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Abstract: Sand theft or illegal mining in river dredging areas has been a problem in recent decades.
For this reason, increasing the use of artificial intelligence in dredging areas, building automated
monitoring systems, and reducing human involvement can effectively deter crime and lighten the
workload of security guards. In this investigation, a smart dredging construction site system was
developed using automated techniques that were arranged to be suitable to various areas. The aim
in the initial period of the smart dredging construction was to automate the audit work at the control
point, which manages trucks in river dredging areas. Images of dump trucks entering the control
point were captured using monitoring equipment in the construction area. The obtained images
and the deep learning technique, YOLOv3, were used to detect the positions of the vehicle license
plates. Framed images of the vehicle license plates were captured and were used as input in an image
classification model, C-CNN-L3, to identify the number of characters on the license plate. Based on
the classification results, the images of the vehicle license plates were transmitted to a text recognition
model, R-CNN-L3, that corresponded to the characters of the license plate. Finally, the models of
each stage were integrated into a real-time truck license plate recognition (TLPR) system; the single
character recognition rate was 97.59%, the overall recognition rate was 93.73%, and the speed was
0.3271 s/image. The TLPR system reduces the labor force and time spent to identify the license
plates, effectively reducing the probability of crime and increasing the transparency, automation,
and efficiency of the frontline personnel’s work. The TLPR is the first step toward an automated
operation to manage trucks at the control point. The subsequent and ongoing development of system
functions can advance dredging operations toward the goal of being a smart construction site. By
intending to facilitate an intelligent and highly efficient management system of dredging-related
departments by providing a vehicle LPR system, this paper forms a contribution to the current body
of knowledge in the sense that it presents an objective approach for the TLPR system.

Keywords: automated sensing system; dredging construction site; computer vision; convolutional
neural networks; object detection; multi-class classification; image recognition

1. Introduction

Dredging operations are an essential part of hydraulic engineering in Taiwan. In such
work, the extraction and sale of sand and gravel involve considerable profits. Therefore, ille-
gal activities like sand and gravel theft, violence, and intimidation are not uncommon [1,2].
These incidents seriously affect homeland security, leading to the limited effectiveness
of flood control for which a budget is planned annually by the government. Hence, the
monitoring and management of dredging operations have become critical tasks that are
continually monitored by the relevant government’s departments and agencies.

Generally, hundreds of dump trucks enter and exit a construction area daily, and
personnel must accurately control them such that inspections do not affect construction
progress. Although patrol officers and security guard personnel in construction areas
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manually perform frontline control at control points at the exits and entrances thereof [3],
inspections and checks may be lax owing to the temptation of bribes and violent threats
made by illegal companies [4].

To improve the management at the control points of dredging construction sites,
related to the entry to and exit from the construction sites, an automated monitoring system,
vehicle license plate recognition (LPR), for dump trucks was developed. The system was
built to provide permission for dump trucks’ entry and exit. This automated monitoring
system can considerably reduce frontline personnel’s workload, increase construction
efficiency, reduce the effect of human factors, and prevent errors.

This research process is based on the study goal, which was to facilitate an intelligent
and highly efficient management system of dredging-related departments by providing
a vehicle LPR system. In this study, the dredging operations’ status quo, situation, and
current technology applications are identified through interviews with river management
offices to understand the work and actual cases at control points in construction sites. The
first part of building the truck LPR (TLPR) system involved collecting images of dump
trucks and preprocessing the data. The second part consisted of selecting and analyzing
the deep learning methods for recognizing vehicle license plates.

In the third part, three stages of the system process, localization, classification, and
recognition, were built. To build the localization model, preprocessed data from previous
steps were used as input. The localization model’s output was then used as an input
in a convolutional neural network (CNN) structure to build a classification model. The
classification model in this TLPR system would determine the number of characters on
the license plates. The classification model’s outputs were then used to build a recognition
model that was used to identify each character. Each model was assessed as to whether it
reached the target performance.

The fourth part involved designing the process framework of an automated TLPR
system for dump trucks. Finally, the best model for each stage was integrated to construct
a TLPR system for the dump trucks, and the accuracy and operating speed of the system
were assessed. The performance of the proposed system was compared with previous
studies. Analyses of the study, the conclusions, and suggestions for future studies were
then provided.

This paper forms a contribution to the current body of knowledge as it presents
an objective approach to the TLPR system. It integrates the TLPR system in dredging
operations, which already has an existing manual system. The scientific originality and
contributions of this study lie in the ability to also recognize license plates with image noise
like bad lighting and bad weather; reduced effects of obscured license plates (e.g., by sand
and gravel); increased speed and accuracy of license plate inspections; reduced workload
of personnel at the control point; and reduced probability of human errors.

2. Literature Review
2.1. ArtificiaI Intelligence (AI) Technologies for Smart Construction Sites

On conventional construction sites, human beings carry out most of the construction
work. Engineering personnel with substantial experience are, in particular, responsible
for regularly checking and maintaining equipment. Human checks, however, are usually
costly and time-consuming. These checks also expose personnel to a complicated and
unsafe working environment and affect public safety [5]. Various reasons for the low
frequencies of equipment checks and maintenance leave much room for improvement in
construction quality management methods [6].

Construction automation consists of combining computers, computation devices, and
on-site robot technologies to simplify engineering tasks [7]. The resulting information also
serves as a decision-making reference for all stakeholders in construction management.
In equipment maintenance, for example, a data-driven system is developed for decision-
making on equipment maintenance. The system implements quantitative decision-making
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models and integrates Building Information Modeling (BIM) and Geographic Information
Systems (GIS) to support the data acquisition and update [8].

In the field of civil planning and management, the automatic recognition and classifi-
cation of vehicle license plates using the CNN model and the detection of traffic flow with
sensors enables the immediate, intelligent analysis of vehicles and road usage, as well as
the modification of the intervals of traffic lights [9]. Hence, traffic engineers can understand
the traffic conditions and arrange schedules for road maintenance and construction.

In this study, a smart dredging construction site is preliminarily designed, automated
monitoring is performed using image recognition in critical areas, and further design and
planning are conducted concerning construction site management.

2.2. Automated Monitoring Systems to Construction Management

In recent years, the omnipresence of surveillance cameras in cities has motivated
the development of automated monitoring systems [10]. Automated monitoring systems,
using captured images, are expected to reduce the workload of operators and facilitate the
analysis of a considerable amount of data [11]. The analytical results of significant amounts
of image data are used in early warning systems for buildings [12], identifying the activity
of workforces [13] and machines, and assessing productivity [14].

An early warning system has four elements: knowledge of risk, monitoring and early
warning, communication and dissemination, and response [15]. To prevent the deformation
of roads and collapses in underground coal mining, Xu et al. constructed an automated
monitoring and early warning system. The system captures roads’ tendency to deform, the
deformation, and the damage to surrounding rocks, to warn about the instability of the
latter [16].

In civil engineering, workforce performance management significantly influences
construction progress and budget control [17]. Zhu et al. used images that were captured at
construction sites in combination with feature extraction techniques to track workers and
equipment, helping managers immediately to determine their positions and statuses [18].

Machinery and equipment also crucially affect construction productivity. The effective
management and analysis of information about operations and related data help managers
to optimize their operations and improve work efficiency [14,19]. In construction sites,
surveillance videos and sensors have been used to identify activities and analyze excavators’
productivity during construction. Their motions have been automatically detected and
tracked using machine learning or deep learning technologies [20–22]. Such systems can
simplify the cumbersome process of human inspection and supervision, improve the
collection of construction data, and help analyze construction practices [23].

This literature section presented automated systems’ benefits and technologies that
are used in the field of construction.

2.3. Deep Learning for Vehicle License Plate Recognition

Vehicle LPR is widely employed in transportation [24–26] and comprises three steps:
vehicle license plate localization, character segmentation, and character recognition [27–29].
However, several factors that are related to the images of license plates directly influence
the difficulty of object detection and character recognition [30,31]. The images of vehicle
license plates used in most studies are clear and non-oblique, which means the license
plates directly face the camera [32,33], facilitating annotation and model training. The data
augmentation method has also been used to increase the training sets’ diversity [34,35] and
improve the model’s accuracy to recognize license plates.

Significant progress has been made by applying deep learning techniques to object
detection. Among them, intense sampling of different areas of an image uniformly makes
bounding boxes with various aspect ratios and dimensions. The bounding box results are
then used with feature extraction using a CNN [36–38] for classification and regression.
Typical vehicle LPR involve the You Only Look Once (YOLO) series [39–44] and single
shot detector [45]. In most studies, YOLO models have exhibited high accuracy and



Sensors 2021, 21, 555 4 of 31

recall, both above 98% [31,40,46,47]. They have also shortened inspections. Accordingly,
YOLO network structures are frequently used in research as the ultimate models for
object detection.

A wide range of methods of character segmentation exists. Recognition has been
performed by classifying the segmented characters and inputting them into a CNN model
for training [48,49], but the character segmentation is susceptible to image-related factors
that cause difficulties [50,51]. The direct recognition of characters without segmentation
has been developed [52,53]. Inspired by earlier work [54,55], Nguyen and Nguyen revised
the CNN models to construct a network with three convolutional layers, three pooling
layers, and two fully connected layers to solve the previous problem. They achieved a
seven-digit vehicle LPR [56].

Captcha recognition techniques have successfully identified characters on the license
plate [56]. JasonLiTW [57] aimed to solve captcha for booking tickets for the Taiwan
High-Speed Rail (Simple Railway Captcha Solver (SRCS)). The author achieved a single
character recognition rate as high as 99.39% and an overall successful recognition rate of
91.57% using data from 3000 images with data augmentation. Another well-known image
recognition framework is Visual Geometry Group 16 (VGG16), which demonstrated an
effective modeling network structure with little data [58–60]. Such networks commonly
serve as a framework for models with less data, yielding highly accurate results.

The features of the images of the license plates on dump trucks in dredging operations
that were obtained in this study, such as oblique plates, plates not directly facing the
camera, various types of truck plates, short distances between the characters, and few data
available, caused difficulty in detection, segmentation, classification, and model building.
To overcome the challenges with minimal cost and disturbance on the current construction
sites, the system must be conducted in three distinct stages: license plate localization,
classification of the number of characters, and character recognition.

Specifically, modeling was carried out using the previously mentioned network struc-
tures (YOLO, CNN, SRCS, and VGG16) in each stage to train, validate, and test. This
process was followed by estimating the accuracy and operating speed of the models.
The performance was evaluated to identify the best model in each stage, which was ulti-
mately integrated into a vehicle LPR system for dump trucks without replacing the current
monitoring hardware on sites.

3. Research Methods

This section introduces the CNN and explains the diverse CNN structures and their
comparative advantages. Lastly, the model validation methods and assessment criteria
are elaborated.

3.1. Deep Learning Algorithms
3.1.1. Convolutional Neural Network

A CNN is a feedforward neural network that consists of multiple convolutional
layers, pooling layers, and fully connected layers. Through model training, the network’s
parameters (weights and biases) are finely tuned, and the loss rate is evaluated to increase
the accuracy of the model.

(1) Convolutional layer: In the convolutional layer, images from the previous layer are
transformed into feature maps by applying filters. The height and width of the spatial axis
of the generated feature map are the lengths that are obtained by the extraction of image
information, while the depth is determined by the color (grayscale: 1, color: 3) format.

A filter is also called a “kernel.” Each filter performs a computation on each small
image unit. When the filter slides over the units, a corresponding computation is carried
out to obtain the weights of the filter and images that overlap the filter. The total number is
then calculated, and a bias is added, yielding a new feature map that is transmitted to the
next layer, as shown in Figure 1a.
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(2) Pooling layer: The pooling layer is used to remove unnecessary information from
the feature map and preserve the most crucial information. The most popular sampling
method is max-pooling. Figure 1b displays the corresponding calculation.

(3) Fully connected layer: This layer transmits the numerical values of the one-
dimensional arrays that are the output from the flattening layer to the neurons. Clas-
sification is performed by observing the numerical output values of all or particular
neurons.

(4) Dropout: This method can solve the problem of overfitting; it involves randomly
dropping certain features that are output by the layer in the training period, reducing
the complex co-adaptation among the neurons to improve the performance of the neural
network; the dropout rate is generally set between 0.2 and 0.5, and at 0.5 in most cases.

(5) Activation and loss function: The activation function prevents the transmission
of numerical values in the neural network only through a linear combination, which
would reduce the neural networks’ ability to process complex features. The loss function
is used to measure the neural networks’ performance against the training data, based
on discrepancies between the model’s predictions and the actual values. The different
problems correspond to different activation functions and loss functions, as provided
in Table 1.

Table 1. Problem type and corresponding activation function and loss function.

Problem Type Activation Function Loss Function

Binary classification Sigmoid Binary_crossentropy
Multiclass, single-label classification Softmax Categorical_crossentropy
Multiclass, multilabel classification Sigmoid Binary_crossentropy

Regression to arbitrary values Linear Meansquared error

Regression to values between 0 and 1 Sigmoid Meansquared error or
binary_crossentropy
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3.1.2. You Only Look Once

YOLO is an object detection algorithm for neural networks; its advantages include
rapidity and high accuracy. The neural network used in this study was the third version of
YOLO, abbreviated as YOLOv3.

Before an image formally enters the neural network, YOLOv3 divides it into N × N
grid cells. By the K-means method, nine types of anchor boxes are generated in each
grid cell. The nine types of anchor boxes are divided into groups; each group contains
three boxes, which change according to the size of the resulting feature map size before it
zooms out to be the corresponding dimensions. The final product is a selected area that is
considered to be the bounding box.

Darknet-53 (Table 2) is the backbone network structure of YOLOv3. The alteration
involves removing the pooling layer and the fully connected layer of Darknet-53. Residual
networks solve gradient problems, and feature pyramid networks (FPNs) [61] increase the
ability of YOLOv3 to detect small objects, making it more stable.

Table 2. Darknet-53 network structure.

Type Filters Size Output

Convolutional 32 3 × 3 256 × 256
Convolutional 64 3 × 3/2 128 × 128
Convolutional 32 1 × 1
Convolutional 64 3 × 3

Residual 128 × 128
Convolutional 128 3 × 3/2 64 × 64
Convolutional 64 1 × 1
Convolutional 128 3 × 3

Residual 64 × 64
Convolutional 256 3 × 3/2 32 × 32
Convolutional 128 1 × 1
Convolutional 256 3 × 3

Residual 32 × 32
Convolutional 512 3 × 3/2 16 × 16
Convolutional 256 1 × 1
Convolutional 512 3 × 3

Residual 16 × 16
Convolutional 1024 3 × 3/2 8 × 8
Convolutional 512 1 × 1
Convolutional 1024 3 × 3

Residual 8 × 8
Avg Pool Global

Connected 1000
Softmax

3.1.3. CNN-L3

CNN-L3 (Table 3) is a network structure that was generated by Nguyen and Nguyen [56].
Only 1000 vehicle license plate images were trained in this model, which can be considered
a “low data situation”. With data augmentation, character recognition was achieved
with high accuracy. Accordingly, the CNN-L3 was used in this study and fine-tuned for
model training.
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Table 3. CNN-L3 network structure.

Layer Type Network

1 Input 128 × 64
2 Convolutional 48@5 × 5
3 Max-pooling 2 × 2
4 Convolutional 64@5 × 5
5 Max-pooling 1 × 2
6 Convolutional 128@5 × 5
7 Max-pooling 2 × 2
8 Fully Connected 2048
9 Fully Connected 36 × 7

3.1.4. Network Structure for Simple Solver of Railway Captcha for the Taiwan Railways
Administration

JasonLiTW [57] established CNN to identify the captcha of the Taiwan Railways
Administration. As shown in Table 4, it collected only 3000 captcha images, but data
augmentation enabled both the classification model and the character recognition model
to achieve high accuracy. The single character recognition rates and overall successful
recognition rates of both models exceeded 90%.

Table 4. Simple Railway Captcha Solver (SRCS) network structure.

Layer Type Network

1 Input 200 × 60
2 Convolutional 32@3 × 3
3 Convolutional 32@3 × 3
4 Batch Normalization –
5 Max-pooling 2 × 2
6 Dropout 0.5
7 Convolutional 64@3 × 3
8 Convolutional 64@3 × 3
9 Batch Normalization –

10 Max-pooling 2 × 2
11 Dropout 0.5
12 Convolutional 128@3 × 3
13 Convolutional 128@3 × 3
14 Batch Normalization –
15 Max-pooling 2 × 2
16 Dropout 0.5
17 Convolutional 256@3 × 3
18 Batch Normalization –
19 Max-pooling 2 × 2
20 Flatten –
21 Dropout 0.5
22 Fully Connected 34 × 5

3.1.5. Visual Geometry Group 16 (VGG16)

VGG16 (Table 5) is one of the classic CNN models [62]. Its overall network structure
is simple. However, since the three fully connected layers have numerous parameters,
the resources that are required for computation are enormous, and such a deep network
structure is not suitable for training with few data points. Accordingly, in this investigation,
only the last fully connected layer was retained in a revised VGG16 model.
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Table 5. VGG16 network structure.

Layer Type Network

1 Input 200 × 60
2 Convolutional 64@3 × 3
3 Convolutional 64@3 × 3
4 Max-pooling 2 × 2
5 Convolutional 128@3 × 3
6 Convolutional 128@3 × 3
7 Max-pooling 2 × 2
8 Convolutional 256@3 × 3
9 Convolutional 256@3 × 3

10 Convolutional 256@3 × 3
11 Max-pooling 2 × 2
12 Convolutional 512@3 × 3
13 Convolutional 512@3 × 3
14 Convolutional 512@3 × 3
15 Max-pooling 2 × 2
16 Convolutional 512@3 × 3
17 Convolutional 512@3 × 3
18 Convolutional 512@3 × 3
19 Max-pooling 2 × 2
20 Flatten –
21 Fully Connected 4096
22 Fully Connected 4096
23 Fully Connected 1000

3.2. Criteria for Validating the Model and Assessing Errors
3.2.1. Model Validation

For model validation, this study used holdout validation to avoid overfitting during
the model training. First, 90% of the raw data were used as the learning data, while the
other 10% were used as the test data. The P% of the learning data was randomly used as
the training data, for which (1−P)% of the data were used as the validation data. During
model training, the validation data were repeatedly used to evaluate the model’s precision.
The model’s parameters were continuously and slightly adjusted, ultimately increasing
the model’s efficiency while mitigating the problem of overfitting. Figure 2 displays the
adopted data segmentation for this study.
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3.2.2. Criteria for Assessing Accuracy

The following subsections present the three assessment stages of truck license plates:
the accuracy of the truck license plate localization, the accuracy of the classification of the
number of characters, and the accuracy of the character recognition.

(1) Assessment of truck license plate localization accuracy: In the object detection
of the YOLO model series, the model assessment focuses on the numerical value of the
mean average precision (mAP). The computation, definitions, and explanations of the
mAP-related numerical values are presented below.

(a) Intersection over union: IoU is a metric of the accuracy of detection of the target
object in an image. It is calculated by the ratio of the overlap area of the predicted box and
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the ground-truth box that is generated by the calculation model to the union area of the
two boxes, as given by Equation (1).

(b) Precision: Precision is the ratio of the number of correctly predicted positive
samples (true positives) to that of the samples predicted as positive (the sum of the numbers
of true positives and false positives) by the model, as given by Equation (2). Table 6 presents
the related references.

Table 6. Confusion matrix.

Confusion Matrix
Actual

True False

Predicted
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

(c) Recall: Recall denotes the ratio of the number of correctly predicted positive
samples (true positives) to the total number of positive samples (the sum of the numbers of
true positives and false negatives), as demonstrated in Equation (3). Table 6 presents the
related references.

(d) Average precision: A graph of the obtained numerical values of precision and
recall is called a precision–recall curve (PR curve). The average precision (AP) is obtained
by calculating the area under the curve. Finally, the average value of all classified AP
results is the mAP. A higher mAP corresponds to greater precision of the model in framing
the target object in each classification.

IoU =
Detection Result ∩ Ground Truth
Detection Result ∪ Ground Truth

(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

(2) Assessment of the accuracy of classifying the number of characters: The images of
the truck license plates were input into the classification model to determine the number
of characters. The license plates were classified into three categories with six, seven, and
eight characters according to the current truck license plate type and coding rule. A vehicle
license plate is deemed correctly classified when the number of characters in the image
matches the predicted number. Equation (4) provides the accuracy of classification of the
license plates by the number of characters.

The classification accuracy of the number of characters =
The total of correctly classified truck license plates

The total of truck license plates being classified × 100% (4)

(3) Assessment of character recognition accuracy: This subsection presents two exam-
ples of predictions to facilitate the presentation of the overall successful recognition rate
and single character recognition rate. Table 7 presents examples of the real images and the
prediction of the trucks’ license plates.
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Table 7. Example of the evaluation of character recognition system.

Prediction No.

Items
Actual

LP Photo
Actual
LP No.

Predicted
LP Image

Predicted
LP No.

Prediction 1
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(a) Overall successful recognition rate: The overall successful recognition rate is the
percentage of individual truck license plates whose character locations and characters were
predicted correctly to the total number of truck license plates for which the predictions
were made, as given by Equation (5). A recognition was not deemed entirely correct if the
characters on the plate had one or more errors in the determined character locations or the
characters themselves. Regarding the examples in Table 7, the computed overall successful
recognition rate was 1

2 × 100% = 50%.

Overall successful recognition rate =

Number of individual truck license plates whose character locations and
characters were all predicted correctly

Total of number of truck license plates × 100% (5)

(b) Single character recognition rate: In some cases, the overall successful recognition
rate did not precisely capture the predictive accuracy of the characters and their locations
on the license plates, leading to inaccurate appraisal and comparison of the models. Equa-
tion (6) was used to solve this problem by assessing the single characters’ accuracy on
the truck license plates. A prediction was deemed correct when the location and iden-
tity of the characters on a license plate were all predicted accurately. A prediction was
deemed incorrect when either the localization of the characters or their identities were
incorrectly determined. With respect to the examples in Table 7, the computed single
character recognition rate was 6∗2−2

6∗2 × 100% = 83.33% in all instances.

Single character recognition rate =

Number of vehicle license plates whose character locations and
characters were all predicted correctly

Total of the characters to be predicted × 100% (6)

4. Data Collection, Model Building, and System Development

This section presents the software and hardware that were used in this study, the data
collection and preprocessing of the TLPR system model, the construction, appraisal, and
comparison of the models for each stage, the building and testing of the models, and the
analysis and discussion of the results that are generated by the system. Figure 3 presents
the procedures for building the models for each stage of the developed system.
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Figure 3. Model construction process at each stage of the truck license plate recognition (TLPR) system.

4.1. River Dredging Management System
4.1.1. Imaging of the License Plates of Dump Trucks

Images of the dump trucks in the Heping River Dredging Operation were obtained
from the First River Management Office. They were generally of high quality with good
camera angles and were captured in diverse weather and lighting. These images provided
the training data for the TLPR models. A total of 5419 images and their truck license plate
data were used for model training, validation, and testing.

4.1.2. Image Data Preprocessing

A total of 5419 images were preprocessed differently in each stage. Table 8 presents
the names and codes of the stages of the building of the TLPR system; it also presents the
corresponding image data preprocesses and the numbers of images processed.
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Table 8. Pre-processing image data for each stage.

Stage Stage Code Image Data Pre-Processing Number of Preprocessed Images

Image dataset distribution I

The 5419 images are divided into
90% learning data sets and 10% test
data sets, and all image names are

encoded.

Learning data: 4877 images
Test data: 542 images

The stage of vehicle license
plate localization D

The 4877 images are divided into
training and validation data

according to the 70/30 rule. Use the
LabelImg software to mark the
plate location in every image.

Train data: 3414 images
Validation data: 1463 images

Capture images and
standardize their formats S

Standardize the dimensions of the
images of vehicle license plates

captured from the YOLOv3 model
to 45 × 85 pixels, and change their

color into greyscale.

Learning data: 4877 images

The stage of classification of
the number of characters C

The 4877 images are divided into
training and validation data
according to the 70/30 rule.

Train data: 3414 images
Validation data: 1463 images

The stage of character
recognition R

The data set is the same as the
classification of the number of

characters stage, without additional
image data preprocessing.

Train data: 3414 images
Validation data: 1463 images

Note: Because all the license plate images framed by YOLOv3 do not exceed 45 × 85 pixels, this size is used as the standard for the unified
specification to avoid image distortion caused by excessive stretching of the image.

4.2. Individual Model Building and Validation
4.2.1. Hardware and Software Specifications

Deep learning models were constructed using Python in Windows using Keras as the
application programming interface (API) with TensorFlow, an open-source software library.
Table 9 provides detailed specifications of hardware and software that were used herein.

Table 9. Specifications of software and hardware.

Software and Hardware Equipment Specification

CPU INTEL Core i7-8700 3.2 GHz CPU
Motherboard ASUS

GPU NVIDIA GeForce RTX2080Ti-11G GDDR6
RAM 32 GB DDR4-2666 RAM

Application CUDA version 10.1.120
Platform Windows 10

Programming Python

4.2.2. Data Usage and Model Construction

A total of 5419 images of dump trucks were used in the models to locate the vehicle
license plates, to determine the number of characters on the license plates, and to identify
those characters. Noticeably, the images captured on-site were not originally for license
plate recognition, thus increasing the complexity of the learning process. The images were
then divided in a ratio of 9: 1 into the learning data and test data. The learning data
included 4877 images in total, with 3414 images for training, 1463 images for validation,
and 542 images for testing. Table 10 presents the quantities of image data used. Figure 4
shows an example of the dump truck image.
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Table 10. Image information in every dataset.

Dataset

No. of Characters
6 Characters 7 Characters 8 Characters Total Images

Learning Data 3389 images 240 images 1248 images 4877 images
Training Data 2372 images 168 images 874 images 3414 images

Validation Data 1017 images 72 images 374 images 1463 images
Test Data 387 images 38 images 117 images 542 images

1 
 

 

Figure 4. Truck entering a control point in daytime. Note: 1. The license plate number of the truck is pixelated because it is
within the scope of protection of the law. 2. The image size is divided into two types: 708 × 480 pixels and 352 × 240 pixels.

Table 11 presents the names of the stages in the system and the appraised and com-
pared models. The model with the highest accuracy in each stage was selected as the
optimal model. In this investigation, the standard accuracy was set to 95%; a model whose
validation reached 95% in each stage was selected as the optimal model for that stage.
Models whose accuracy did not meet that standard were retrained using data augmentation
of the training data. Table 12 presents the setting for data augmentation.

Table 11. Correspondence matrix between the system stage and evaluation models.

Model

Stage The Stage of Vehicle
License Plate Localization

(D)

The Stage of Classification
of the Number of Characters

(C)

The Stage of Character
Recognition

(R)

YOLOv3 4 - -
C-CNN-L3 - 4 -

C-SRCS - 4 -
C-VGG16 - 4 -

R-CNN-L3 - - 4

R-SRCS - - 4

R-VGG16 - - 4
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Table 12. Data augmentation parameter setting.

Parameter Command Range

Brightness brightness_range 0.3–1.3
Rotation rotation_range 0–10

Shift
width_shift_range 0–0.1
height_shift_range 0–0.1

Zoom zoom_range 0–0.1
Shear shear_range 0–0.1

Rescale rescale 1/255

Once the model with the highest accuracy was identified, the training and validation
datasets were integrated as a whole dataset for the learning model. The network structure
of the optimal model was used to train the learning model. Then a test was performed
using the test dataset to evaluate the accuracy of the learning model. Figure 5 presents the
model building, validation, and testing of the individual stages in detail.
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Localizing Truck License Plates

After a series of comparisons of the CNN models, the truck license plate localization
model that was used in this study was YOLOv3, whose structure is shown in Figure 6. The
results revealed that the mAP of YOLOv3 was 96.76%, and the recognition speed was as
high as 0.025 s/image; the details are provided in Table 13. The assessed value met the set
accuracy standard (95%). Therefore, both the training data and the validation data were
used to train the learning model. During model testing, the mAP was as high as 97.14%,
and the speed was 0.03 s/image; the details are presented in Table 13.
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Figure 6. YOLOv3 network structure.

Table 13. Outputs of YOLOv3 model.

Training Phase

Model Category mAP Loss Value Speed
(s/image)

YOLOv3 1 96.76 2.87 0.025

Test Phase

Model Category mAP Loss Value Speed
(s/image)

YOLOv3 1 97.14 2.58 0.03

Classifying Truck License Plates by Number of Characters

In the stage of classification of the license plates by the number of characters, the CNN
models of three structures, namely, C-CNN-L3, C-SRCS, and C-VGG16, were appraised and
compared. Table 14 provides details of the three network structures. Their last output layers
were identical, comprising a fully connected layer with the softmax activation function to
perform multiclass, single-label classification, providing the categories that were related to
the number of characters on the truck license plates—six, seven, or eight.



Sensors 2021, 21, 555 16 of 31

Table 14. Network architectures for classifying the truck license plates by the number of characters thereon.

No. of Layers

Network Architecture
C-CNN-L3 C-SRCS C-VGG16

Input layer Input
(45 × 85 × 1)

Input
(45 × 85 × 1)

Input
(45 × 85 × 1)

1 Convolutional
(48@5 × 5)

Convolutional
(32@3 × 3)

Convolutional
(32@3 × 3)

2 Max-pooling
(2 × 2)

Convolutional
(32@3 × 3)

Convolutional
(32@3 × 3)

3 Convolutional
(64@5 × 5)

Batch
Normalization

Max-pooling
(2 × 2)

4 Max-pooling
(2 × 2)

Max-pooling
(2 × 2)

Convolutional
(64@3 × 3)

5 Convolutional
(128@5 × 5)

Dropout
(0.5)

Convolutional
(64@3 × 3)

6 Max-pooling
(2 × 2)

Convolutional
(64@3 × 3)

Max-pooling
(2 × 2)

7 Dropout
(0.5)

Convolutional
(64@3 × 3)

Convolutional
(128@3 × 3)

8 Flatten Batch
Normalization

Convolutional
(128@3 × 3)

9 2500 Max-pooling
(2 × 2)

Convolutional
(128@3 × 3)

10 – Dropout
(0.5)

Max-pooling
(2 × 2)

11 – Convolutional
(128@3 × 3)

Dropout
(0.5)

12 – Convolutional
(128@3 × 3)

Convolutional
(512@3 × 3)

13 – Batch
Normalization

Convolutional
(512@3 × 3)

14 – Max-pooling
(2 × 2)

Convolutional
(512@3 × 3)

15 – Dropout
(0.5)

Max-pooling
(2 × 2)

16 – Convolutional
(128@3 × 3)

Convolutional
(512@3 × 3)

17 – Batch
Normalization

Convolutional
(512@3 × 3)

18 – Max-pooling
(2 × 2)

Convolutional
(512@3 × 3)

19 – Flatten Max-pooling
(2 × 2)

20 – Dropout
(0.5)

Dropout
(0.5)

21 – – Flatten
Output layer Fully connected layer (3, Softmax)

Table 15 provides the results of the model training. Before data augmentation, all
three models had an accuracy of 79%, which did not meet the set target (95%). Accordingly,
data augmentation was carried out during training. The C-CNN-L3 and C-SRCS models’
accuracies were consequently increased to 99.70% and 98.68%, respectively, while the C-
VGG16 model’s accuracy only reached 81.08%. Hence, C-CNN-L3 was used as the optimal
model of this stage in building the learning model.
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Table 15. Accuracy of the models in classifying the plate images by number of characters.

Training Phase

Networks
Accuracy

Not using data augmentation (%) Using data augmentation (%)

C-CNN-L3 79.56 99.70
C-SRCS 79.63 98.68

C-VGG16 79.56 81.08

Test Phase

Model
Performance Accuracy (%) Speed (s/image)

C-CNN-L3 99.90 0.0315

Both the training data and the validation data were used to train the learning model;
model training was performed in combination with data augmentation. As indicated by the
test results in Table 15, the accuracy was 99.90% and the classification speed was 0.0315 s.

To examine the sensitivity of the model’s accuracy to the data augmentation param-
eters, the C-CNN-L3 network was used as the test structure. First, all parameters were
set to the values in Table 12, and the model was trained. The accuracy was 99.80%. In the
experiments, one of the parameters was removed, and only six parameter settings were
used in model training. Table 16 provides the results. The ticked items in the table are the
parameters used in the current model training. The goal of the test is to understand the
effect of these parameters on the accuracy of the model.

Table 16. Effect of data augmentation on the classification accuracy.

No
Parameter Brightness Zoom Shear Height

Shift
Width
Shift Rescale Rotation

Accuracy
(%)

1 4 4 4 4 4 4 4 99.80
2 4 4 4 4 4 4 99.80
3 4 4 4 4 4 4 99.90
4 4 4 4 4 4 4 99.80
5 4 4 4 4 4 4 99.80
6 4 4 4 4 4 4 99.70
7 4 4 4 4 4 4 81.28
8 4 4 4 4 4 4 99.79

The eight experiments demonstrated that, when the rescale parameters are removed,
the accuracy is significantly reduced by approximately 18% to only 81.28%. The accuracy
of the other experimental results exceeds 99%, so the rescale parameter can be inferred to
have a much stronger impact on the accuracy of the character number classification model
than the other six parameters, whereas the brightness, zoom, shear, height shift, width shift,
and rotation parameters have similar impacts on the model. However, in the comparison
of the six parameters, removing the zoom parameter still increases the model’s accuracy
to 99.90%, optimizing model performance. Therefore, the zoom parameter is not used in
training the learning model in its best state.

Recognizing Characters on Truck License Plates

In the license plate character recognition stage, the CNN models with three structures,
R-CNN-L3, R-SRCS, and R-VGG16, were used for appraisal and comparison. Table 17
presents the network structures. Their last output layers were identical. Character pre-
diction was carried out using the fully connected layers in combination with the softmax
activation function, and a fully connected layer was constructed for the number of charac-
ters to be predicted.
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Table 17. Network architectures for recognizing the characters on truck license plates.

Number of Layers
Networks

R-CNN-L3 R-SRCS R-VGG16

Input layer Input
(45 × 85 × 1)

Input
(45 × 85 × 1)

Input
(45 × 85 × 1)

1 Convolutional
(48@5 × 5)

Convolutional
(32@3 × 3)

Convolutional
(32@3 × 3)

2 Max-pooling
(2 × 2)

Convolutional
(32@3 × 3)

Convolutional
(32@3 × 3)

3 Convolutional
(64@5 × 5)

Batch
Normalization

Max-pooling
(2 × 2)

4 Max-pooling
(2 × 2)

Max-pooling
(2 × 2)

Convolutional
(64@3 × 3)

5 Convolutional
(128@5 × 5)

Dropout
(0.5)

Convolutional
(64@3 × 3)

6 Max-pooling
(2 × 2)

Convolutional
(64@3 × 3)

Max-pooling
(2 × 2)

7 Dropout
(0.5)

Convolutional
(64@3 × 3)

Convolutional
(128@3 × 3)

8 Flatten Batch
Normalization

Convolutional
(128@3 × 3)

9 – Max-pooling
(2 × 2)

Convolutional
(128@3 × 3)

10 – Dropout
(0.5)

Max-pooling
(2 × 2)

11 – Convolutional
(128@3 × 3)

Dropout
(0.5)

12 – Convolutional
(128@3 × 3)

Convolutional
(512@3 × 3)

13 – Batch
Normalization

Convolutional
(512@3 × 3)

14 – Max-pooling
(2 × 2)

Convolutional
(512@3 × 3)

15 – Dropout
(0.5)

Max-pooling
(2 × 2)

16 – Convolutional
(128@3 × 3)

Convolutional
(512@3 × 3)

17 – Batch
Normalization

Convolutional
(512@3 × 3)

18 – Max-pooling
(2 × 2)

Convolutional
(512@3 × 3)

19 – Flatten Max-pooling
(2 × 2)

20 – Dropout
(0.5)

Dropout
(0.5)

21 – – Flatten

Output layer
Fully connected layer (35, Softmax)

Fully connected layer (35, Softmax)

Note: The fully connected layer of the output layer sets the number of fully connected layers according
to the number of characters (6, 7, and 8 codes).

The 35 characters were divided into three categories. The first category comprised
the ten numbers from 0 to 9; the second category consisted of 24 English letters from A
to Z (O and I are not used on license plates in Taiwan to avoid confusion because of their
similarity to 0 and 1; the third category, “others”, consisted of one character, “-”.

Before data augmentation, the mean accuracy of the character recognition of all three
models was only 30%. Data augmentation significantly increased the accuracy, with the R-
CNN-L3 model performing the best, yielding a mean accuracy of at least 96% in recognizing
six-, seven-, and eight-digit characters plates. Table 18 presents the details.
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Table 18. Accuracy of the models in recognizing the characters on truck license plates.

Networks
Character No. Single Character Recognition Rate

6 Characters 7 Characters 8 Characters
R-CNN-L3 96.34% 98.23% 96.97%
R-SRCS 77.80% 82.78% 79.65%
R-VGG16 35.37% 72.61% 89.74%

Note: Data augmentation—brightness; rotation; shift; zoom; shear; and rescale.

The R-CNN-L3 network structure was selected as the character recognition model for
six, seven, and eight characters. Table 19 presents the testing results; the single character
recognition rates of these models all exceeded 95%, the overall successful recognition rates
ranged from 93% to 94%, and the recognition speeds per image ranged from 0.062 to 0.078 s.
The single character recognition rate of the trained model of this stage reached the target.

Table 19. Results of the test of the learning model in recognizing characters on truck license plates.

Character No. 6 Characters 7 Characters 8 Characters

No. of test image 387 images 38 images 117 images

Model

Accuracy Overall
successful

recognition
rate

Single
character

recognition
rate

Overall
successful

recognition
rate

Single
character

recognition
rate

Overall
successful

recognition
rate

Single
character

recognition
rate

CNN-L3 94.06% 97.80% 94.74% 99.25% 93.16% 98.83%

Speed 0.0624 s 0.0673 s 0.0781 s

4.3. Truck License Plate Recognition System
4.3.1. System Integration

The TLPR system developed in this study was divided into three stages: license plate
localization, classification by the number of characters, and character recognition. The opti-
mal models of the three stages for testing were YOLOv3, C-CNN-L3, and R-CNN-L3. This
section details how the optimal models were integrated into a TLPR system. Figure 7 shows
the integrated network structure that was used in the real-time truck image recognition at
the current dredging construction site.

Following the integration of the models of all stages, the overall TLPR system was
evaluated. The assessed items were the overall successful recognition rate, the single
character recognition rate, and the operating speed. Table 20 presents the results of the
overall assessment of the system. They exhibited similarities with those of the individual
stages in the previous section, revealing that the system integration in this study passed
the test.

Table 20. Overall evaluation of the TLPR system.

System
Items No. of Test Image Overall Successful

Recognition Rate (%)
Single Character

Recognition Rate (%) Speed (s/image)

TLPR system 542 images 93.73 97.59 0.3271
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4.3.2. System Analysis and Discussion

Based on the results of the model training and validation of the object detection, the
image classification, and the digit recognition stages, network structures with fewer layers
were more suitable for training the model using the data in this study. The accuracy of the
models significantly increased following data augmentation because random changes in
the brightness, shift range, and zoom of the training data allowed for the diversification of
the training data. This method helped the model learn from data with more dimensions,
increasing the accuracy and generalizability during testing.

The success of the procedures and framework for building the TLPR system was
demonstrated by the results of the system testing. The overall success rate of the TLPR
by the system was as high as 93.73%, the single character recognition rate was 97.59%,
and the speed was 0.3271 s/image. Comparing the results of this research with those
of prior studies on LPR, research on general LPR in various countries is discussed (see
Table 21 for details). Despite dust adhering to truck license plates, equipment installation,
the environment, and the amount of image data, the overall recognition was still 93.73%.
Although the overall recognition rate needs to be improved, no prior study has recognized
this complexity regarding truck license plates. This result thus reveals an improvement
in engineering efficiency, the fair evaluation of license plates by the LPR system, and the
reduction of risk of errors.
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Table 21. Comparison of results of the LPR system in various countries.

Article Countries Technique Overall Successful
Recognition Rate Number of Characters

Segmentation-Free Vehicle
License Plate Recognition

Using CNN [53]
China YOLOv2; RDNet 99.34% 7 characters

(30-class characters)

A New Convolutional
Architecture for Vietnamese
Car Plate Recognition [56]

Vietnam CNN-L3 97.84% 7 characters
(30-class characters)

A Hybrid KNN-SVM Model
for Iranian License Plate

Recognition [63]
Iran KNN-SVM 97.03% 8 characters

(22-class characters)

Artificial neural networks
based vehicle license plate

recognition [64]
Turkey Canny edge; ROI;

ANN 95.36% –

Deep Learning System for
Automatic License Plate

Detection and Recognition [48]

USA
Taiwan Canny edge; CNN Caltech 94.8%

AOLP 95.1%
–

(37-class characters)

Automatic license plate
recognition via
sliding-window

darknet-YOLO deep
learning [40]

Taiwan YOLO 78% 6 characters
(36-class characters)

This study Taiwan YOLOv3; CNN-L3 93.79% 6–8 characters
(35-class characters)

5. Use of the Dump Truck LPR System at Smart Dredging Construction Sites

The first subsection begins by presenting the planning of a smart dredging construction
site and the design of an automatic control point. Then, the procedures for building a
practical TLPR system is demonstrated in the second subsection. The third subsection
provides a case study of dredging operations using the TLPR system. The final subsection
analyzes the contributions of the TLPR system to automation in construction.

5.1. Smart Dredging Construction Site and Automation of Control Points
5.1.1. Smart Dredging Construction Site Planning

The problems that are often encountered at dredging operation sites can be categorized.
Relevant concepts around construction site management, equipment maintenance, and
disaster prevention are referred to in the literature review. The concepts were used to
plan a smart dredging construction site, as displayed in Figure 8. The figure presents the
difficulties and problems encountered in the dredging construction area along with the
potential benefits of smart construction site planning.

At the control point, the qualification inspections and information checks on hundreds
of dump trucks are conducted manually every day. Therefore, mistakes in TLPR or threats
and intimidation by unscrupulous operators can occur as personnel are under pressure to
perform their duties quickly or as they are suffering from visual fatigue. Consequently, the
tasks may not be performed fairly and efficiently, causing errors in dump truck entry and
exit management.

According to the plan in this study, the license plates of the dump trucks were rec-
ognized using surveillance cameras at the control point, from which information is auto-
matically associated with the corresponding vehicle data in the developed cloud system.
The system used cameras to estimate the dredged sand and gravel volume, to check the
dustproof nets, and to eliminate blind spots. Furthermore, the TLPR system can read
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images from the cameras around the construction area to identify suspicious vehicles and
to inform managers when to implement related inspection measures.
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Dump trucks travel on temporary access roads, but the long roads and lack of moni-
toring equipment make their status assessments difficult. The routing of vehicles is also
a critical part of management; if the real-time location of a vehicle in a construction area
cannot be determined precisely, then sand and gravel may get stolen, and construction
accidents may occur without anyone’s knowledge.

The detection of cracks in roads by robots with automatic detection functions based
on visual image recognition can reduce damage and extend the period of temporary road
use. Regarding vehicle itineraries, a Global Positioning System (GPS) is used for tracking
the current locations of vehicles that are immediately sent to the control station. In cases of
unruly behavior on site, the patrolman is immediately instructed to check the site, reducing
the opportunities for crime and accidents.

The interviews in this work revealed that although some river management offices
have installed cameras to monitor the operation of the excavator, fair and accurate judg-
ments of excessive excavation could seldom be made using real-time images based on
the experience of dredge operators. Therefore, dredging disputes between dredging of-
ficials and construction bidders are relatively common, and these are unfavorable for
construction.

Real-time surveillance images and related mathematical calculations were used to
determine the angle and depth of the excavator’s motion and whether excessive excavation
had occurred. In the case of excessive excavation, the system can remind dredge operators
and help them make judgments rapidly, adopt related warning measures, or collect evi-
dence and make decisions. Computer systems reduce conflicts concerning the excessive
excavation of sand and gravel by supporting fair judgment.

While heavy rains followed by river swells and rapid flows commonly damage
dredging areas, earthquakes followed by soil flow and landslides commonly affect the
construction sites’ facilities. The upstream situation of the dredged river influences the
dredging works downstream. Therefore, obtaining real-time information is effective in
preventing these disasters in construction areas.

The automatic access to data from the Central Weather Bureau, regular dispatch of
unmanned aerial vehicles (UAVs) upstream of a construction area to collect images, and
automated early warning system for disaster prevention can all help personnel determine
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the probability of a negative impact by heavy rainfall in a construction area. All of the
access, tools, and systems can provide immediate suggestions and warnings to prevent
a disaster.

5.1.2. Automated Design of the Control Point

Figure 9 shows the preliminary plan of the automation procedure at a control point
in the dredging operation. An automated vehicle LPR system for dump trucks that uses
images from surveillance cameras at the entrance and the exit of the control point in the
dredging area was developed; it also uses AI technologies and data on the dump trucks
from the cloud. The system accesses on-site information to help personnel at the control
point rapidly and precisely perform their tasks.
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5.2. Recognition by the TLPR System

The TLPR system, based on the results in Section 4, can be used to control the entering
and exiting of dump trucks to and from the control point at the construction site of a dredg-
ing operation. This system helps personnel at the control point recognize license plates and
determine whether the trucks may enter and exit the construction site. Figure 10 displays
the operating procedure of the system when the dump trucks enter the control point.

5.3. Case Study of Dredging Operations
5.3.1. Effect of Weather and Lighting Factors on Recognition

The light in a construction site during dredging operations generally varies greatly.
Use of the TLPR system that was developed in this study can effectively facilitate LPR for
the vehicles of dredge operators in insufficient light and bad weather, reducing the extent
to which environmental factors reduce the accuracy of recognition, as shown in Figure 11.

5.3.2. Reducing Human Factors on Truck Entry and Exit

Because of the considerable benefits of selling dredged sand and gravel, unscrupulous
operators often force personnel using threats, intimidation, violence, or bribes to allow
their dump trucks to enter through the dredging operation’s control point gate. They
steal sand and gravel, which they then transport away. Installing the TLPR system in
this work can prevent unscrupulous operators from committing these criminal acts and
reduce opportunities for them to do so, reducing the probability of threats to the personnel
associated with dredging. The system enables police officers to rapidly collect evidence,
making the dredging operations more transparent and reducing the probability of human
errors, as shown in Figure 11.
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5.3.3. Alleviating Visual Fatigue Caused by Inspecting Numerous Vehicles

The frequency of trucks that transport sand and gravel entering during dredging
operations is affected by the speed and quantity of the removal of sand and gravel by the
excavators. By its accurate recognition of vehicle license plates, the system in this study
can effectively reduce errors that are caused by the visual fatigue of personnel who inspect
a very large number of vehicles. The system is also effective in situations like long queues
by doing the check rapidly and smoothly. Figure 11 presents the details.

5.4. Contributions of the Proposed TLPR System to River Dredging Construction
5.4.1. Security Guards at Control Points at Construction Sites

Incidents of sand and gravel theft during dredging operations occur continually.
Security guards at control points often encounter violent intimidation and threats, and
they are tempted with money from unscrupulous operators. These unscrupulous operators
usually demand that their dump trucks be permitted to enter and exit the construction
site without trouble so that they can steal sand and gravel. Use of the TLPR system at the
control point to manage the permissions of dump trucks to enter and exit supports fair
inspection of permissions, reduces the control of trucks entering and exiting by humans,
helps to protect the security guards, and prevents unsafe working conditions.

Environmental factors, such as weather and light, often cause difficulties in vehicle
LPR. The TLPR system herein can help security guards recognize license plate numbers,
reducing human errors caused by environmental factors. On typical working days, the
security guards at the control point must check and review the permissions associated with
the license plates of hundreds of dump trucks. Long queues of dump trucks form if the
checking rate is less than the rate of entering and exiting. The developed TLPR system is
fast and accurate. It can compensate for the guards’ visual fatigue after long hours of work.
Accordingly, the work stress at the control point can be largely minimized, and the effect of
human limitations can be reduced.

5.4.2. Dredging Authorities

Dredging officials may be subject to violent intimidation and threats or the temptation
of money from unscrupulous operators who steal sand and gravel. Although dredging
officials are not responsible for controlling the frontline management of dump trucks that
enter and exit construction areas, they can affect the permissions of the dump trucks. The
TLPR system herein can reduce the probability of control of truck entry and exit by human
factors by supporting the fair and equitable inspection of permissions. It can improve
safety in the environment where dredging officials work.

The priorities of construction managers in construction control are the time, cost,
and efficiency of construction. Using the proposed TLPR system to manage the entry
and exit of dump trucks at the control point during dredging operations can reduce the
manpower needed and accelerate permission inspections, increasing the efficiency of the
transportation of sand and gravel in construction. This system provides considerable
benefits in construction execution and, for managers, it can decrease the risks associated
with construction management.

5.4.3. Departments of Police and Government Ethics

Since the human inspection of permissions of dump trucks to enter and exit the
construction area depends on the inspector’s judgment at the control point, its results
are susceptible to the influence of unscrupulous operators. Personnel may obey such
people and allow their dump trucks to transport loads of sand and gravel without entry
permission. The impartial judgment that is supported by the TLPR system herein reduces
the corrupt human influence and helps to prevent the illegal conduct of unscrupulous
operators. The system would help reduce the opportunities for stealing sand and gravel as
well as the rate of crime.



Sensors 2021, 21, 555 26 of 31

When sand and gravel are stolen, police must collect evidence in the dredged area and
conduct an overnight investigation. However, the police must allocate manpower, which
is often unavailable. The TLPR system can record attempts by dump trucks to enter the
construction site without permission. If the security guard does not prevent such trucks
from entering or exiting, then the system can quickly provide reliable evidence for the
police and government ethics departments, without the need for the police to allocate
significant manpower.

6. Summary, Conclusions, and Suggestions

In dredging operations, control points at the entrances and exits are crucial for con-
struction to progress smoothly. To reduce the possibility of a crime and incident from
happening, personnel should accurately control and inspect dump trucks that enter and
exit the construction area. To learn about the current execution of dredging operations and
the difficulties encountered in the dredging operations’ process, interviews were carried
out with staff at ten river management offices around Taiwan. Recent cases were analyzed,
and a literature review was conducted.

The blueprint of a smart dredging construction site was planned following the sum-
marization and organization of the information. With the automation of work at the control
point as the goal, a vehicle LPR system for dump trucks (TLPR) was developed to reduce
the inconvenience of performing tasks manually and the risks caused by human, natural,
and management factors. The summaries of this study are as follows.

(1) In this study, the blueprint of a smart dredging construction site was provided.
The blueprint was created in light of different tasks that are performed in the construction
area. Image recognition technology and robot technology related to real-time information
were used to improve the efficiency of construction execution while reducing the required
labor force and the probability of error.

(2) An automated system was designed to support a dredging operation’s control
point work. The goal was to make the work at the control point automatic, simpler, and
more transparent. The focus of this study was on building and testing the TLPR system in
a dredging operation.

(3) The TLPR system was constructed in four stages: collecting the image data, design-
ing the system process and structure, building and testing models of the individual stages,
and finally integrating the optimal models of the individual stages based on the system
structure to produce a single system. The system was then used in dredging operations
and the relevant situations were simulated. The TLPR process was divided into three main
stages: license plate localization, classification of the number of characters, and character
identification.

(4) During model training, the YOLOv3 model was used for truck license plate local-
ization, with an mAP of 96.76% and a speed of 0.025 s/image. The classification by the
number of characters was compared with three network structures. C-CNN-L3, which was
trained with data augmentation, was the optimal model of this stage, with an accuracy of
99.70%. Character recognition was similarly appraised and compared using three network
structures. For the R-CNN-L3 model with data augmentation, the single character recogni-
tion rates with six, seven, and eight characters on a license plate were all above 95%. Thus,
the optimal network structure for each stage, YOLOv3, C-CNN-L3, and R-CNN-L3, was
used to train the learning model.

(5) When the learning model was being tested individually for each stage, the mAP
of YOLOv3, the model used to locate truck license plates, was 97.14, and the speed of
detection was 0.03 s/image. The accuracy of C-CNN-L3, the model for classifying plate
images by the number of characters, was 99.90%, and the speed was 0.0315 s/image.
The overall successful recognition rates of R-CNN-L3, the character recognition model,
for plates with six, seven, and eight characters all exceeded 93.16%; the single character
recognition rate exceeded 97.80%; and the recognition speed was between 0.0624 and 0.0781
s/image. The learning models of the individual stages were then integrated into a TLPR
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system. Testing revealed that the system’s overall successful recognition rate and single
character recognition rate were 93.73% and 97.59%, respectively, and the detection speed
was 0.3271 s/image.

(6) Based on the model’s performance, network structures with fewer layers shows
better performance, implying the fewer layer networks were more suitable for the data
in this study. The performance of the investigated models was also influenced by data
augmentation, especially the rescale parameter, which shows better accuracy with sensitive
tests. This study also found that, in the system construction process, image quality critically
influences the development and accuracy of the TLPR system. Improving the functions,
resolution, installation layout, and lighting of the on-site hardware in the construction area
can accelerate recognition and make it more accurate, supporting dump truck management.

The TLPR system in this work can help personnel to manage the entry and exit of
dump trucks during dredging operations by facilitating license plate recognition. The
system would inspect dump trucks’ entry and exit permissions and prevent unscrupulous
operators from coming into the construction area and stealing sand and gravel, all while
aiding police departments to collect evidence rapidly when required. The automated
system would also prevent inspection activities from being affected by factors related to
weather and light conditions, thereby reducing errors. It also reduced the possibility of
personnel misjudgments, providing a range of benefits to security guards at the control
point, dredging officials, and police departments.

This paper presented an objective approach for the TLPR system in dredging oper-
ations in the contribution of the LPR system. Dredging operation, which originally has
an existing manual checking and inspection system, was integrated into the building of
the developed TLPR system with the intention of making a smart construction site. The
unique contributions of this study lie in the ability of the developed system to recognize
noise-covered license plates (e.g., by sand, grave, bad weather, or bad lighting); increase
the computation speed and accuracy of the license plate inspections; reduce the probability
of human errors; and assist security guards at the control point.

In the future, multiple sets of TLPR systems that use different algorithms with high
accuracy can be used jointly to read the same vehicle license plate, reducing the probability
of error recognition. To increase the positioning speed and accuracy of the localizing vehicle
license plates model, future studies should use a relatively novel target detection network
like EfficientNet, YOLOv4, or YOLOv5.

A function that warns of suspicious vehicles can be developed by installing vehicle
LPR systems elsewhere in the construction area. When vehicles that are recognized as
unqualified enter said area, the patrolman is immediately notified for pursuit and capture.
Functions of the vehicle LPR system that support dredging operation tasks can be further
developed, improving dredging operations toward the goal of a smart construction site.
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Abbreviations

AI Artificial Intelligence
AP Average Precision
ANN Artificial Neural Network [1]
API Application Programming Interface
BIM Building Information Modeling
CNN Convolutional Neural etwork [2]
CNN-L3 Convolutional Neural Network with Three Feature Stages [3,4]
CPU Central Processing Unit

C-CNN-L3
Convolutional Neural Network for Classification of the Number of Characters with
Three Feature Stages

C-SRCS Simple Railway Captcha Solver for Classification of the Number of Characters
C-VGG16 Visual Geometry Group 16 for Classification of the Number of Characters
FN False Negative
FP False Positive
FPN Feature Pyramid Network [5]
GIS Geographic Information System
GPU Graphics Processing Unit
GPS Global Positioning System
IoU Intersection over Union
KNN-SVM K-Nearest Neighbors and the Multi-Class Support Vector Machines [6]
LPR License Plate Recognition
mAP Mean Average Precision
PR Curve Precision-Recall Curve
RAM Random-Access Memory

RDNet
Combination of Dense Convolutional Network (DenseNet) and Residual Network
(ResNet)’s Advantages [7]

R-CNN-L3 Convolutional Neural Network for Character Recognition with Three Feature Stages
R-SRCS Simple Railway Captcha Solver for Character Recognition
R-VGG16 Visual Geometry Group 16 for Character Recognition
SRCS Simple Railway Captcha Solver
TLPR Truck License Plate Recognition
TN True Negative
TP True Positive
UAV Unmanned Aerial Vehicle
VGG16 Visual Geometry Group 16 [8]
YOLO You Only Look Once [9]
YOLOv2 You Only Look Once Version 2
YOLOv3 You Only Look Once Version 3
YOLOv4 You Only Look Once Version 4
YOLOv5 You Only Look Once Version 5
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