Development of Integrative Methodologies for Effective Excavation Progress Monitoring
Abstract
:1. Introduction
2. Overview of Framework
3. Volume Estimation Algorithms
3.1. Excavated Ground Volume Estimation (Direct Estimation)
3.2. Bucket Volume Estimation (Indirect Estimation)
4. Ground Mapping in Occlusion Areas
4.1. Sensor Vision Occlusion and Initial Exteroceptive Map
4.2. Identification of a Bucket Trajectory Using Kinematic Analysis
Conversion of Stroke to Bucket Position
4.3. Map Reconstruction for Occlusion Areas
5. 5D Mapping
5.1. 3D Geometrical Ground Map
5.2. 3D Material Classification Using LiDAR’s Intensity
5.3. Indexing Ground Resistive Force
5.4. Soil Type Classification Using Convolutional Neural Network
6. Results and Discussions
6.1. Setup of a Test Platform
6.2. Estimation of Excavation Volume
6.2.1. Estimation of Bucket Volume
6.2.2. Estimation of Ground Excavation Volume
6.2.3. Relationship between Ground Volume and Bucket Volume
6.3. Mapping Using a Bucket Trajectory at Occlusion Areas
6.3.1. Bucket Trajectory Formation
6.3.2. Map Reconstruction for Occluded Areas and Validation
6.4. 5D Mapping
6.4.1. 3D Ground Map and LiDAR’s Intensity
6.4.2. Force Index
6.4.3. Relationship between Intensity and Net Force
6.4.4. 5D Map Construction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yeom, D.; Yoo, H.; Kim, Y. 3D surround local sensing system H/W for intelligent excavation robot (IES). J. Asian Archit. Build. Eng. 2019, 18, 439–456. [Google Scholar] [CrossRef]
- Zhang, X.; Morris, J.; Klette, R. Measurement Using a Laser Scanner; Communication and Information Technology Research Technical Report; The University of Auckland: Auckland, New Zealand, 2005. [Google Scholar]
- Cheok, G.; Lipman, R.; Witzgall, C.; Bernal, J.; Stone, W. Field demonstration of laser scanning for excavation measurement. In Proceedings of the 17th IAARC/CIB/IEEE/IFAC/IFR International Symposium on Automation and Robotics in Construction, Taipei, Taiwan, 18–20 September 2000; pp. 683–688. [Google Scholar]
- Jud, D.; Leemann, P.; Kerscher, S.; Hutter, M. Autonomous free-form trenching using a walking excavator. IEEE Robot. Autom. Lett. 2019, 4, 3208–3215. [Google Scholar] [CrossRef] [Green Version]
- Kolter, J.Z.; Kimz, Y.; Ng, A.Y. Stereo vision and terrain modeling for quadruped robots. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 1557–1564. [Google Scholar]
- Homberger, T.; Wellhausen, L.; Fankhauser, P.; Hutter, M. Support surface estimation for legged robots. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019. [Google Scholar]
- Suleymanov, T.; Gadd, M.; Kunze, L.; Newman, P. LiDAR lateral localisation despite challenging occlusion from traffic. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020. [Google Scholar]
- Berg, H.; Larsson, J. Vehicle Perception with LiDAR and Deep Learning. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2018. [Google Scholar]
- Lee, J.; Kim, B.; Sun, D.; Han, C.-S.; Ahn, Y.H. Development of unmanned excavator vehicle system for performing dangerous construction work. Sensors 2019, 19, 4853. [Google Scholar] [CrossRef] [Green Version]
- Sherafat, B.; Rashidi, A.; Lee, Y.-C.; Ahn, C.R. A hybrid kinematic-acoustic system for automated activity detection of construction equipment. Sensors 2019, 19, 4286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Kang, M.-S.; Shin, D.-S.; Han, C.-S. Estimation with applications to dynamic status of an excavator without renovation, Conference. In Proceedings of the 29th International Symposium on Automation and Robotics in Construction, Eindhoven, The Netherlands, 26–29 June 2012. [Google Scholar]
- Niskanen, I.; Immonen, M.; Makkonen, T.; Keränen, P.; Tyni, P.; Hallman, L.; Hiltunen, M.; Kolli, T.; Louhisalmi, Y.; Kostamovaara, J.; et al. 4D modeling of soil surface during excavation using a solid-state 2D profilometer mounted on the arm of an excavator. Autom. Constr. 2020, 112, 103112. [Google Scholar] [CrossRef]
- Fukui, R.; Niho, T.; Nakao, M.; Uetake, M. Imitation-based control of automated ore excavator: Improvement of autonomous excavation database quality using clustering and association analysis processes. Adv. Robot. 2017, 31, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sung, C.; Kim, P. 3D terrain reconstruction of construction sites using a stereo camera. Autom. Constr. 2016, 64, 65–77. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, T.; Zhao, X. Applying sensor-based technology to improve construction safety management. Sensors 2017, 17, 1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bewley, A.; Shekhar, R.; Leonard, S.; Upcroft, B.; Lever, P. Real-time volume estimation of a dragline payload. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–11 May 2011. [Google Scholar]
- Mineo, C.; Pierce, S.; Nicholson, P.; Cooper, I. Introducing a novel mesh following technique for approximation-free robotic tool path trajectories. J. Comput. Design Eng. 2017, 4, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Jost, T.; Hügli, H. Fast ICP Algorithms for Shape Registration; Van Gool, L., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; p. 2449. [Google Scholar]
- Magnusson, M. The Three-Dimensional Normal-Distributions Transform—An Efficient Representation for Registration, Surface Analysis, and Loop Detection. Ph.D. Thesis, Örebro University, Örebro, Sweden, 2013. [Google Scholar]
- Myronenko, A.; Song, X. Point set registration: Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 2010, 32, 2262–2275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonarakis, A.; Richards, K.; Brasington, J. Object-based land cover classification using airborne LiDAR. Remote Sens. Environ. 2009, 112, 2988–2998. [Google Scholar] [CrossRef]
- Geodetics. Lidar Intensity: What is it and What are It’s Applications?—Geodetics. 2020. Available online: https://geodetics.com/lidar-intensity-applications (accessed on 20 October 2020).
- Mathworks.com. Deep Learning Toolbox. 2020. Available online: https://www.mathworks.com/products/deep-learning.html (accessed on 20 October 2020).
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014. [Google Scholar]
- Medium. Review: Googlenet (Inception V1)—Winner Of ILSVRC 2014 (Image Classification). 2020. Available online: https://medium.com/coinmonks/paper-review-of-googlenet-inception-v1-winner-of-ilsvlc-2014-image-classification-c2b3565a64e7 (accessed on 20 October 2020).
- Zhou, B.; Khosla, A.; Lapedriza, À.; Torralba, A.; Oliva, A. Places: An image database for deep scene understanding. arXiv 2016, arXiv:1610.02055. [Google Scholar] [CrossRef]
- Reginald, N.; Seo, J.; Rasul, A. Tracking control of force/position and contour for an excavator with co-simulation. In Proceedings of the 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), London, ON, Canada, 26–29 April 2020. [Google Scholar]
- Reginald, N.; Seo, J.; Rasul, A. Development of an integrated tracking control algorithm for digging operations of an excavator. In Proceedings of the 2020 20th International Conference on Control, Automation and Systems (ICCAS 2020), Busan, Korea, 13–16 October 2020; pp. 195–200. [Google Scholar]
Measurement | Value | Measurement | Value |
---|---|---|---|
FB | 0.175 m | FG | 0.576 m |
HC | 0.549 m | CK | 0.187 m |
LN | 0.450 m | NM | 0.298 m |
PQ | 0.249 m | DQ | 0.120 m |
ND | 0.111 m | 31° | |
45° | 157.5° | ||
34° | , | 15°, 87° |
No. of Digs | Ground Volume | Accumulated Bucket Volume | Difference (m3) |
---|---|---|---|
1 | 0.018 | 0.009 | 0.009 |
2 | 0.034 | 0.016 | 0.018 |
3 | 0.049 | 0.03 | 0.019 |
4 | 0.05 | 0.031 | 0.019 |
5 | 0.06 | 0.033 | 0.027 |
6 | 0.069 | 0.055 | 0.014 |
7 | 0.073 | 0.054 | 0.019 |
8 | 0.074 | 0.053 | 0.021 |
9 | 0.083 | 0.065 | 0.018 |
10 | 0.086 | 0.071 | 0.015 |
11 | 0.092 | 0.078 | 0.014 |
12 | 0.098 | 0.083 | 0.015 |
13 | 0.11 | 0.085 | 0.025 |
14 | 0.12 | 0.095 | 0.025 |
15 | 0.13 | 0.116 | 0.014 |
Average | 0.018 |
Segment no and Type | Intensity | Force Index (Net Force) (N) | Digging Depth (m) |
---|---|---|---|
1 (Sand) | 70 | 2050 | Ground surface |
2 (Sand + Soil) | 27 | 2000 | Ground surface |
3 (Soil) | 14 | 1900 | Ground surface |
4 (Natural Ground 1) | 35 | 1900 | 0.55 |
5 (Natural Ground 2) | 27 | 2250 | 0.65 |
6 (Natural Ground 3) | 21 | 2200 | 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasul, A.; Seo, J.; Khajepour, A. Development of Integrative Methodologies for Effective Excavation Progress Monitoring. Sensors 2021, 21, 364. https://doi.org/10.3390/s21020364
Rasul A, Seo J, Khajepour A. Development of Integrative Methodologies for Effective Excavation Progress Monitoring. Sensors. 2021; 21(2):364. https://doi.org/10.3390/s21020364
Chicago/Turabian StyleRasul, Abdullah, Jaho Seo, and Amir Khajepour. 2021. "Development of Integrative Methodologies for Effective Excavation Progress Monitoring" Sensors 21, no. 2: 364. https://doi.org/10.3390/s21020364
APA StyleRasul, A., Seo, J., & Khajepour, A. (2021). Development of Integrative Methodologies for Effective Excavation Progress Monitoring. Sensors, 21(2), 364. https://doi.org/10.3390/s21020364