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Abstract: Excavation is one of the primary projects in the construction industry. Introducing var-
ious technologies for full automation of the excavation can be a solution to improve sensing and
productivity that are the ongoing issues in this area. This paper covers three aspects of effective
excavation progress monitoring that include excavation volume estimation, occlusion area detection,
and 5D mapping. The excavation volume estimation component enables estimating the bucket
volume and ground excavation volume. To achieve mapping of the hidden or occluded ground areas,
integration of proprioceptive and exteroceptive sensing data was adopted. Finally, we proposed the
idea of 5D mapping that provides the info of the excavated ground in terms of geometric space and
material type/properties using a 3D ground map with LiDAR intensity and a ground resistive index.
Through experimental validations with a mini excavator, the accuracy of the two different volume
estimation methods was compared. Finally, a reconstructed map for occlusion areas and a 5D map
were created using the bucket tip’s trajectory and multiple sensory data with convolutional neural
network techniques, respectively. The created 5D map would allow for the provision of extended
ground information beyond a normal 3D ground map, which is indispensable to progress monitoring
and control of autonomous excavation.

Keywords: excavation progress; ground volume estimation; bucket volume estimation; occlusion
area; proprioceptive and exteroceptive sensors; 5D mapping; stereo vision camera; LiDAR; convolu-
tional neural network

1. Introduction

An excavator is one of the most significant pieces of equipment in the construction
industry, and is used for earthworks since they can perform various tasks such as loading,
leveling, cutting, and grading earth [1]. During the operation of excavation, operators
use their sense together with reasoning-based knowledge and experience to monitor and
control the excavation process. However, this area has been struggling to find skilled
equipment operators due to recent labor shortages, and thus the transition from manual to
autonomous excavation can be a solution to this problem.

Effective and accurate monitoring of the excavation process is an important component
for autonomous excavation since it provides a foundation for successful operation control
and process planning/management. To facilitate excavation progress monitoring, various
approaches for excavation ground detection and mapping have been developed as follows.

To estimate the ground volume, Zhang et al. [2] applied and compared two method-
ologies for volume estimation based on laser scanner measurements. In this study, the first
method was used to calculate the volume with 3D models or meshed surfaces whereas
the second method allowed the same task using the isolated points from measurements
whose single element (point) is considered as an apex of the truncated pyramid in 3D
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space. However, the study showed the limited accuracy of the estimated volume due to
under-sampling in the occluded regions.

In [3], excavation changes were tracked by utilizing the depth difference in the terrain.
This approach used laser scanners to track the terrain changes from two different locations
that include the corner of a building and a steel pole located around the construction site.
The point clouds from the two locations were then aligned using the registration technique.
However, obtaining the truth reference ground is challenging due to the data noise and
scan quality.

The excavated ground volume estimation sometimes faces the issue of unperceived
areas due to the presence of obstacles such as a pile that blocks sensor vision and degrades
the estimation accuracy [4]. Therefore, the necessity for another ground volume estimation
is raised to avoid the occlusion problem. For example, the bucket capacity can be an
indirect proxy for estimating the excavated ground volume. This is because it is possible to
detect the soil volume in the bucket for the whole excavation period by mounting a sensor
at the proper location near the bucket that can guarantee full visibility.

There has been little effort to deal with the problem of occlusion areas occurring during
the excavation. Some solutions to this problem were proposed in the legged robotics where
the robot navigates under different terrains. Ref. [5] dealt with occluded rugged terrains
due to the line-of-sight constraints of LIDAR sensors by applying the point-cloud matching
and non-parametric terrain modeling algorithms. Through this method, the missing and
occluded portions of terrains were filled in the height map. Another study [6] fused
exteroceptive (data from a depth camera) and proprioceptive (foothold position of a legged
robot) sensing to estimate the support surface for legged robots in vegetated (e.g., grass)
environments that can obstruct the sensor visibility. This approach allowed fusing the
foothold position variation and the vegetation height one, and creating the 2.5D height
map as a representation of the estimated support surface.

An idea of applying the deep neural network to deal with the sensing occlusion has
been proposed in [7]. This study utilized a LiDAR sensor to construct the lateral localization
system. During the localization, detection of invisible (occluded) road boundaries was out
by applying the occluded road boundary inference-deep neural network. For occlusion
detection in the vehicle perception with LiDAR sensors, Ref. [8] developed a convolu-
tional neural network (CNN)-based occupancy grid maps. Their approach can predict
the locations of occluded objects emerging while overtaking in highway. Although the
aforementioned methodologies could improve the quality and robustness of environmental
monitoring by proposing the occlusion detection methods, their applications are limited to
traffic and autonomous vehicles. Therefore, an occlusion detection strategy specialized for
excavation applications needs to be explored.

Sensor fusion techniques have been adopted to recognize the motion and posture of
construction equipment. In the study of [9] that developed an unmanned excavator to carry
out dangerous construction works, various sensors including a GPS sensor, a potentiometer,
and a tilt sensor were used to identify the excavator’s gripper position. Ref. [10] proposed
a sensor fusion method by configuring both kinematic and audio signals that permits the
classification of the construction equipment’s activities.

The commonly used sensor combination for 3D navigation and estimation of the
ground surface in excavators includes the inertial measurement unit (IMU) fused with
GPS or GNSS. Using the joint angle data obtained from this configuration and kinematic
information, the dynamic status of an excavator was estimated, which can be further
utilized for the estimation of a 3D profile of ground surface [11,12]. The stereo vision (depth
camera)-based methodology has been utilized to identify the ground surface including
rock piles [13] through stereo matching in the left and right images that allows obtaining
the depth images of the surface. Although the stereo matching technique provides high-
resolution depth information, its measurement accuracy is affected by the richness in the
surface texture [14,15]. Despite the unique merits of these methodologies, no other info
rather than the ground profile and distribution can be offered by them.
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To tackle this limitation, the idea of a 4D map was proposed in [12] to identify the
material properties. This map includes several components such as 3D geographic map
and reflection data using a laser beam. It can provide extensive ground information
by identifying material types using the reflectivity data. However, the method is not
able to capture further information of the material properties like soil reaction force that
can be considered as an important factor to carry out successful autonomous excavation.
Therefore, an approach to incorporate the info of various material properties into a normal
3D map would be useful for monitoring and control of the excavation tasks.

By reflecting the critical issues in the above literature review, this paper presents three
different aspects of the excavation progress monitoring, namely, excavated soil volume
estimation, a solution to sensing occlusion, and 5D mapping for identifying the excavated
material properties.

The excavation volume estimation is the first step towards the excavation progress
that describes how much excavation has progressed in terms of dug volume. Two different
estimation methods were investigated for this task, which include the direct estimation
using the ground surface change and the indirect estimation through the soil volume
contained in the bucket.

The second step towards the excavation progress is to overcome a technical challenge
in ground mapping caused by the sensor occlusion problem. Specifically, surrounding
obstacles and piles on excavation sites may block the view of sensors and result in
limited environmental monitoring. To overcome this issue, we adopted the idea of fusing
proprioceptive and exteroceptive measurements to reconstruct a ground map for the
occluded areas.

The third focus of this paper is to generate the 5D map, which is referred to as a map
that consists of a 3D ground map, the LiDAR intensity info (1D), and a force index (1D).
The combination of all these entities can provide a wide spectrum of info on the excavated
ground. To enhance the quality of the ground info produced from the 5D map, we also
applied the convolutional neural network (CNN) to classify soil types using the ground
images. Compared to the normal 3D or 4D map, the proposed 5D map can provide detailed
information of the excavated ground that allows more accurate progress monitoring, and
therefore sophisticated control of autonomous excavation based on that.

The remainder of this paper is outlined as follows. Section 2 provides an overview
of the methodologies applied for this study. Section 3 describes the volume estimation
algorithms. Section 4 explains the ground mapping in occlusion areas. In Section 5, the
developed 5D mapping is described. Section 6 provides the results of experiments to
validate the ideas proposed in Sections 3–5. Finally, Section 7 offers concluding remarks
and suggestions.

2. Overview of Framework

The primary goal of this paper is to propose an integrative solution for monitor-
ing autonomous excavation progress using multiple sensors that can combine the critical
components of ground volume estimation, map reconstruction for occlusion areas, and com-
prehensive ground mapping (5D map) for material property identification. Figure 1 shows a
framework of this paper to achieve our objectives, which is composed of the aforementioned
components. A detailed description of the framework is provided as follows.

The first part of the framework proposes the direct excavation volume estimation
by applying the registration technique to align point clouds and the volume estimation
technique (rasterization and height grids) to estimate the volume of the excavated ground.
The first part also handles an alternative method for volume estimation. This method
allows indirect monitoring of the excavation progress through estimating the volume of
soil contained in the bucket that can be achieved by applying the registration technique to
align the point cloud converted from the bucket CAD (Computer-Aided Design) model
and the measured point cloud of the bucket with excavated soil.
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The second part copes with the occlusion issue that is the major challenge to monitor
the excavation progress or ground mapping. During the excavation, the sensor vision could
often get blocked by a pile on the ground. As a solution to this problem, the bucket tip’s
3D trajectory was merged into a point cloud-based ground map for visible areas, which
can fill the ground info of occluded areas.

Finally, the last part provides the info of the ground’s geometric space and material
properties by generating the 5 D map that comprises the x, y, z coordinates, intensity
value (LiDAR’s beam reflectivity), and a force index based on the actuator’s pressure data.
To support the 5D map, the convolutional neural network technique was applied to classify
the images that identify material types. The proposed integrative methodologies were
developed in the MATLAB environment. A detailed explanation will be provided in the
following sections.

3. Volume Estimation Algorithms
3.1. Excavated Ground Volume Estimation (Direct Estimation)

This section describes the developed algorithms for directly estimating the volume
of the excavated ground. This approach is based on the volume calculation of dug areas
that allows us to identify how much excavation is progressed. The direct estimation can be
achieved by comparing the reference ground profile (reference point cloud) and the actual
one (current point cloud) after excavation. The detailed procedure for this method is given
as follows.

First, the reference point cloud that represents the pre-excavation ground profile was
captured with the help of a stereo vision camera before the excavation. This reference
point cloud was compared with the changes in the ground profile captured after each dig.
To capture the current ground surface at each dig, the stereo camera was installed in a tilted
position. Then, transformation matrices were applied to both point clouds (reference and
current) to compensate for a tilting angle. After transforming the point clouds, the next
step was to register these point clouds indicating the same scene and to integrate them
into a common global coordinate system. Finally, the current point cloud was subtracted
from the reference one. This subtraction means the volume difference between two point
clouds (reference and actual ground profiles), which provides the info of the accumulated
excavated volume.

3.2. Bucket Volume Estimation (Indirect Estimation)

The bucket volume estimation is a way to indirectly estimate the volume of the
excavated ground during digging tasks. The bucket volume estimation is an effective
method to monitor the excavation progress since the soil volume contained in the bucket
can be detected by a sensor mounted on the excavator all the time during the entire
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excavation process. Hence, this method can overcome the main limitation of the direct
estimation in Section 3.1 that it cannot accurately estimate the excavated ground volume if
there is an occlusion area in digging space to hinder the detection of the ground profile.

As the first process of this method, the point cloud to represent the scanned bucket
that contains the soil was captured using a stereo vision camera. The sensor position
was fixed to the location that permits to fully capture the bucket volume during the
excavation process. Then, the bucket CAD model was introduced to have the reference
point cloud [16]. The registration technique was applied to align the point cloud of the
scanned bucket with the reference point cloud. To fill out some vacant spaces in the point
cloud, the triangulation meshing technique was adopted. Finally, the difference between
the two point clouds (bucket containing the soil and bucket CAD model) was identified to
compute the excavated volume after each dig.

4. Ground Mapping in Occlusion Areas

Another technical challenge in the ground mapping and autonomous excavation
progress estimation comes from the occlusion areas that cause the limited or blocked Field
of View (FOV) of sensors. Specifically, piles and other surrounding obstacles on the ground
at excavation sites may limit the FOV of the sensors by blocking their vision and result
in limited monitoring of the environment and excavation progress. As a remedy to the
occlusion problem, we applied the method of fusing proprioceptive and exteroceptive
sensors to reconstruct a map [4]. The proprioceptive sensors measure the internal dynamics
of the excavator such as joint angles and body’s rotational position while the exteroceptive
sensors gather the information from the external environment, i.e., distance measurement
and ground surface profile.

4.1. Sensor Vision Occlusion and Initial Exteroceptive Map

Figure 2 illustrates the sensor vision occlusion created by a dug pile with an excavator.
The pile in front of the excavator blocks the vision of a sensor. In this case, the sensor
is not capable of perceiving the ground on the other side of the pile where the vision is
blocked (shaded area in the figure). Therefore, the exteroceptive sensor cannot collect the
information on the ground surface in the occluded area. Instead, this study alternatively
used a bucket trajectory as proprioceptive sensory data to get the geo-info of the occluded
area that is always available regardless of vision blockage. Finally, the exteroceptive and
proprioceptive data were integrated to monitor both unoccluded and occluded areas of the
excavation site.
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Figure 3b shows an initial map of the ground having an occlusion area that was
constructed using a stereo vision camera (exteroceptive). As seen in the figure, the occluded
area is included in the middle of the excavated ground. Thus, the initial map has the
corresponding unscanned region where the vision of the camera is obstructed. To add the
info of the ground surface in this region into the initial map, the bucket trajectory-based
proprioceptive map was also created, which will be explained in the next section.
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4.2. Identification of a Bucket Trajectory Using Kinematic Analysis

Tracking of a bucket trajectory during the digging task enables constructing the
proprioceptive map for an occluded area. The first step in this mapping is to identify the
trajectory of the bucket tip by using each actuator’s stroke data. The stroke data obtained
from LVDT (Linear Variable Displacement Transducer) sensors were converted to each joint
angle, and the position of the bucket tip was identified based on a kinematic analysis using
the joint angles. The corresponding angles of each joint are shown in Figure 4 where θb, θa,
and θk are the boom, arm, and bucket joint angles, respectively. The length information of
the links presented in the figure is shown in Table 1.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 26 
 

 

 

Figure 4. Joint angles and links for the excavator. 

 Conversion of Stroke to Bucket Position 

The boom angle can be calculated using the following equations. 

∅𝑏 = 𝑎𝑐𝑜𝑠 (
𝐹𝐵̅̅ ̅̅ 2 + 𝐹𝐺̅̅ ̅̅ 2 − 𝑆𝑏

2

2 ∙ 𝐹𝐵̅̅ ̅̅ ∙ 𝐹𝐺̅̅ ̅̅
) (1) 

𝜃𝑏  =  𝜋 − 𝛽𝑏 − 𝛼𝑏 − ∅𝑏. (2) 

The arm angle 𝜃𝑎 is obtained as follows: 

∅𝑎 = 𝑎𝑐𝑜𝑠 (
𝑆𝑎

2  −  𝐻𝐶̅̅ ̅̅ 2 − 𝐶𝐾̅̅ ̅̅ 2

2 ∙ 𝐻𝐶̅̅ ̅̅ ∙ 𝐶𝐾̅̅ ̅̅
) (3) 

𝜃𝑎 =  2𝜋 − 𝛽𝑎 − 𝛼𝑎 − ∅𝑎 (4) 

The bucket motion is driven by the four-bar mechanism NMQD (See Figure 5). The 

bucket angle 𝜃𝑘 can be calculated using the bucket stroke 𝑆𝑘 in the equation below: 

 

Figure 5. Bucket actuator and corresponding four-bar mechanism. 

Figure 4. Joint angles and links for the excavator.



Sensors 2021, 21, 364 7 of 25

Table 1. Length and angle information of the links in Figure 4.

Measurement Value Measurement Value

FB 0.175 m FG 0.576 m
HC 0.549 m CK 0.187 m
LN 0.450 m NM 0.298 m
PQ 0.249 m DQ 0.120 m
ND 0.111 m βb 31◦

αb 45◦ βa 157.5◦

αa 34◦ βk,αk 15◦, 87◦

Conversion of Stroke to Bucket Position

The boom angle can be calculated using the following equations.

∅b = acos

(
FB2

+ FG2 − S2
b

2·FB·FG

)
(1)

θb = π − βb − αb −∅b. (2)

The arm angle θa is obtained as follows:

∅a = acos

(
S2

a − HC2 − CK2

2·HC·CK

)
(3)

θa = 2π − βa − αa −∅a (4)

The bucket motion is driven by the four-bar mechanism NMQD (See Figure 5). The
bucket angle θk can be calculated using the bucket stroke Sk in the equation below:

∅k = acos

(
LN2

+ NM2 − S2
b

2·LN·NM

)
(5)

MND = π − β4 −∅k (6)

k1 =

√
NP2

+ ND2 − 2·ND·NP·cos
(

MND
)

(7)

α = acos

(
ND2

+ k1
2 − NP2

2·FB·k1

)
(8)

β = acos

(
k1

2 + DQ2 − PQ2

2·DQ·k1

)
(9)

µ = α + β (10)

θk = 3π − µ − αk (11)

After computing the angles for each joint, the next step is to generate x and y coordi-
nates of the bucket trajectory using these angles. The coordinates were calculated using the
cosine law below.

BucketTrackX = L2·cosθb + L3·cos(θb + θa) + L4·cos(θb + θa + θk) (12)

BucketTrackY = L2·sinθb + L3·sin(θb + θa) + L4·sin(θb + θa + θk) (13)

where BucketTrackX and BucketTrackY are the x and y coordinates of the bucket trajectory.
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Figure 6 shows an example of the bucket trajectory obtained after all the above
computations. Since the above equations can generate a 2D bucket trajectory to identify
the bucket tip’s path, it needs to be converted to 3D to reconstruct a ground map. For
this 3D conversion, we considered the width of the bucket whose info with the 2D path
can generate a 3D spatial trajectory. Figure 7 shows the converted bucket trajectory in
3D space. In the figure, the middle line shows the identified trajectory with regard to the
manipulator’s centerline, and the other two lines present each outer side of the bucket (so,
the distance between these two lines indicates the bucket’s width).
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To fill the vacant spaces between these lines, we applied the meshing technique that is
used for building a representation of 3D surfaces as a series of discrete facets [17]. Figure 8
shows the result of an application of the meshing technique to the 2D bucket trajectory.
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4.3. Map Reconstruction for Occlusion Areas

The reconstruction of a map for occlusion areas requires a fusion of proprioceptive and
exteroceptive maps. For this process, a global coordinate system was defined first with its
origin that was set to be the boom base of the excavator. Then, the sensor (local) coordinates
were transformed into the global coordinate using the point cloud transformation matrices.
After achieving a unified global coordinate system, the initial ground map built based
on the vision sensor data was merged with a 3D mesh of the bucket trajectory. The final
reconstructed map can be seen in Figure 9 where the occluded area in the initial map is
filled with the proprioceptive map.
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5. 5D Mapping

In this study, the 5D map is referred to as a map that consists of a 3D geometrical
ground map, the intensity info based on LiDAR’s beam reflectivity (1D), and a ground
force index (1D). The last two dimensions of the map are used to identify the excavated
material properties and ground resistive force. Therefore, the 5D map can give a broad
spectrum of the excavated ground info by combining all these entities. To enhance the
functionality of this 5D map, we also applied the neural network (NN) technique to the
ground images captured during the excavation for material classification.
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5.1. 3D Geometrical Ground Map

The 3D geometrical map contains the geometric information of the excavated ground
that includes the x, y, and z coordinates and shape. This info was obtained by using a
stereo vision camera as it provides the dense point clouds and less vacant spaces between
channels (laser breams). The registration technique was applied to build and accumulate
the point clouds in a scene.

Among ICP [18], NDT [19], and CPD [20] as state-of-the-art registration techniques,
NDT was chosen for this study by comparing each applied result in terms of the fast
and robust registration. The excavation site for experiments is shown in Figure 10a that
includes three segments with artificially supplied materials (sand, soil, and mixture) and
three natural ground segments. Figure 10b presents the 3D map constructed using the
point clouds from the camera in the considered six segments.
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5.2. 3D Material Classification Using LiDAR’s Intensity

Although the stereo camera provides the geometrical data for a 3D map, this data is
not sufficient to capture other crucial info of excavation materials that can be represented
by the beam reflectivity or intensity [21]. To fuse the reflectivity info with the 3D map,
we applied the intensity data from a LiDAR sensor as an index for the identification
of material types [12]. This is because since the LiDAR can generate the intensity data
used for numerous applications, such as wet area identification, land cover classification,
distinguishing features, etc. [22]. However, we note that the intensity data alone is still
not enough to classify the material as it cannot reflect the info of ground resistive force
that occurs from the ground during digging. For example, the ground areas having the
same surface reflectivity can show the identical intensity value but the depth or other
ground conditions such as moisture content may result in a significant difference in ground
resistive force. Therefore, we introduced the force index as an additional component of the
5D map that can be representative of the resistive force.

5.3. Indexing Ground Resistive Force

For the ground resistive force index of the 5D map, the net force of the bucket cylinder
was considered. During the excavation cycle that consists of the penetration, dragging, and
rotating (lifting-up), the bucket cylinder needs to be extended and generates the net force
in Equation (14) acting against the ground resistance that can play the role of an index to
represent the ground resistive force. As shown in Equation (14), the net force is calculated
by subtracting the rod force from the head one using the pressure data (measured by
pressure sensors attached to inlet and outlet ports of the bucket cylinder) and the areas of
head and rod sides.

Fcyl = PH AH − PR AR (14)
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where Fcyl is the force exerted by the bucket actuator, PH is the head-side pressure, AH is
the head area, PR is the rod-side pressure, and AR represents the rod area.

5.4. Soil Type Classification Using Convolutional Neural Network

To strengthen our 5D map, neural network techniques were introduced to classify the
types of soil images during the excavation process. To train the neural network, we adopted
the idea of the transfer learning concept using MATLAB’s deep learning toolbox [23].

Transfer learning is a machine learning method where a pre-trained network (model)
for a certain task can be utilized as a starting point for training another model with a
different task. So, the learned features by this method can be transferred to a new task
using a smaller number of data sets (images in our case). For the transfer learning, we chose
the GoogleNet [24] network due to its less error rates and relatively faster training than
other pre-trained networks [25]. The GoogleNet is a 22-layers deep network with the first
input layer that requires the input images of size 224-by-224-by-3. Then, the convolutional
neural network finalized from GoogleNet has 144 layers. Among the total data set of
130 images of soil and sand that were prepared for the neural network, 100 images were
collected from Places365 (the latest subset of Places2 Database) online [26] and 30 images
were taken during the experiments onsite. The entire data set was divided into the subsets
for training (70%), validation (20%), and testing (10%).

6. Results and Discussions
6.1. Setup of a Test Platform

The developed test platform is a modified mini hydraulic excavator (Figure 11a)
that consists of three subsystems, i.e., electronic, hydraulic, and mechanical systems. The
electronic system comprises electro-hydraulic drivers, a power supply, LVDT stroke sensors
(Figure 11b), and pressure sensors (Figure 11c). The hydraulic system is composed of
electro-hydraulic proportional valves, directional control valves, hydraulic actuators, and a
hydraulic pump. The major mechanical system is a manipulator having three links for the
boom, arm, and bucket, and joints.
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As one of the sensor elements, a ZED stereo vision camera was selected. Since stereo
vision has been widely adopted for 3D localization and detection of partially buried objects
in the excavation systems, the ZED stereo vision camera was chosen to generate point
clouds for the estimation of both ground and bucket volume. The position of the bucket was
measured with the help of LVDT stroke sensors attached to each link of the excavator. The
map reconstruction for occlusion areas was achieved based on the information of bucket
trajectory. For 5D ground mapping, the info of geometrical coordinates was obtained using
a stereo vision camera, and beam reflectivity was measured with a VLP-16 LiDAR. The
force as the last component of the 5D map was calculated from the measurements of the
pressure sensors attached to the cylinder inlet and outlet ports.

6.2. Estimation of Excavation Volume

Experimental results of ground excavation volume estimation and bucket volume
estimation are presented and discussed in this section. To calculate the volume, the
volumetric contribution of each cell (grid step/spacing) was summed up, which defines
the volume of the parallelepiped elementary computed by multiplying the cell area by the
difference of height [16].

6.2.1. Estimation of Bucket Volume

The bucket volume is referred to as the soil volume that the bucket carries after each
dig. Note that the bucket point cloud was captured after each dig during the excavation
process for its volume estimation. As an example, the captured bucket volume’s image and
the corresponding point cloud are provided in Figure 12a,b, respectively.
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Figure 12. (a) Bucket volume image; (b) bucket point cloud.

The point cloud presenting the soil volume contained in the bucket was merged with a
CAD model after an application of the registration technique. Figure 13 illustrates the point
cloud for the contained bucket volume that is aligned with one for the bucket CAD model.

For experimental validation, two different scenarios were considered. The first sce-
nario (Figure 14a) keeps almost the same amount of incremental volume in each dig while
the second scenario (Figure 14b) less uniform increment. As seen in Figure 14, five digs
were carried out in both cases and the vertical axis shows the estimation of soil volume
that is accumulated according to each dig.
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Figure 13. Merging the point cloud for the filled bucket soil volume into one for the CAD Model.
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Figure 14. Results of bucket volume estimation: (a) Scenario 1; (b) Scenario 2.

6.2.2. Estimation of Ground Excavation Volume

The ground excavation volume was estimated by calculating the difference (i.e., vol-
ume change) between the initial ground volume and the one after every dig using each
measured point cloud that represents the ground surface profile. Figures 15 and 16 show
the point clouds of the ground before excavation and after the 5th dig for the 1st scenario
as an example, respectively.
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Figure 15. Point cloud of the ground surface before excavation.
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Figure 16. Point cloud of the ground surface after the 5th dig for the 1st scenario.

The same scenarios considered in the bucket volume estimation were applied for the
ground volume estimation. Below (Figure 17) are the two graphs that show the ground
excavation volume estimation of each dig under the two scenarios.
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Figure 17. Result of ground volume estimation under Scenario 1 (a) and Scenario 2 (b).

6.2.3. Relationship between Ground Volume and Bucket Volume

We compared the volume estimation results from each method for the same scenarios
(Scenario 1 in Figure 18a and Scenario 2 in Figure 18b). In the figure, the blue and orange
lines present the results obtained by the ground volume and accumulated bucket volume
estimation methods, respectively.

From each sub-figure, we can see a similarity in graphs between both methods for
each scenario. Therefore, this good correlation indicates that the bucket volume estimation
can be used as an alternate way to estimate the ground volume to be dug during excavation
progress. However, a constant offset between two graphs under each scenario is also
observed. The reason for having such a difference can be explained as follows.

The stereo camera was used for both volume estimations, which provides dense point
clouds. Then, we applied the registration technique where two point clouds to represent
the same scene are matched as landmarks. Through this, the variation between frames can
be checked. The ground volume estimation method has sufficient good landmarks from
the 3D ground surface compared to the bucket volume estimation in which the number of
landmarks is limited. Due to this reason, it is difficult to accurately identify the bucket’s
edges using point clouds (despite their alignment with the bucket CAD model) and thus to
distinguish between the point cloud from the bucket and the one from the contained soil at
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the edges. Hence, this difference affects estimation accuracy between the two estimation
methods and results in a constant offset between two graphs as seen in Figure 18.
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Figure 18. Comparison of the results of excavated volume estimation: (a) Scenario 1; (b) Scenario 2.

This correlation was further validated with the extended data sets in Figure 19b by
adding the 3rd scenario data to the combined 1st and 2nd one in Figure 19a. The 3rd
scenario consists of another five digs with an inconsistent volume increment.

Figure 20 shows the relationship between the estimated ground volume and the
accumulated bucket volume obtained from the extended data sets (Figure 19b). From
the graph, a strong positive linear relationship is observed except a few points. Table 2
shows the difference between these two volumes at each dig with the same extended data
sets. Using the linear relation and the averaged difference or offset (0.018 m3) from the
table, the ground volume during the excavation task can be alternatively estimated by
the accumulated bucket soil volume. This approach can provide an effective solution to
monitor the excavation progress through the indirect estimation of excavated volume at
digging sites with occlusion areas since the bucket volume can be always monitored by
a mounted sensor without having the occlusion issue. Another solution to deal with the
occlusion areas will be introduced in the next section.
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Figure 19. Merged data sets: (a) Scenarios 1 + 2; (b) Scenarios 1 + 2 + 3.
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Table 2. Comparison of ground volume and accumulated bucket volume estimation.

No. of Digs Ground Volume Accumulated Bucket
Volume

Difference
(m3)

1 0.018 0.009 0.009
2 0.034 0.016 0.018
3 0.049 0.03 0.019
4 0.05 0.031 0.019
5 0.06 0.033 0.027
6 0.069 0.055 0.014
7 0.073 0.054 0.019
8 0.074 0.053 0.021
9 0.083 0.065 0.018
10 0.086 0.071 0.015
11 0.092 0.078 0.014
12 0.098 0.083 0.015
13 0.11 0.085 0.025
14 0.12 0.095 0.025
15 0.13 0.116 0.014

Average 0.018

6.3. Mapping Using a Bucket Trajectory at Occlusion Areas
6.3.1. Bucket Trajectory Formation

To create a bucket trajectory, the stroke of the boom, arm, bucket actuators was
measured by each corresponding LVDT sensor during the excavation time of 14 s with a
sampling rate of 100 per second. Using Equations (1)–(11), the stroke can be converted to
the joint angle. The position of the bucket tip was identified by applying the joint angle to
the kinematic analysis in Equations (12) and (13). The obtained bucket trajectory through
this procedure is shown in Figure 21. Then, this bucket trajectory was reconstructed to the
3D trajectory by considering the bucket width of 15 inches.
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The next step is to fill out the vacant spaces between the 3D trajectory lines by using
the triangulation meshing as shown in Figure 22.
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Figure 22. 3D bucket trajectory after applying the triangulation meshing.

6.3.2. Map Reconstruction for Occluded Areas and Validation

Figure 23 shows the occluded area occurring at the front side (i.e., original sensor
location) before excavation for which the map reconstruction was considered in the study.
Merging the 3D bucket trajectory (Figure 22) with the ground point clouds from the stereo
vision sensor was carried to reconstruct a map for occluded areas, which is presented in
Figure 24a that includes the blue surface as the 3D bucket trajectory. For this reconstruc-
tion, the coordinate systems for both (bucket trajectory and ground) point clouds were
transformed into the pre-defined global coordinates.
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Figure 23. Occluded areas at the front side with the Field of View (FOV) blockage before excavation.

The accuracy of the reconstructed map was validated by comparing it with the
ground map using point clouds obtained from the same stereo vision camera installed on
the opposite side (Figure 24b) where the same occasion areas can be detected without the
FOV blockage.

By overlapping the point cloud in Figure 24a with the one in Figure 24b, the accu-
racy of the reconstructed map was analyzed as seen in Figure 24c,d where the red and
black point clouds represent the reconstructed map (Figure 24a) and opposite side map
(Figure 24b), respectively. The entire volume deviation between these two maps is 0.008 m3

in the overlapped map that is not significant. Therefore, it is confirmed that the recon-



Sensors 2021, 21, 364 19 of 25

structed map with the bucket trajectory can be an alternative to the ground map that cannot
provide the geo-info of occluded areas.
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6.4. 5D Mapping
6.4.1. 3D Ground Map and LiDAR’s Intensity

The 5D map proposed in this study provides the ground info of 3D geometrical coordi-
nates (i.e., 3D map), intensity, and force. Among them, the 3D geometrical coordinates and
intensity were measured by a stereo camera and a LiDAR, respectively. Figure 25 shows a
3D map that shows the x, y, z coordinates of the ground targeted for excavation along with
their corresponding intensity value obtained by a LiDAR.

In the figure, one can note that there is a significant difference in intensity between
sand (70) and soil (14). Therefore, the intensity could be used as an index to identify the
materials, but its value is subject to the feature of the detected ground surface. In particular,
if the surface colors of two materials are similar, their intensity values are close. However,
the information of the material (type) itself is not sufficient for the control of autonomous
excavation that is also affected by the soil resistance arising from digging and dragging.
To reflect this soil’s attribute on the ground mapping, we introduced the force index as an
additional (5th) component that will be explained in the following section.
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6.4.2. Force Index

As the force index, the net force of the bucket cylinder was considered. This is because
the net force of the bucket cylinder is used to be against the ground resistive forces during
the excavation cycle that consists of the penetration, drag, and curl. For experimental
validation of the force index, the net force was measured after the first dig in the target
ground that has six segments in Figure 10 where the 1st, 2nd, and 3rd segments in the
upper row were formed of sand, a mixture of sand and soil, and soil, respectively, and the
rest three segments in the bottom row represent the natural ground. The segments in the
upper row were artificially built by putting corresponding materials on the ground while
the below three segments are the original ground surface.

To identify a digging point of the bucket on the ground surface during the excavation
cycle, the bucket trajectory with respect to time was analyzed. Figure 26 shows the variation
of the bucket trajectories in the 6th segment (Natural Ground 3) among six ones as an
example. The lowest point in each trajectory presents the digging (contact) point of the
bucket during the excavation cycle. After identifying the point of contact in time, the head
force and rod force were calculated using the pressure data at the head and rod sides of the
bucket cylinder and the areas of each side. The net force was calculated by subtracting the
rod force from the head one.
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Note that Figure 27 illustrates the variation of bucket net force during the excavation
cycle in the 6th segment and the contact point that coincides with 6.67 s in Figure 26. The
value of net force at the contact point was selected as the force index for the 5D mapping.
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6.4.3. Relationship between Intensity and Net Force

The intensity from the LiDAR varies according to the color of the material surface
(surface reflectance). For example, the intensity value becomes higher with sand than soil
because sand has a brighter color (more reflective surface) and thus more energy can be
reflected from its surface. The higher reflective surface of the sand than the soil can be
confirmed by a higher intensity value in Table 3.

Table 3. Intensity and force index (net force) values for each segment.

Segment no and Type Intensity Force Index (Net Force)
(N)

Digging Depth
(m)

1
(Sand) 70 2050 Ground surface

2
(Sand + Soil) 27 2000 Ground surface

3
(Soil) 14 1900 Ground surface

4
(Natural Ground 1) 35 1900 0.55

5
(Natural Ground 2) 27 2250 0.65

6
(Natural Ground 3) 21 2200 0.58

The 1st, 2nd, and 3rd segments (i.e., Segments 1, 2, and 3 in Table 3) were formed
by artificially dumping the sand, mixture, and soil on the ground surface. Since these
materials were not buried under the ground, the ground resistive force generated during
the excavation in these segments is mostly lower than one in the natural ground (i.e., three
segments in the bottom row in Figure 10) as seen in Table 3. Hence, the material property
itself does not have a strong interdependence with the ground resistive force (or net force).
Instead, the net force was investigated to see its relationship with the ground resistive force.
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Since actual digging occurs on the natural hard ground, such investigation was carried out
with Segments 4, 5, and 6 in Table 3. Additionally, it is expected that the net force index
can be associated with the digging depth. Therefore, we measured the digging depth for
Segment 4, 5, and 6, which is ranked in the same order as the amount of the net force.

From the above results, we note that the net force can play a role of an index to indicate
the resistive force arising from the ground contact that can be enhanced by an increase of
the digging depth. Finally, since there is no regular pattern between intensity and net force
for Segments 4, 5, and 6, the intensity is not suitable for an indicator to show the severity of
the resistive ground force.

6.4.4. 5D Map Construction

The 5D map was constructed by integrating all the attributes of the 3D map, intensity,
and net force. Figure 28a illustrates the 5D map to present the ground information of
six segments having different types and properties of materials for the target area that is
shown by the actual photograph of Figure 28b (equivalent to Figure 10a). The results of the
intensity and force index addressed in Section 6.4.3 are included in this 5D map.
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The image classification was also performed using the GoogleNet pre-trained clas-
sification network with the number of data sets described in Section 5.4. Through the
classification results for the 1st, 2nd, and 3rd segments in Figure 28b (1st segment: Sand
100%; 2nd segment: Soil 88.9%; 3rd segment: Soil 95.4%), we can identify the correspond-
ing soil type for each segment (i.e., pure sand, a mixture of sand and soil, and pure soil,
respectively), and thus confirm that the trained neural network can successfully classify
the types of excavation materials. These results match with the intensity magnitude (i.e.,
70 (pure sand), 27 (mixture), 14 (pure soil)) obtained in Table 3.

Among three attributes of the 5D map used for monitoring the progress of excavations,
the 3D map is used to update the current geo-information of the excavated terrain that is
the critical information to track excavation progress and to generate the bucket tip’s path
for the purpose of its position and trajectory control [27]. The intensity and force index
provide a reference (desired) value for force tracking control that varies according to the
ground conditions, and thus can be used to adaptively compensate for the ground resistive
force. Therefore, the 5D map can fundamentally contribute to enhancing tracking control
performance during digging operations [27,28].

7. Conclusions

This study proposes an effective integrative strategy required for excavation progress
monitoring by dealing with the excavation volume estimation, occluded area, and 5D
mapping. For the excavation volume estimation, two different methodologies, i.e., ground
excavation volume estimation and bucket volume estimation, were studied to calculate the
excavation progress.

The ground volume estimation as a direct estimation method was achieved by sub-
tracting the actual ground profile after excavation from the reference one (pre-excavation
ground surface). As an indirect approach, the soil volume contained in the bucket was
estimated by aligning the point clouds for both the bucket CAD model and the bucket soil
obtained using a stereo vision camera. From experimental validations, a strong positive
relationship between the estimated ground volume and accumulated bucket volume was
observed. Therefore, the bucket volume estimation method is applicable to monitor the
excavation progress at digging sites with occlusion areas instead of the ground volume
estimation method. This is because a camera can be mounted on the arm of the excavator,
and thus the blockage problem of the camera view can be avoided during all the excavation
process in the bucket volume estimation method.

To overcome the sensor occlusion problem due to a pile on the excavation ground, we
considered an alternative approach to fuse the exteroceptive and proprioceptive sensors
for ground mapping. The proprioceptive sensors (LVDT) helped in identifying the bucket
trajectory while the exteroceptive sensor (stereo vision sensor) was used to build a ground
map excluding the occlusion areas. The identified bucket trajectory was converted to 3D
meshes using the triangulation method, which were finally merged with the exteroceptive
ground map to reconstruct a complete 3D map.

In addition, a 5D map was created to provide the diverse excavation ground informa-
tion that comprises a 3D map, the LiDAR intensity value, and the force index. Through
this 5D map, the info of 3D geometrical coordinates, material type, and resistive ground
force can be provided, which can facilitate accurate monitoring of excavation progress
and control for autonomous excavation. Lastly, the convolutional neural network (CNN)
was applied for the classification of soil types using the ground images taken during the
excavation to enhance the 5D map’s functionality.

Although the proposed integrated strategy provides a unique solution to the problem
of occlusion issue and the extensive ground information that is useful for monitoring and
control of autonomous excavation beyond the current practice such as a normal 3D ground
map, the following studies can be considered as future work to improve the quality of
excavation progress monitoring
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Since there has been a gap between the bucket volume estimation and ground volume
one, a further study to reduce this gap through other registration techniques will be
considered, which can enhance the estimation accuracy. In addition, validations on the
exteroceptive and proprioceptive sensor fusion and the 5D map were carried out after
a limited number of digs to check their feasibility. Therefore, additional tests under the
ongoing and lengthy excavation progress are needed to ensure the practicality of these
approaches.

The developed monitoring methodologies can be extensively used for other construc-
tion and agricultural equipment and off-road vehicles where environmental sensing and
safety are critical to achieving autonomous operations.
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