - light Detritus
Detritus feces like Detritus
Trichodesmium Tuft Trichodesmium Tuft
Trichodesmium Puff Trichodesmium Puff
Rhizaria Phaeodaria Leg Rhizaria Phaeodaria
Rhizaria Phaeodaria Sphere Eye Rhizaria Phaeodaria
Rhizaria Phaeodaria sphere thorn Rhizaria Phaeodaria
Collodaria black Collodaria black
Collodaria globule Collodaria globule
Crust copepod Crust copepod
Shrimp like Shrimp like
All other 14 categories No fitting category

Table 2: Mapping of labels for the plankton data

Label certain fuzzy total

No fitting category 3073 656 3729
Bubbles 298 213 511
Detritus 264 788 1052
Trichodesmium Puff 207 367 574
Trichodesmium Tuft 916 687 1603
Rhizaria Phaeodaria 995 124 1119
Collodaria black 671 174 845
Collodaria globule 565 136 701
Crust copepod 1194 208 1402
Shrimp like 522 222 744

sum 8705 3575 12280

Table 3: Amount of data per class in the plankton data

3.2. Consistency evaluation

In Table 4 and Table 5 we give the number of consistent images per cluster which were
used to calculate the consistency scores in table 3 in our paper. The tables have different
a number of rows because FixMatch [1] does not use overclustering. The total number
of images without the no-fit class can not be calculated from these tables. It is given in
Table 3 including the train and validation images. The mean and standard deviation of the
consistency per cluster are calculated based on the scores provided in the tables.
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(a) training / validation (b) unlabeled
Figure 1. Illustration of class distribution for the plankton dataset – Every cross represents an image while the color indicates the class
label. All certain images are arranged at random positions within a ring segment for each class. These ring segments are clearly
visible on the left-hand side for the training or validation data since only certain images are used. The fuzzy labeled images of
the unlabeled data are shown as interpolation of the different classes depending on their fuzzy label. For example, an image with
label det. 0.5 tri.tuft 0.5 would be directly in the center. This representation leads to a loss of information and therefore a
reconstruction of the original data points is not possible.

# images # consistent
images

cluster
consistency note

3073 2817 91.67 class no-fit
198 180 90.91
184 183 99.46
393 392 99.75

1079 860 79.70
567 558 98.41
213 202 94.83
443 87 19.64
857 734 85.65
417 116 27.28

7424 6129 82.56 total

4295 3312 77.11 total without
class no-fit

Table 4: Consistency per predicted cluster for FixMatch – Each row describes a predicted
cluster with the number of images, the number of consistent images in that cluster, the
consistency for the cluster and additional notes. At the end, a sum over the complete data
and the data without the no-fit class is provided.

4. SYN-CE

We give an example for the calculation of the fuzzy label for a bubble. A bubble with
a hue of 60 and an axis ratio of 1.3 has an interpolated color of pc = (0.5, 0.5, 0) for the
classes red (r), green (g) and blue (b). The interpolated geometry is pg = (0.7, 0.3) for the
classes circle (c) and ellipse (e). The combined fuzzy label for the classes rc, gc, bc, re, ge
and be is l = (0.35, 0.35, 0, 0.15, 0.15, 0).

In Figure 2 we present 12 examples of the SYN-CE dataset.
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# images # consistent
images

cluster
consistency note

166 158 95.18
194 181 93.29
1 1 100.00

89 82 92.13
6 3 50.00 class no-fit

50 30 60.00
845 780 92.31
108 90 83.33

2645 2556 96.64 class no-fit
3 3 100.00
7 6 85.71

268 209 77.99
260 149 57.31 class no-fit
487 482 98.97
90 87 96.67
292 287 98.29
83 33 39.76 class no-fit
342 160 46.78
523 460 87.95
158 128 81.01
113 94 83.19
34 20 58.82 class no-fit
567 469 82.72
93 50 53.76 class no-fit

7424 6518 87.80 total

4295 3707 86.31 total without
class no-fit

Table 5: Consistency per predicted cluster for FOC – Each row describes a predicted cluster
with the number of images, the number of consistent images in that cluster, the consistency
for the cluster and additional notes. At the end, a sum over the complete data and the data
without the no-fit class is provided.

5. Additional Results
5.1. Results on STL-10

We present further analysis of the STL-10 dataset in this section. Following previous
literature [2,3], we evaluate the unsupervised clustering on the complete labeled dataset if
we use no fine-tuning. In this case, we report the results for the head with the lowest loss.
The parts of FOC which use label information are not used in unsupervised clustering e.g.
supervised augmentations. In the case of unsupervised clustering, IIC and FOC are quite
similar apart from the used heads and the restriction on unsupervised data.

On the warm-up on STL-10, we investigate the impact of r on the runtime and the
benefit of supervised augmentations in Table 6. The direct comparison between IIC and
FOC (r = 1.0) shows that we outmatch IIC by 1.34%. Because the reported results of IIC
used a higher number of clusters than ours, we conducted our own experiment with an
equal number of clusters. Our restricted FOC (r = 0.5) performs almost equally to this
better comparable version of IIC. Due to the restriction of unlabeled data, our method has
a lower runtime by the factor of about 9. As a comparison, we added FOC with r = 1.0
and supervised augmentations as an upper bound estimation. We can identify a clear gap
of 8 to 20% in the performance with this low form of supervision.

A comparison between IIC [2] and our method regarding accuracy and runtime is
given in Table 7. Our method FOC (r = 1.0) can achieve even slightly better results due to
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Table 6: Warm-up on STL-10 – r indicates the restriction of unlabeled data. The runtime
is the training time in hours on the same hardware. The best results are marked bold. A
horizontal line indicates different comparisons. Legend: * Original authors code used. †

Uses supervised augmentations and can be seen as upper bound estimation.

Accuracy

Method r Overcluster Normal Runtime

IIC [2] - 63.1 –

IIC* - 59.31 114 h
FOC 0 57.28 48.10 10 h
FOC 0.5 59.24 52.96 13 h
FOC 1 64.44 50.92 89 h

FOC† 1 72.06 69.83 81 h

Accuracy

Method Overcluster Normal Runtime

IIC [2] 59.6 ca. 216 h4

FOC (r = 0.5) (62.45) 55.99 40 h
FOC (r = 1.0) (65.76) 60.45 93 h

Table 7: Comparison FOC and IIC on unsupervised image classification on STL-10

advanced hyperparameters such as augmentations. The real improvement with FOC is in
the runtime. It is difficult to compare runtimes between different setups. We even use two
GPUs instead of one to achieve 24GB of VRAM like [2]. However, the magnitude of change
is clearly visible. We parallelize the feed forward pass through our network and can cut the
runtime by more than a half. In combination with restricted unlabeled data (r = 0.5), we
can achieve slightly worse results with a speed-up factor of 5 compared to the original IIC.

We further investigate the benefits of each part of the loss in our framework in Table 8
with a ResNet50v2 backbone and ImageNet weights. The first row represent the supervised
baseline that we trained only with cross-entropy and without an unsupervised pretext
task. The accuracy on the normal head improves slightly for each part of the loss which is
added and if unlabeled data is used. Overall the accuracy increases from around 83% to
85%. However, the changes on the overclustering head make a difference from around 30%.
The biggest changes are the usage of an unsupervised pretext task and CE−1or MI. One
additional benefit of CE−1to MI which is not visible in the table is that CE−1independent
of the batch size. Therefore, it can still be used with less memory available.

5.2. Results on plankton dataset

In Figure 3, we illustrate the predictions of our framework of the unlabeled data in
the style of Figure 1. If we compare clusters 03 and 04 of the normal head with clusters
10, 41 and 47 of the overclustering head we see the benefit of overclustering. The clusters
overlap for the normal head but for the overclustering head the cluster 47 holds a mixture
of both classes.

6. Qualitive Results
6.1. Certain Training Examples

This section shows 12 random samples of each class in the training data. The corre-
sponding figures are : Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10,
Figure 11, Figure 12,Figure 13.
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Accuracy

Method Pre MI CE−1 Use Unlabeled Data Overcluster Normal

FOC 58.55 84.11
FOC X 74.95 83.66
FOC X X 80.85 83.80
FOC X X 82.03 84.48
FOC X X X 82.74 84.54
FOC X X X 82.44 85.25
FOC X X X X 83.70 85.25

Table 8: Ablation study of semi-supervised results for STL-10 with a ResNet50v2 Backbone
and ImageNet initialization

6.2. Fuzzy Unlabeled Examples

This section shows 12 random samples of unlabeled data for all predicted clusters
with at least 12 samples. The corresponding figures are : Figure 14, Figure 15, Figure 16,
Figure 17, Figure 18, Figure 19, Figure 20, Figure 21, Figure 22, Figure 23, Figure 24,
Figure 25, Figure 26, Figure 27, Figure 28, Figure 29, Figure 30, Figure 31, Figure 32,
Figure 33.
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4 Official Repo https://github.com/xu-ji/IIC/issues/4

https://github.com/xu-ji/IIC/issues/4
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Figure 2. 12 Examples of the SYN-CE dataset – The upper half are certain examples and the lower have are fuzzy examples.

(a) normal head (b) overcluster head
Figure 3. Prediction of clusters – Every cross represents an image while the color indicates the cluster number. The most likely class
label for each cluster is given in brackets based on the fuzzy labels. Due to the usage of cross-entropy for the normal head, the clusters
correspond to the classes. This is not the case for the overclustering head as you can see based on the different color codes.

Figure 4. Label: no fitting category
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Figure 5. Label: bubbles

Figure 6. Label: detritus

Figure 7. Label: trichodesmium puff
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Figure 8. Label: trichodesmium tuft

Figure 9. Label: Rhizaria Phaeodaria

Figure 10. Label: Collodaria black
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Figure 11. Label: Collodaria globule

Figure 12. Label: Crust copepod

Figure 13. Label: Shrimp like
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Figure 14. Cluster 01

Figure 15. Cluster 02
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Figure 16. Cluster 07

Figure 17. Cluster 09
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Figure 18. Cluster 10

Figure 19. Cluster 11
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Figure 20. Cluster 12

Figure 21. Cluster 24
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Figure 22. Cluster 26

Figure 23. Cluster 31
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Figure 24. Cluster 36

Figure 25. Cluster 41
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Figure 26. Cluster 43

Figure 27. Cluster 44
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Figure 28. Cluster 45

Figure 29. Cluster 47
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Figure 30. Cluster 51

Figure 31. Cluster 52
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Figure 32. Cluster 53

Figure 33. Cluster 59
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