Real-Time Artifacts Reduction during TMS-EEG Co-Registration: A Comprehensive Review on Technologies and Procedures
Abstract
:1. Introduction
2. Research Methodology
3. Electrical and Equipment Related TMS Artifacts
3.1. TMS Pulse Artifact
3.2. TMS Recharge Artifact
3.3. Electrode Motion
3.4. Electrode Polarization
4. Muscle Activation and Spurious Potentials Evoked by TMS Coil
4.1. Muscle Artifact
4.2. Eye Movement and Blink Artifact
4.3. TMS Confounding Factors: Coil Click and Somatic Sensation
4.4. Artifacts Related with Parameter Setting and External Interference
5. Technologies to Deal with Strong Magnetic Artifacts
5.1. EEG Recording Systems
5.2. TMS-EEG Sensor Characteristics
6. A Synchronization Toolbox for TMS-EEG Laboratories: Magstim Rapid2 Use Case
7. Maximizing Signal-To-Noise Ratio of Stereotypical TEPs Starting from Data Collection: Subject Preparation Steps
8. Existing Challenges and Future Goals
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hallett, M. Transcranial magnetic stimulation: A primer. Neuron 2007, 55, 187–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilmoniemi, R.J.; Virtanen, J.; Ruohonen, J.; Karhu, J.; Aronen, H.J.; Näätänen, R.; Katila, T. Neuronal responses to magnetic stimulation reveal cortical reactivity and connectivity. Neuroreport 1997, 8, 3537–3540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paus, T. Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nat. Rev. Neurosci. 2001, 2, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Strafella, A.P.; Paus, T.; Barrett, J.; Dagher, A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci. 2001, 21, RC157. [Google Scholar] [CrossRef]
- Siebner, H.; Peller, M.; Willoch, F.; Minoshima, S.; Boecker, H.; Auer, C.; Drzezga, A.; Conrad, B.; Bartenstein, P. Lasting cortical activation after repetitive TMS of the motor cortex: A glucose metabolic study. Neurology 2000, 54, 956–963. [Google Scholar] [CrossRef]
- Bohning, D.E.; Shastri, A.; Wassermann, E.M.; Ziemann, U.; Lorberbaum, J.P.; Nahas, Z.; Lomarev, M.P.; George, M.S. BOLD-f MRI response to single-pulse transcranial magnetic stimulation (TMS). J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 2000, 11, 569–574. [Google Scholar] [CrossRef]
- Pellicciari, M.C.; Veniero, D.; Miniussi, C. Characterizing the cortical oscillatory response to TMS pulse. Front. Cell. Neurosci. 2017, 11, 38. [Google Scholar] [CrossRef]
- Hill, A.T.; Rogasch, N.C.; Fitzgerald, P.B.; Hoy, K.E. TMS-EEG: A window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions. Neurosci. Biobehav. Rev. 2016, 64, 175–184. [Google Scholar] [CrossRef]
- Bortoletto, M.; Veniero, D.; Thut, G.; Miniussi, C. The contribution of TMS–EEG coregistration in the exploration of the human cortical connectome. Neurosci. Biobehav. Rev. 2015, 49, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.W.; Rogasch, N.C.; Hoy, K.E.; Fitzgerald, P.B. Measuring brain stimulation induced changes in cortical properties using TMS-EEG. Brain Stimul. 2015, 8, 1010–1020. [Google Scholar] [CrossRef]
- Barr, M.S.; Farzan, F.; Davis, K.D.; Fitzgerald, P.B.; Daskalakis, Z.J. Measuring GABAergic inhibitory activity with TMS-EEG and its potential clinical application for chronic pain. J. Neuroimmune Pharmacol. 2013, 8, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.B.; Daskalakis, Z.J.; Hoy, K.; Farzan, F.; Upton, D.J.; Cooper, N.R.; Maller, J.J. Cortical inhibition in motor and non-motor regions: A combined TMS-EEG study. Clin. EEG Neurosci. 2008, 39, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Massimini, M.; Ferrarelli, F.; Huber, R.; Esser, S.K.; Singh, H.; Tononi, G. Breakdown of cortical effective connectivity during sleep. Science 2005, 309, 2228–2232. [Google Scholar] [CrossRef] [PubMed]
- Morishima, Y.; Akaishi, R.; Yamada, Y.; Okuda, J.; Toma, K.; Sakai, K. Task-specific signal transmission from prefrontal cortex in visual selective attention. Nat. Neurosci. 2009, 12, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Rossini, P.M.; Rossi, S. Transcranial magnetic stimulation: Diagnostic, therapeutic, and research potential. Neurology 2007, 68, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Pascual-Leone, A. Transcranial magnetic stimulation in neurology. Lancet Neurol. 2003, 2, 145–156. [Google Scholar] [CrossRef]
- Rossi, S.; Pasqualetti, P.; Rossini, P.; Feige, B.; Ulivelli, M.; Glocker, F.; Battistini, N.; Lucking, C.; Kristeva-Feige, R. Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans. Cereb. Cortex 2000, 10, 802–808. [Google Scholar] [CrossRef] [Green Version]
- Ridding, M.C.; Rothwell, J.C. Is there a future for therapeutic use of transcranial magnetic stimulation? Nat. Rev. Neurosci. 2007, 8, 559–567. [Google Scholar] [CrossRef]
- Fregni, F.; Boggio, P.S.; Valle, A.C.; Otachi, P.; Thut, G.; Rigonatti, S.P.; Marcolin, M.A.; Fecteau, S.; Pascual-Leone, A.; Fiore, L.; et al. Homeostatic effects of plasma valproate levels on corticospinal excitability changes induced by 1 Hz rTMS in patients with juvenile myoclonic epilepsy. Clin. Neurophysiol. 2006, 117, 1217–1227. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Freitas, C.; Oberman, L.; Horvath, J.C.; Halko, M.; Eldaief, M.; Bashir, S.; Vernet, M.; Shafi, M.; Westover, B.; et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr. 2011, 24, 302. [Google Scholar] [CrossRef] [Green Version]
- Antal, A.; Paulus, W. Transcranial alternating current stimulation (tACS). Front. Hum. Neurosci. 2013, 7, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siebner, H.R.; Bergmann, T.O.; Bestmann, S.; Massimini, M.; Johansen-Berg, H.; Mochizuki, H.; Bohning, D.E.; Boorman, E.D.; Groppa, S.; Miniussi, C.; et al. Consensus paper: Combining transcranial stimulation with neuroimaging. Brain Stimul. 2009, 2, 58–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veniero, D.; Bortoletto, M.; Miniussi, C. TMS-EEG co-registration: On TMS-induced artifact. Clin. Neurophysiol. 2009, 120, 1392–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okazaki, Y.O.; Mizuno, Y.; Kitajo, K. Probing dynamical cortical gating of attention with concurrent TMS-EEG. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, E.M.; Lisanby, S.H. Therapeutic application of repetitive transcranial magnetic stimulation: A review. Clin. Neurophysiol. 2001, 112, 1367–1377. [Google Scholar] [CrossRef]
- Gershon, A.A.; Dannon, P.N.; Grunhaus, L. Transcranial magnetic stimulation in the treatment of depression. Am. J. Psychiatry 2003, 160, 835–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tassinari, C.A.; Cincotta, M.; Zaccara, G.; Michelucci, R. Transcranial magnetic stimulation and epilepsy. Clin. Neurophysiol. 2003, 114, 777–798. [Google Scholar] [CrossRef]
- Allan, C.L.; Herrmann, L.L.; Ebmeier, K.P. Transcranial magnetic stimulation in the management of mood disorders. Neuropsychobiology 2011, 64, 163–169. [Google Scholar] [CrossRef]
- Couturier, J.L. Efficacy of rapid-rate repetitive transcranial magnetic stimulation in the treatment of depression: A systematic review and meta-analysis. J. Psychiatry Neurosci. 2005, 30, 83. [Google Scholar]
- George, M.S.; Nahas, Z.; Borckardt, J.J.; Anderson, B.; Foust, M.J.; Burns, C.; Kose, S.; Short, E.B. Brain stimulation for the treatment of psychiatric disorders. Curr. Opin. Psychiatry 2007, 20, 250–254. [Google Scholar] [CrossRef]
- Málly, J.; Stone, T.W. New advances in the rehabilitation of CNS diseases applying rTMS. Expert Rev. Neurother. 2007, 7, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.T.; Watkins, K.E. Stimulating language: Insights from TMS. Brain 2007, 130, 610–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschstein, T.; Köhling, R. What is the source of the EEG? Clin. EEG Neurosci. 2009, 40, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Walsh, V.; Cowey, A. Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 2000, 1, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Cracco, R.Q.; Amassian, V.E.; Maccabee, P.J.; Cracco, J.B. Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation. Electroencephalogr. Clin. Neurophysiol. 1989, 74, 417–424. [Google Scholar] [CrossRef]
- Veniero, D.; Maioli, C.; Miniussi, C. Potentiation of short-latency cortical responses by high-frequency repetitive transcranial magnetic stimulation. J. Neurophysiol. 2010, 104, 1578–1588. [Google Scholar] [CrossRef] [Green Version]
- Ilmoniemi, R.J.; Kicic, D. Methodology for combined TMS and EEG. Brain Topogr. 2010, 22, 233. [Google Scholar] [CrossRef] [Green Version]
- Sekiguchi, H.; Takeuchi, S.; Kadota, H.; Kohno, Y.; Nakajima, Y. TMS-induced artifacts on EEG can be reduced by rearrangement of the electrode’s lead wire before recording. Clin. Neurophysiol. 2011, 122, 984–990. [Google Scholar] [CrossRef]
- Virtanen, J.; Ruohonen, J.; Näätänen, R.; Ilmoniemi, R. Instrumentation for the measurement of electric brain responses to transcranial magnetic stimulation. Med. Biol. Eng. Comput. 1999, 37, 322–326. [Google Scholar] [CrossRef]
- Di Lazzaro, V.; Restuccia, D.; Oliviero, A.; Profice, P.; Ferrara, L.; Insola, A.; Mazzone, P.; Tonali, P.; Rothwell, J. Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp. Brain Res. 1998, 119, 265–268. [Google Scholar] [CrossRef]
- Thut, G.; Ives, J.R.; Kampmann, F.; Pastor, M.A.; Pascual-Leone, A. A new device and protocol for combining TMS and online recordings of EEG and evoked potentials. J. Neurosci. Methods 2005, 141, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Ives, J.R.; Rotenberg, A.; Poma, R.; Thut, G.; Pascual-Leone, A. Electroencephalographic recording during transcranial magnetic stimulation in humans and animals. Clin. Neurophysiol. 2006, 117, 1870–1875. [Google Scholar] [CrossRef] [PubMed]
- Rogasch, N.C.; Sullivan, C.; Thomson, R.H.; Rose, N.S.; Bailey, N.W.; Fitzgerald, P.B.; Farzan, F.; Hernandez-Pavon, J.C. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: A review and introduction to the open-source TESA software. Neuroimage 2017, 147, 934–951. [Google Scholar] [CrossRef] [PubMed]
- Farzan, F.; Vernet, M.; Shafi, M.; Rotenberg, A.; Daskalakis, Z.J.; Pascual-Leone, A. Characterizing and modulating brain circuitry through transcranial magnetic stimulation combined with electroencephalography. Front. Neural Circuits 2016, 10, 73. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, S.; Rogasch, N.C.; Premoli, I.; Blumberger, D.M.; Casarotto, S.; Chen, R.; Di Lazzaro, V.; Farzan, F.; Ferrarelli, F.; Fitzgerald, P.B.; et al. Clinical utility and prospective of TMS–EEG. Clin. Neurophysiol. 2019, 130, 802–844. [Google Scholar] [CrossRef] [PubMed]
- Mutanen, T.; Mäki, H.; Ilmoniemi, R.J. The effect of stimulus parameters on TMS–EEG muscle artifacts. Brain Stimul. 2013, 6, 371–376. [Google Scholar] [CrossRef]
- Geddes, L.; Baker, L.; Moore, A. Optimum electrolytic chloriding of silver electrodes. Med. Biol. Eng. 1969, 7, 49–56. [Google Scholar] [CrossRef]
- Rogasch, N.C.; Fitzgerald, P.B. Assessing cortical network properties using TMS–EEG. Hum. Brain Mapp. 2013, 34, 1652–1669. [Google Scholar] [CrossRef]
- Rogasch, N.C.; Thomson, R.H.; Farzan, F.; Fitzgibbon, B.M.; Bailey, N.W.; Hernandez-Pavon, J.C.; Daskalakis, Z.J.; Fitzgerald, P.B. Removing artefacts from TMS-EEG recordings using independent component analysis: Importance for assessing prefrontal and motor cortex network properties. Neuroimage 2014, 101, 425–439. [Google Scholar] [CrossRef]
- Thut, G.; Veniero, D.; Romei, V.; Miniussi, C.; Schyns, P.; Gross, J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr. Biol. 2011, 21, 1176–1185. [Google Scholar] [CrossRef] [Green Version]
- Laakso, I.; Hirata, A.; Ugawa, Y. Effects of coil orientation on the electric field induced by TMS over the hand motor area. Phys. Med. Biol. 2013, 59, 203. [Google Scholar] [CrossRef] [PubMed]
- Litvak, V.; Komssi, S.; Scherg, M.; Hoechstetter, K.; Classen, J.; Zaaroor, M.; Pratt, H.; Kahkonen, S. Artifact correction and source analysis of early electroencephalographic responses evoked by transcranial magnetic stimulation over primary motor cortex. Neuroimage 2007, 37, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Thut, G.; Northoff, G.; Ives, J.; Kamitani, Y.; Pfennig, A.; Kampmann, F.; Schomer, D.; Pascual-Leone, A. Effects of single-pulse transcranial magnetic stimulation (TMS) on functional brain activity: A combined event-related TMS and evoked potential study. Clin. Neurophysiol. 2003, 114, 2071–2080. [Google Scholar] [CrossRef]
- Tallgren, P.; Vanhatalo, S.; Kaila, K.; Voipio, J. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Clin. Neurophysiol. 2005, 116, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Freche, D.; Naim-Feil, J.; Peled, A.; Levit-Binnun, N.; Moses, E. A quantitative physical model of the TMS-induced discharge artifacts in EEG. PLoS Comput. Biol. 2018, 14, e1006177. [Google Scholar] [CrossRef]
- Geddes, L.A.; Baker, L.E. Principles of Applied Biomedical Instrumentation; John Wiley & Sons: Hoboken, NJ, USA, 1975. [Google Scholar]
- Bagattini, C.; Mazzi, C.; Savazzi, S. Waves of awareness for occipital and parietal phosphenes perception. Neuropsychologia 2015, 70, 114–125. [Google Scholar] [CrossRef]
- Kähkönen, S.; Komssi, S.; Wilenius, J.; Ilmoniemi, R. Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. Neuroimage 2005, 24, 955–960. [Google Scholar] [CrossRef]
- Krings, T.; Buchbinder, B.R.; Butler, W.E.; Chiappa, K.H.; Jiang, H.J.; Rosen, B.R.; Cosgrove, G.R. Stereotactic transcranial magnetic stimulation: Correlation with direct electrical cortical stimulation. Neurosurgery 1997, 41, 1319–1326. [Google Scholar] [CrossRef]
- Bonato, C.; Miniussi, C.; Rossini, P. Transcranial magnetic stimulation and cortical evoked potentials: A TMS/EEG co-registration study. Clin. Neurophysiol. 2006, 117, 1699–1707. [Google Scholar] [CrossRef]
- Deng, Z.D.; Peterchev, A.V.; Lisanby, S.H. Coil design considerations for deep-brain transcranial magnetic stimulation (dTMS). In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, VA, Canada, 20–24 August 2008; pp. 5675–5679. [Google Scholar]
- Korhonen, R.J.; Hernandez-Pavon, J.C.; Metsomaa, J.; Mäki, H.; Ilmoniemi, R.J.; Sarvas, J. Removal of large muscle artifacts from transcranial magnetic stimulation-evoked EEG by independent component analysis. Med. Biol. Eng. Comput. 2011, 49, 397–407. [Google Scholar] [CrossRef]
- Ter Braack, E.M.; de Jonge, B.; Van Putten, M.J. Reduction of TMS induced artifacts in EEG using principal component analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Rogasch, N.C.; Daskalakis, Z.J.; Fitzgerald, P.B. Mechanisms underlying long-interval cortical inhibition in the human motor cortex: A TMS-EEG study. J. Neurophysiol. 2013, 109, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMenamin, B.W.; Shackman, A.J.; Maxwell, J.S.; Bachhuber, D.R.; Koppenhaver, A.M.; Greischar, L.L.; Davidson, R.J. Validation of ICA-based myogenic artifact correction for scalp and source-localized EEG. Neuroimage 2010, 49, 2416–2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, H.; Webster, J.G. Minimizing electrode motion artifact by skin abrasion. IEEE Trans. Biomed. Eng. 1977, BME-24, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Atluri, S.; Frehlich, M.; Mei, Y.; Garcia Dominguez, L.; Rogasch, N.C.; Wong, W.; Daskalakis, Z.J.; Farzan, F. TMSEEG: A MATLAB-based graphical user interface for processing electrophysiological signals during transcranial magnetic stimulation. Front. Neural Circuits 2016, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Lyzhko, E.; Hamid, L.; Makhortykh, S.; Moliadze, V.; Siniatchkin, M. Comparison of three ICA algorithms for ocular artifact removal from TMS-EEG recordings. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 1926–1929. [Google Scholar]
- Rosanova, M.; Casali, A.; Bellina, V.; Resta, F.; Mariotti, M.; Massimini, M. Natural frequencies of human corticothalamic circuits. J. Neurosci. 2009, 29, 7679–7685. [Google Scholar] [CrossRef]
- Nikouline, V.; Ruohonen, J.; Ilmoniemi, R.J. The role of the coil click in TMS assessed with simultaneous EEG. Clin. Neurophysiol. 1999, 110, 1325–1328. [Google Scholar] [CrossRef]
- Casarotto, S.; Lauro, L.J.R.; Bellina, V.; Casali, A.G.; Rosanova, M.; Pigorini, A.; Defendi, S.; Mariotti, M.; Massimini, M. EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time. PLoS ONE 2010, 5, e10281. [Google Scholar] [CrossRef] [Green Version]
- Julkunen, P.; Pääkkönen, A.; Hukkanen, T.; Könönen, M.; Tiihonen, P.; Vanhatalo, S.; Karhu, J. Efficient reduction of stimulus artefact in TMS–EEG by epithelial short-circuiting by mini-punctures. Clin. Neurophysiol. 2008, 119, 475–481. [Google Scholar] [CrossRef]
- Ter Braack, E.M.; de Vos, C.C.; van Putten, M.J. Masking the auditory evoked potential in TMS–EEG: A comparison of various methods. Brain Topogr. 2015, 28, 520–528. [Google Scholar] [CrossRef]
- Fuggetta, G.; Fiaschi, A.; Manganotti, P. Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: A combined EEG and TMS study. Neuroimage 2005, 27, 896–908. [Google Scholar] [CrossRef] [PubMed]
- Ferrarelli, F.; Massimini, M.; Peterson, M.J.; Riedner, B.A.; Lazar, M.; Murphy, M.J.; Huber, R.; Rosanova, M.; Alexander, A.L.; Kalin, N.; et al. Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: A TMS/EEG study. Am. J. Psychiatry 2008, 165, 996–1005. [Google Scholar] [CrossRef] [PubMed]
- Kähkönen, S.; Wilenius, J.; Nikulin, V.V.; Ollikainen, M.; Ilmoniemi, R.J. Alcohol reduces prefrontal cortical excitability in humans: A combined TMS and EEG study. Neuropsychopharmacology 2003, 28, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Bikmullina, R.; Kičić, D.; Carlson, S.; Nikulin, V.V. Electrophysiological correlates of short-latency afferent inhibition: A combined EEG and TMS study. Exp. Brain Res. 2009, 194, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Koponen, L.M.; Goetz, S.M.; Tucci, D.L.; Peterchev, A.V. Sound comparison of seven TMS coils at matched stimulation strength. Brain Stimul. 2020, 13, 873–880. [Google Scholar] [CrossRef]
- Levit-Binnun, N.; Litvak, V.; Pratt, H.; Moses, E.; Zaroor, M.; Peled, A. Differences in TMS-evoked responses between schizophrenia patients and healthy controls can be observed without a dedicated EEG system. Clin. Neurophysiol. 2010, 121, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.; Slagter, H.A.; Tononi, G.; Postle, B.R. Brain responses evoked by high-frequency repetitive transcranial magnetic stimulation: An event-related potential study. Brain Stimul. 2010, 3, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Biabani, M.; Fornito, A.; Mutanen, T.P.; Morrow, J.; Rogasch, N.C. Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials. Brain Stimul. 2019, 12, 1537–1552. [Google Scholar] [CrossRef]
- Esser, S.; Huber, R.; Massimini, M.; Peterson, M.; Ferrarelli, F.; Tononi, G. A direct demonstration of cortical LTP in humans: A combined TMS/EEG study. Brain Res. Bull. 2006, 69, 86–94. [Google Scholar] [CrossRef]
- Mäki, H.; Ilmoniemi, R.J. The relationship between peripheral and early cortical activation induced by transcranial magnetic stimulation. Neurosci. Lett. 2010, 478, 24–28. [Google Scholar] [CrossRef]
- Casali, A.G.; Casarotto, S.; Rosanova, M.; Mariotti, M.; Massimini, M. General indices to characterize the electrical response of the cerebral cortex to TMS. Neuroimage 2010, 49, 1459–1468. [Google Scholar] [CrossRef] [PubMed]
- Mäki, H.; Ilmoniemi, R.J. Projecting out muscle artifacts from TMS-evoked EEG. Neuroimage 2011, 54, 2706–2710. [Google Scholar] [CrossRef] [PubMed]
- Sommer, M.; Alfaro, A.; Rummel, M.; Speck, S.; Lang, N.; Tings, T.; Paulus, W. Half sine, monophasic and biphasic transcranial magnetic stimulation of the human motor cortex. Clin. Neurophysiol. 2006, 117, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Kähkönen, S.; Kesäniemi, M.; Nikouline, V.; Karhu, J.; Ollikainen, M.; Holi, M.; Ilmoniemi, R. Ethanol modulates cortical activity: Direct evidence with combined TMS and EEG. Neuroimage 2001, 14, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.J.; Pascual-Leone, A.; Cohen, L.G.; Hallett, M. The heating of metal electrodes during rapid-rate magnetic stimulation: A possible safety hazard. Electroencephalogr. Clin. Neurophysiol. 1992, 85, 116–123. [Google Scholar] [CrossRef]
- Roth, B.J.; Saypol, J.M.; Hallett, M.; Cohen, L.G. A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. 1991, 81, 47–56. [Google Scholar] [CrossRef]
- Daskalakis, Z.J.; Farzan, F.; Barr, M.S.; Maller, J.J.; Chen, R.; Fitzgerald, P.B. Long-interval cortical inhibition from the dorsolateral prefrontal cortex: A TMS–EEG study. Neuropsychopharmacology 2008, 33, 2860–2869. [Google Scholar] [CrossRef] [Green Version]
- Del Olmo, M.F.; Bello, O.; Cudeiro, J. Transcranial magnetic stimulation over dorsolateral prefrontal cortex in Parkinson’s disease. Clin. Neurophysiol. 2007, 118, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Friedman, B.H.; Thayer, J.F. Facial muscle activity and EEG recordings: Redundancy analysis. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 358–360. [Google Scholar] [CrossRef]
- Komssi, S.; Kähkönen, S.; Ilmoniemi, R.J. The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum. Brain Mapp. 2004, 21, 154–164. [Google Scholar] [CrossRef]
- Plöchl, M.; Ossandón, J.P.; König, P. Combining EEG and eye tracking: Identification, characterization, and correction of eye movement artifacts in electroencephalographic data. Front. Hum. Neurosci. 2012, 6, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Counter, S.; Borg, E. Analysis of the coil generated impulse noise in extracranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. 1992, 85, 280–288. [Google Scholar] [CrossRef]
- Starck, J.; Rimpiläinen, I.; Pyykkö, I.; Esko, T. The noise level in magnetic stimulation. Scand. Audiol. 1996, 25, 223–226. [Google Scholar] [CrossRef]
- Tiitinen, H.; Virtanen, J.; Ilmoniemi, R.J.; Kamppuri, J.; Ollikainen, M.; Ruohonen, J.; Näätänen, R. Separation of contamination caused by coil clicks from responses elicited by transcranial magnetic stimulation. Clin. Neurophysiol. 1999, 110, 982–985. [Google Scholar] [CrossRef]
- Picton, T.W.; Hillyard, S.A.; Krausz, H.I.; Galambos, R. Human auditory evoked potentials. I: Evaluation of components. Electroencephalogr. Clin. Neurophysiol. 1974, 36, 179–190. [Google Scholar] [CrossRef]
- Tchumatchenko, T.; Reichenbach, T. A cochlear-bone wave can yield a hearing sensation as well as otoacoustic emission. Nat. Commun. 2014, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, I. Trigeminal evoked potentials following brief air puff: Enhanced signal-to-noise ratio. Ann. Neurol. 1988, 23, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Gordon, P.C.; Desideri, D.; Belardinelli, P.; Zrenner, C.; Ziemann, U. Comparison of cortical EEG responses to realistic sham versus real TMS of human motor cortex. Brain Stimul. 2018, 11, 1322–1330. [Google Scholar] [CrossRef]
- Tokimura, H.; Di Lazzaro, V.; Tokimura, Y.; Oliviero, A.; Profice, P.; Insola, A.; Mazzone, P.; Tonali, P.; Rothwell, J. Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J. Physiol. 2000, 523, 503–513. [Google Scholar] [CrossRef]
- Nikulin, V.V.; Kičić, D.; Kähkönen, S.; Ilmoniemi, R.J. Modulation of electroencephalographic responses to transcranial magnetic stimulation: Evidence for changes in cortical excitability related to movement. Eur. J. Neurosci. 2003, 18, 1206–1212. [Google Scholar] [CrossRef]
- Van Der Werf, Y.D.; Paus, T. The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions. Exp. Brain Res. 2006, 175, 231–245. [Google Scholar] [CrossRef] [PubMed]
- Komssi, S.; Aronen, H.J.; Huttunen, J.; Kesäniemi, M.; Soinne, L.; Nikouline, V.V.; Ollikainen, M.; Roine, R.O.; Karhu, J.; Savolainen, S.; et al. Ipsi-and contralateral EEG reactions to transcranial magnetic stimulation. Clin. Neurophysiol. 2002, 113, 175–184. [Google Scholar] [CrossRef]
- Bennett, M.; Jannetta, P. Trigeminal evoked potentials in humans. Electroencephalogr. Clin. Neurophysiol. 1980, 48, 517–526. [Google Scholar] [CrossRef]
- Parmigiani, S.; Casarotto, S.; Fecchio, M.; Rosanova, M. How to collect genuine TEPs: A Graphical User Interface to control data quality in real-time. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2019, 12, 423. [Google Scholar] [CrossRef]
- Uhlhaas, P.; Pipa, G.; Lima, B.; Melloni, L.; Neuenschwander, S.; Nikolic´, D.; Singer, W. Neural synchrony in cortical networks: History, concept and current status. Front. Integr. Neurosci. 2009, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.D.; Kimura, J. A fast-recovery electrode amplifier for electrophysiology. Electroencephalogr. Clin. Neurophysiol. 1978, 45, 789–792. [Google Scholar] [CrossRef]
- Jakob, C.; Mathis, J.; Weyh, T.; Struppler, A. Artifact reduction in magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. 1993, 89, 287–289. [Google Scholar] [CrossRef]
- Levkov, C. Amplification of biosignals by body potential driving. Med. Biol. Eng. Comput. 1982, 20, 248–250. [Google Scholar] [CrossRef]
- Hamstra, G.; Peper, A.; Grimbergen, C. Low-power, low-noise instrumentation amplifier for physiological signals. Med Biol. Eng. Comput. 1984, 22, 272–274. [Google Scholar] [CrossRef]
- Dotsinsky, I.; Christov, I.; Daskalov, I. Multichannel DC amplifier for a microprocessor electroencephalograph. Med Biol. Eng. Comput. 1991, 29, 324–329. [Google Scholar] [CrossRef]
- Epstein, C.M. A simple artifact-rejection preamplifier for clinical neurophysiology. Am. J. EEG Technol. 1995, 35, 64–71. [Google Scholar] [CrossRef]
- MettingVanRijn, A.C.; Kuiper, A.P.; Dankers, T.E.; Grimbergen, C.A. Low-cost active electrode improves the resolution in biopotential recordings. In Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, The Netherlands, 31 October–3 November 1996; Volume 1, pp. 101–102. [Google Scholar]
- Freeman, J.A. An electronic stimulus artifact suppressor. Electroencephalogr. Clin. Neurophysiol. 1971, 31, 170–172. [Google Scholar] [CrossRef]
- Virtanen, J.; Rinne, T.; Ilmoniemi, R.; Näätänen, R. MEG-compatible multichannel EEG electrode array. Electroencephalogr. Clin. Neurophysiol. 1996, 99, 568–570. [Google Scholar] [CrossRef]
- Iramina, K.; Maeno, T.; Nonaka, Y.; Ueno, S. Measurement of evoked electroencephalography induced by transcranial magnetic stimulation. J. Appl. Phys. 2003, 93, 6718–6720. [Google Scholar] [CrossRef]
- Thut, G.; Miniussi, C. New insights into rhythmic brain activity from TMS–EEG studies. Trends Cogn. Sci. 2009, 13, 182–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saatlou, F.H.; Rogasch, N.C.; McNair, N.A.; Biabani, M.; Pillen, S.D.; Marshall, T.R.; Bergmann, T.O. MAGIC: An open-source MATLAB toolbox for external control of transcranial magnetic stimulation devices. Brain Stimul. Basic. Transl. Clin. Res. Neuromodulation 2018, 11, 1189–1191. [Google Scholar]
- McNair, N.A. MagPy: A Python toolbox for controlling Magstim transcranial magnetic stimulators. J. Neurosci. Methods 2017, 276, 33–37. [Google Scholar] [CrossRef]
- McGill, K.C.; Cummins, K.L.; Dorfman, L.J.; Berlizot, B.B.; Luetkemeyer, K.; Nishimura, D.G.; Widrow, B. On the nature and elimination of stimulus artifact in nerve signals evoked and recorded using surface electrodes. IEEE Trans. Biomed. Eng. 1982, BME-29, 129–137. [Google Scholar] [CrossRef]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.; George, M.; et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an IFCN Committee. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar] [CrossRef]
- Komssi, S.; Kähkönen, S. The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research. Brain Res. Rev. 2006, 52, 183–192. [Google Scholar] [CrossRef]
- Smit, H.; Verton, K.; Grimbergen, C. A low-cost multichannel preamplifier for physiological signals. IEEE Trans. Biomed. Eng. 1987, BME-34, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Haberman, M.A.; Spinelli, E.M. A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Van Rijn, A.M.; Peper, A.; Grimbergen, C. High-quality recording of bioelectric events. Med. Biol. Eng. Comput. 1990, 28, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Vernet, M.; Thut, G. Electroencephalography during transcranial magnetic stimulation: Current modus operandi. In Transcranial Magnetic Stimulation; Springer: Berlin/Heidelberg, Germany, 2014; pp. 197–232. [Google Scholar]
- Brignani, D.; Manganotti, P.; Rossini, P.M.; Miniussi, C. Modulation of cortical oscillatory activity during transcranial magnetic stimulation. Hum. Brain Mapp. 2008, 29, 603–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farzan, F.; Barr, M.S.; Hoppenbrouwers, S.S.; Fitzgerald, P.B.; Chen, R.; Pascual-Leone, A.; Daskalakis, Z.J. The EEG correlates of the TMS-induced EMG silent period in humans. Neuroimage 2013, 83, 120–134. [Google Scholar] [CrossRef] [Green Version]
- Fuggetta, G.; Pavone, E.F.; Walsh, V.; Kiss, M.; Eimer, M. Cortico-cortical interactions in spatial attention: A combined ERP/TMS study. J. Neurophysiol. 2006, 95, 3277–3280. [Google Scholar] [CrossRef] [Green Version]
- Lioumis, P.; Kičić, D.; Savolainen, P.; Mäkelä, J.P.; Kähkönen, S. Reproducibility of TMS—Evoked EEG responses. Hum. Brain Mapp. 2009, 30, 1387–1396. [Google Scholar] [CrossRef]
- Ferreri, F.; Pasqualetti, P.; Määttä, S.; Ponzo, D.; Ferrarelli, F.; Tononi, G.; Mervaala, E.; Miniussi, C.; Rossini, P.M. Human brain connectivity during single and paired pulse transcranial magnetic stimulation. Neuroimage 2011, 54, 90–102. [Google Scholar] [CrossRef]
- Beckmann, L.; Neuhaus, C.; Medrano, G.; Jungbecker, N.; Walter, M.; Gries, T.; Leonhardt, S. Characterization of textile electrodes and conductors using standardized measurement setups. Physiol. Meas. 2010, 31, 233. [Google Scholar] [CrossRef]
- Goff, W.R. Human Average Evoked Potentials: Procedures for Stimulating and Recording; Acad Press: New York, NY, USA, 1974. [Google Scholar]
- Cooper, R. Storage of silver chloride electrodes. Electroencephalogr. Clin. Neurophysiol. 1956, 8, 692. [Google Scholar] [CrossRef]
- Trimmel, M.; Groll-Knapp, E.; Haider, M. Different storage methods for biopotential skin electrodes (sintermetallic Ag/AgCl) and their influence on the bias potential. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 50, 105–115. [Google Scholar] [CrossRef]
- Strong, P. Biophysical Measurements; Tektronix: Beaverton, OR, USA, 1970. [Google Scholar]
- Picton, T.; Hillyard, S. Cephalic skin potentials in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 1972, 33, 419–424. [Google Scholar] [CrossRef]
- Vanhatalo, S.; Palva, J.M.; Holmes, M.; Miller, J.; Voipio, J.; Kaila, K. Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc. Natl. Acad. Sci. USA 2004, 101, 5053–5057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voipio, J.; Tallgren, P.; Heinonen, E.; Vanhatalo, S.; Kaila, K. Millivolt-scale DC shifts in the human scalp EEG: Evidence for a nonneuronal generator. J. Neurophysiol. 2003, 89, 2208–2214. [Google Scholar] [CrossRef] [PubMed]
- Bauer, H.; Korunka, C.; Leodolter, M. Technical requirements for high-quality scalp DC recordings. Electroencephalogr. Clin. Neurophysiol. 1989, 72, 545–547. [Google Scholar] [CrossRef]
- Rogasch, N.C.; Thomson, R.H.; Daskalakis, Z.J.; Fitzgerald, P.B. Short-latency artifacts associated with concurrent TMS–EEG. Brain Stimul. 2013, 6, 868–876. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Da Silva, F.L. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
- Zrenner, B.; Zrenner, C.; Gordon, P.C.; Belardinelli, P.; McDermott, E.J.; Soekadar, S.R.; Fallgatter, A.J.; Ziemann, U.; Müller-Dahlhaus, F. Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimul. 2020, 13, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Mills, K.; Boniface, S.; Schubert, M. Magnetic brain stimulation with a double coil: The importance of coil orientation. Electroencephalogr. Clin. Neurophysiol. 1992, 85, 17–21. [Google Scholar] [CrossRef]
- Rosanova, M.; Casarotto, S.; Pigorini, A.; Canali, P.; Casali, A.G.; Massimini, M. Combining transcranial magnetic stimulation with electroencephalography to study human cortical excitability and effective connectivity. In Neuronal Network Analysis; Springer: Berlin/Heidelberg, Germany, 2011; pp. 435–457. [Google Scholar]
- Koch, G.; Del Olmo, M.F.; Cheeran, B.; Ruge, D.; Schippling, S.; Caltagirone, C.; Rothwell, J.C. Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J. Neurosci. 2007, 27, 6815–6822. [Google Scholar] [CrossRef]
- Chi, Y.M.; Jung, T.P.; Cauwenberghs, G. Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Rev. Biomed. Eng. 2010, 3, 106–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosanova, M.; Gosseries, O.; Casarotto, S.; Boly, M.; Casali, A.G.; Bruno, M.A.; Mariotti, M.; Boveroux, P.; Tononi, G.; Laureys, S.; et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain 2012, 135, 1308–1320. [Google Scholar] [CrossRef] [PubMed]
- Watkins, K.; Paus, T. Modulation of motor excitability during speech perception: The role of Broca’s area. J. Cogn. Neurosci. 2004, 16, 978–987. [Google Scholar] [CrossRef]
- Jackson, A.F.; Bolger, D.J. The neurophysiological bases of EEG and EEG measurement: A review for the rest of us. Psychophysiology 2014, 51, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Mota, A.R.; Duarte, L.; Rodrigues, D.; Martins, A.; Machado, A.; Vaz, F.; Fiedler, P.; Haueisen, J.; Nóbrega, J.; Fonseca, C. Development of a quasi-dry electrode for EEG recording. Sens. Actuators A Phys. 2013, 199, 310–317. [Google Scholar] [CrossRef]
- Ferree, T.C.; Luu, P.; Russell, G.S.; Tucker, D.M. Scalp electrode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 2001, 112, 536–544. [Google Scholar] [CrossRef]
- Clancy, E.A.; Morin, E.L.; Merletti, R. Sampling, noise-reduction and amplitude estimation issues in surface electromyography. J. Electromyogr. Kinesiol. 2002, 12, 1–16. [Google Scholar] [CrossRef]
- Deng, Z.D.; Lisanby, S.H.; Peterchev, A.V. Coil design considerations for deep transcranial magnetic stimulation. Clin. Neurophysiol. 2014, 125, 1202–1212. [Google Scholar] [CrossRef] [Green Version]
- Amassian, V.E.; Eberle, L.; Maccabee, P.J.; Cracco, R.Q. Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: The significance of fiber bending in excitation. Electroencephalogr. Clin. Neurophysiol. 1992, 85, 291–301. [Google Scholar] [CrossRef]
- Koponen, L.M.; Nieminen, J.O.; Ilmoniemi, R.J. Multi-locus transcranial magnetic stimulation—Theory and implementation. Brain Stimul. 2018, 11, 849–855. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.; Cuffin, B.N. Developing a more focal magnetic stimulator. Part I: Some basic principles. J. Clin. Neurophysiol. Off. Public Am. Electroencephalogr. Soc. 1991, 8, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Heller, L.; van Hulsteyn, D.B. Brain stimulation using electromagnetic sources: Theoretical aspects. Biophys. J. 1992, 63, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Roth, B.J.; Cohen, L.G.; Hallett, M.; Friauf, W.; Basser, P.J. A theoretical calculation of the electric field induced by magnetic stimulation of a peripheral nerve. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 1990, 13, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Eaton, H. Electric field induced in a spherical volume conductor from arbitrary coils: Application to magnetic stimulation and MEG. Med. Biol. Eng. Comput. 1992, 30, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Souza, V.H.; Matsuda, R.H.; Peres, A.S.; Amorim, P.H.J.; Moraes, T.F.; Silva, J.V.L.; Baffa, O. Development and characterization of the in Vesalius Navigator software for navigated transcranial magnetic stimulation. J. Neurosci. Methods 2018, 309, 109–120. [Google Scholar] [CrossRef]
- Belyk, M.; Murphy, B.K.; Beal, D.S. Accessory to dissipate heat from transcranial magnetic stimulation coils. J. Neurosci. Methods 2019, 314, 28–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellicciari, M.C.; Brignani, D.; Miniussi, C. Excitability modulation of the motor system induced by transcranial direct current stimulation: A multimodal approach. Neuroimage 2013, 83, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Hannula, H.; Ilmoniemi, R.J. Basic principles of navigated TMS. In Navigated Transcranial Magnetic Stimulation in Neurosurgery; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–29. [Google Scholar]
- Siebner, H.R.; Dressnandt, J.; Auer, C.; Conrad, B. Continuous intrathecal baclofen infusions induced a marked increase of the transcranially evoked silent period in a patient with generalized dystonia. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 1998, 21, 1209–1212. [Google Scholar] [CrossRef]
- Kiers, L.; Cros, D.; Chiappa, K.; Fang, J. Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. 1993, 89, 415–423. [Google Scholar] [CrossRef]
- Devanne, H.; Lavoie, B.; Capaday, C. Input-output properties and gain changes in the human corticospinal pathway. Exp. Brain Res. 1997, 114, 329–338. [Google Scholar] [CrossRef]
- Gugino, L.D.; Romero, J.R.; Aglio, L.; Titone, D.; Ramirez, M.; Pascual-Leone, A.; Grimson, E.; Weisenfeld, N.; Kikinis, R.; Shenton, M.E. Transcranial magnetic stimulation coregistered with MRI: A comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials. Clin. Neurophysiol. 2001, 112, 1781–1792. [Google Scholar] [CrossRef] [Green Version]
- Noirhomme, Q.; Ferrant, M.; Vandermeeren, Y.; Olivier, E.; Macq, B.; Cuisenaire, O. Registration and real-time visualization of transcranial magnetic stimulation with 3-D MR images. IEEE Trans. Biomed. Eng. 2004, 51, 1994–2005. [Google Scholar] [CrossRef] [PubMed]
- Hannula, H.; Ylioja, S.; Pertovaara, A.; Korvenoja, A.; Ruohonen, J.; Ilmoniemi, R.J.; Carlson, S. Somatotopic blocking of sensation with navigated transcranial magnetic stimulation of the primary somatosensory cortex. Hum. Brain Mapp. 2005, 26, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Cichy, R.; Kraft, A.; Brocke, J.; Irlbacher, K.; Brandt, S. An initial transient-state and reliable measures of corticospinal excitability in TMS studies. Clin. Neurophysiol. 2009, 120, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Conde, V.; Tomasevic, L.; Akopian, I.; Stanek, K.; Saturnino, G.B.; Thielscher, A.; Bergmann, T.O.; Siebner, H.R. The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage 2019, 185, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Belardinelli, P.; Biabani, M.; Blumberger, D.M.; Bortoletto, M.; Casarotto, S.; David, O.; Desideri, D.; Etkin, A.; Ferrarelli, F.; Fitzgerald, P.B.; et al. Reproducibility in TMS–EEG studies: A call for data sharing, standard procedures and effective experimental control. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2019, 12, 787–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridding, M.; Ziemann, U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 2010, 588, 2291–2304. [Google Scholar] [CrossRef]
- Zrenner, C.; Belardinelli, P.; Müller-Dahlhaus, F.; Ziemann, U. Closed-loop neuroscience and non-invasive brain stimulation: A tale of two loops. Front. Cell. Neurosci. 2016, 10, 92. [Google Scholar] [CrossRef]
- Ieracitano, C.; Mammone, N.; Hussain, A.; Morabito, F.C. A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Neural Netw. 2020, 123, 176–190. [Google Scholar] [CrossRef]
- Mammone, N.; Ieracitano, C.; Morabito, F.C. A deep CNN approach to decode motor preparation of upper limbs from time–frequency maps of EEG signals at source level. Neural Netw. 2020, 124, 357–372. [Google Scholar] [CrossRef]
- Varone, G.; Gasparini, S.; Ferlazzo, E.; Ascoli, M.; Tripodi, G.G.; Zucco, C.; Calabrese, B.; Cannataro, M.; Aguglia, U. A Comprehensive Machine-Learning-Based Software Pipeline to Classify EEG Signals: A Case Study on PNES vs. Control Subjects. Sensors 2020, 20, 1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Martínez, B.; Fernández-Caballero, A.; Zunino, L.; Martínez-Rodrigo, A. Recognition of Emotional States from EEG Signals with Nonlinear Regularity-and Predictability-Based Entropy Metrics. Cogn. Comput. 2020. [Google Scholar] [CrossRef]
- Mahmud, M.; Kaiser, M.S.; McGinnity, T.M.; Hussain, A. Deep learning in mining biological data. Cogn. Comput. 2020, 1–33. [Google Scholar] [CrossRef]
- Wang, Z.; Healy, G.; Smeaton, A.F.; Ward, T.E. Use of neural signals to evaluate the quality of generative adversarial network performance in facial image generation. Cogn. Comput. 2020, 12, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Goshvarpour, A.; Goshvarpour, A. A novel approach for EEG electrode selection in automated emotion recognition based on Lagged Poincare’s Indices and sLORETA. Cogn. Comput. 2020, 12, 602–618. [Google Scholar] [CrossRef]
- Xiang, Z.; Tang, C.; Chang, C.; Liu, G. A new viewpoint and model of neural signal generation and transmission: Signal transmission on unmyelinated neurons. Nano Res. 2021, 14, 590–600. [Google Scholar] [CrossRef]
Equipment | Artifact | Minimization Methods | References | Used in |
---|---|---|---|---|
Electrical and equipment related artifacts | ||||
EEG sensors | Slow capacitive discharging | Impedance ≤ 5 KΩ, Cl− electrolytic gel, Ag/AgCl sensors and wire orthogonal arranged to coil handle | [23,38,46,47] | [43,48,49,50] |
EEG sensors | Electrode Motion | C or pin shape Ag/AgCl sensors, Cl− bubbles free paste, orthogonal wire to coil handle | [23,38,51,52] | [53,54,55] |
EEG sensors | Polarization | Low impedance, Cl− and bubble free gel, skin scrub, shielding and twisted wires | [3,23,37,38,41,42,52,54,56,57] | [58] |
EEG amplifier | Step or Pulse Artifact | Direct-coupled (DC)-Amplifier, C-shape or pellet Ag/AgCl sensor with twisted cables and orientated orthogonal to coil handle | [23,39,42,43,55,56,59,60] | [61,62,63] |
TMS unit | Recharge Artifact | Recharge delay set to 1000 ms | [23,49,64] | |
Muscle activation and spurious potentials evoked by the TMS coil | ||||
EEG headset | Muscle Artifact | Thin foam, impedance ≤ 5 KΩ, %MSO adjustment and focal TMS coils | [3,13,36,38,54,65,66] | [38,60,62] |
EEG headset | Blink Artifacts | Subject trained and soundproof, thin foam and online sensor Re-referencing | [13,46,63] | [49,67,68] |
TMS coil | Click and Somatic Sensation | Earplugs/earmuffs, white or synthetized noises and thin foam | [3,13,69,70,71,72,73,74,75,76,77,78,79,80,81] | [82,83,84] |
Technologies | Method Proposed | References | Used in |
---|---|---|---|
Amplifier | High pass filter in the front-end stage | [109,110] | [39,114,122] |
Amplifier | Sample-and-hold (S–H) | [2,39] | [3,52,80] |
Amplifier | S–H and a grounded plane | [116] | [39,123,124] |
Amplifier | Limited slow rate in preamplifier | [41,53] | [39,41,42,53,124,125,126,127,128] |
Amplifier | DC-amplifiers with wide dynamic range | [23,129] | [9,37,79,83,130,131] |
Amplifier | DC-amplifiers and adjustable operational range | [23,129] | [9,37,83,130] |
Amplifier | EEG system magnetic resonance (MR) compatible | [74] | [37,48,50,73,119] |
Amplifier | High sensitivity and operational range | [60] | [37,71,132,133] |
Points to Consider | Device | Tips | References | Used in |
---|---|---|---|---|
Recording system | EEG amplifier | DC-Amplifier, adjustable dynamic range, high sensitivity and sampling rate | [60] | [37,71,132,133,148] |
EEG sensors | EEG headset | C or pin shaped Ag/AgCl electrodes, Teflon insulated and shielded wires | [54,55] | [42,149] |
EEG re-referencing | EEG headset | Elastic fabric, unconstrained sensors and free wires | [39] | [82,150,151] |
Sensors impedance | Electrolytic gel | Bubbles free Cl− gel, skin scrub, impedances (<5 kΩ) | [23,47,66,72,152,153,154,155] | |
Artifact decoupling | EEG headset | Free, twisted and 90° oriented wires to coil handle | [38] | [48,49,130] |
Subject comfortability | Comfortable chair | Neck resting on the back and hands on the pillow | [147] | |
Electromagnetic noise | Room insulation | Equipment and room shielding, room temperature (<20 °C) | [72,81,97] | [36,72,74,77,80,97,103,104] |
Coil click | Hardware/software | White or Synthetized noise, and thin layer of foam [13] | ||
Bone condition | Hardware | (0.5 mm) of thin foam interposed among coil and EEG sensor | [13,69,73,75] | |
Equipment timing | Synchronization box | Master-Slave configuration | [41,53] | Solution Figure 1 |
Electric field focality | TMS coils design | 8-shaped or Multi-locus coil | [61,156,157,158] | [159,160,161,162] |
Confounding factor | Trigger box | Software to jitter IPI | [120,121] | [163,164] |
Recharge artifact | TMS unit | Recharge delay at 1000 ms | [23] | [49,133,165] |
TMS coil navigation | NBS system | Location and TMS unit control | [163,166] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varone, G.; Hussain, Z.; Sheikh, Z.; Howard, A.; Boulila, W.; Mahmud, M.; Howard, N.; Morabito, F.C.; Hussain, A. Real-Time Artifacts Reduction during TMS-EEG Co-Registration: A Comprehensive Review on Technologies and Procedures. Sensors 2021, 21, 637. https://doi.org/10.3390/s21020637
Varone G, Hussain Z, Sheikh Z, Howard A, Boulila W, Mahmud M, Howard N, Morabito FC, Hussain A. Real-Time Artifacts Reduction during TMS-EEG Co-Registration: A Comprehensive Review on Technologies and Procedures. Sensors. 2021; 21(2):637. https://doi.org/10.3390/s21020637
Chicago/Turabian StyleVarone, Giuseppe, Zain Hussain, Zakariya Sheikh, Adam Howard, Wadii Boulila, Mufti Mahmud, Newton Howard, Francesco Carlo Morabito, and Amir Hussain. 2021. "Real-Time Artifacts Reduction during TMS-EEG Co-Registration: A Comprehensive Review on Technologies and Procedures" Sensors 21, no. 2: 637. https://doi.org/10.3390/s21020637
APA StyleVarone, G., Hussain, Z., Sheikh, Z., Howard, A., Boulila, W., Mahmud, M., Howard, N., Morabito, F. C., & Hussain, A. (2021). Real-Time Artifacts Reduction during TMS-EEG Co-Registration: A Comprehensive Review on Technologies and Procedures. Sensors, 21(2), 637. https://doi.org/10.3390/s21020637