Next Article in Journal
Accuracy Tests and Precision Assessment of Localizing Underground Utilities Using GPR Detection
Next Article in Special Issue
Large-Scale Internet of Things Multi-Sensor Measurement Node for Smart Grid Enhancement
Previous Article in Journal
A Deep-Learning Based Visual Sensing Concept for a Robust Classification of Document Images under Real-World Hard Conditions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Communication

Antenna Impedance Matching Using Deep Learning

1
School of Electrical, Electronics and Communication Engineering, Korea University of Technology and Education, Cheonan 31253, Korea
2
Department of Electrical and Electronic Engineering, Youngsan University, Yangsan 50510, Korea
*
Author to whom correspondence should be addressed.
Sensors 2021, 21(20), 6766; https://doi.org/10.3390/s21206766
Submission received: 23 September 2021 / Revised: 7 October 2021 / Accepted: 9 October 2021 / Published: 12 October 2021
(This article belongs to the Special Issue IoT Multi Sensors)

Abstract

:
We propose a deep neural network (DNN) to determine the matching circuit parameters for antenna impedance matching. The DNN determines the element values of the matching circuit without requiring a mathematical description of matching methods, and it approximates feasible solutions even for unimplementable inputs. For matching, the magnitude and phase of impedance should be known in general. In contrast, the element values of the matching circuit can be determined only using the impedance magnitude using the proposed DNN. A gamma-matching circuit consisting of a series capacitor and a parallel capacitor was applied to a conventional inverted-F antenna for impedance matching. For learning, the magnitude of input impedance S11 of the antenna was extracted according to the element values of the matching circuit. A total of 377 training samples and 66 validation samples were obtained. The DNN was then constructed considering the magnitude of impedance S11 as the input and the element values of the matching circuit as the output. During training, the loss converged as the number of epochs increased. In addition, the desired matching values for unlearned square and triangular waves were obtained during testing.

1. Introduction

The most recent electronic devices support wireless communication, for which an antenna operating at a specific frequency band must be used. As the resonant frequency of an antenna is affected by its shape and surrounding materials in a device, the antenna must be modified whenever the device design is changed. To avoid antenna redesign, commercial communication devices can be used. However, such devices often include bulky external dipole antennas. In addition, the required operation frequency may not be available because commercial devices are intended for predefined frequencies, such as the ISM (industrial, scientific, and medical) band. If an antenna with a fixed shape could automatically operate at the desired frequency, the development time of wireless devices could be notably reduced along with the development cost of antennas.
Antennas used to tune the resonant frequency can be divided into reconfigurable and tunable antennas. Reconfigurable antennas [1,2,3,4,5] adjust the resonant frequency by changing their shape through a switch. Thus, small antennas or multiband antennas should often be reconfigurable given the difficulty to obtain a wide bandwidth. For instance, the tuning of the resonant frequency while reducing the size of a slot loop antenna has been achieved by using varactor diodes [3]. In addition, selection of the LTE (Long Term Evolution) band of 1.8 or 2.6 GHz has been achieved by inserting a PIN diode at the end of a loop antenna [4]. A reconfigurable antenna can change its radiation pattern by modifying its structure, providing high radiation efficiency depending on its shape. However, reconfigurable antennas are generally difficult to design given their complex structure.
On the other hand, tunable antennas operate at various frequency bands by changing the element values in the matching circuit [6,7,8,9,10,11,12]. As their structure is fixed and only the element values in the matching circuit change to obtain a resonant frequency, tunable antennas are simple to design. By applying a tunable matching circuit to an ultrawideband antenna, resonant frequencies from 1.8 to 2.8 GHz have been set at applied voltages from 0 to 23 V [9]. In addition, a tunable matching circuit has been applied to provide the required service frequency bandwidths for small antennas [12]. However, tunable antennas deliver suboptimal efficiency due to losses in the matching elements at any operating frequency [10]. To improve performance and properly tune the resonant frequency, the magnitude and phase of the antenna impedance should be accurately determined. In addition, the factor causing the change in the resonant frequency over the range of element values should be identified. Despite their simple structure, tunable antennas must be carefully designed by considering the antenna characteristics for the matching circuit.
Recently, machine learning has been applied to optimize antenna performance [13,14,15,16,17,18,19] and implement impedance matching [20,21,22]. A machine learning method can determine the element values without requiring a mathematical description of the matching circuit. In wireless power transmission, a neural network has recently been used to achieve the maximum efficiency [20,21]. Specifically, the matching element value according to the impedance of a wireless power transfer (WPT) coil was learned, and matching was performed automatically based on the measured impedance. The efficiency can be maximized by automatically compensating the matching value according to the distance between WPT coils. To date, however, no machine learning method has been devised for antenna impedance matching.
We propose a deep learning method that determines the element values of the matching circuit for a given magnitude of input impedance S11. The input is only the impedance magnitude, and the output is the corresponding element values of the matching circuit. Unlike the conventional approach, the proposed method determines the appropriate matching element values, and it can solve even unimplementable input impedances.
The remainder of this paper is organized as follows. Section 2 presents the antenna structure and matching circuit used in this study. Section 3 describes the method for acquiring input impedance S11 according to the capacitor values of the matching circuit. In Section 4, we introduce the proposed deep neural network (DNN) for antenna impedance matching. Section 5 reports the deep learning results and presents the corresponding discussion. Finally, we draw conclusions in Section 6.

2. Antenna and Matching Circuit

Figure 1 shows the antenna structure to simulate the matching circuit effect. The basic structure is an inverted-F antenna, which is the most common type for mobile devices. The resonant frequency of the inverted-F antenna is determined by the length of the antenna, and the matching of the antenna is determined by the distance between the feeding point and the shorting stub. In general, the inverted F antenna is designed in the form of a meander line to include the length of the antenna in a narrow space in order to lower the resonant frequency. However, if there is not enough space for metal patterning, a matching circuit should be used to adjust the resonance frequency. The antenna is patterned on an FR4 substrate with a dielectric constant of 4.3 and a thickness of 1 mm. The obtained inverted-F antenna has a length of 28 mm and a height of 10 mm from the ground. The line width is 1 mm, and the shorting stub at the left end is connected to the ground. The feeding point is 2 mm from the shorting stub. The matching circuit is directly connected to the feeding point. The dimensions of the antenna are arbitrary. If there is no matching circuit, the antenna resonates at 1.9 GHz. The resonant frequency of the antenna can be tuned from 0.9 to 1.4 GHz using a matching circuit.
We performed simulations using Ansys HFSS (3D high-frequency simulation software). Figure 2 shows input impedance S11 of the antenna without a matching circuit on the Smith chart and the real part and imaginary part of the impedance for the frequency range of 0.8–1.5 GHz. As can be seen from Figure 2b, the imaginary part has values higher than 50 ohm as positive values. This means that in order to make resonance, the imaginary part should be compensationed through capacitors. The antenna impedances at the lowest and highest frequencies are located in the upper-right corner of the Smith chart. Therefore, the impedance can be matched by combining a series capacitor and a parallel capacitor, as shown in the gamma-matching circuit of Figure 3. Impedance matching is possible at the designed frequencies according to the capacitor values. Specifically, we used a series capacitor CS of 0.9–3.3 pF and parallel capacitor CP of 1–15 pF.
Matching should be applied for the capacitor values to match at the lowest and highest resonant frequencies of 0.9 and 1.4 GHz, respectively. For resonance at 1.4 GHz, the values of the series (CS) and parallel (CP) capacitors should be 0.9 and 3 pF, respectively. For resonance at 0.9 GHz, the respective values should be 3 and 20 pF. These values for the matching circuit were determined by mathematical calculations based on accurate information about the real and imaginary parts of the antenna impedance.
Although it is possible to measure S11 including its real and imaginary parts by using a network analyzer, expensive equipment is required. Instead, we propose a method for determining the matching element values using the S11 magnitude in a DNN. As the magnitude does not include phase information, an accurate matching value cannot be determined mathematically. However, through learning, the proposed method determines the matching element values solely from the input impedance magnitude.

3. Data Acquisition

The effectiveness of machine learning depends on the availability of large amounts of data. However, manually obtaining input impedance S11 according to the matching element values is time-consuming. Therefore, automated data acquisition should be performed. To this end, we linked MathWorks MATLAB and Ansys HFSS. In MATLAB, series capacitor CS and parallel capacitor CP were set as variables, and these values were linked with HFSS. According to the matching element values, the S11 magnitude was extracted as a text file. The matching element values for training are listed in Table 1, and those for validation are listed in Table 2. The magnitude of input impedance S11 is a scalar value ranging from 0 to 1 over 401 datapoints, corresponding to a frequency range from 0.8 to 1.5 GHz. For the training data, as 13 series capacitors and 29 parallel capacitors were used, 13 × 29 = 377 samples were obtained. In addition, the validation samples were 11 × 10 = 110. The postprocessing time to obtain S11 per setting of matching element values was 12 s, taking approximately 90 min to obtain all the training and validation samples. Figure 4 shows the S11 magnitude for all the training (Figure 4a) and validation (Figure 4b) samples. It is important to match the antenna impedance at the designed resonant frequency. The reason for graphing all samples in Figure 4 is to indicate that the resonant frequency of validation samples is different from the resonant frequency of the training samples. This is to investigate how well the DNN learns for these different resonant frequencies.

4. DNN Modeling and Training

Deep learning allows us to obtain the correct output for both learned data and previously unseen data. We used high-level Keras API in TensorFlow 2.0 to construct a DNN using Python. Figure 5 shows the structure of the proposed DNN. The input for deep learning is S11, whose magnitude is generally expressed in decibels. For implementation, the S11 magnitude was converted into a scalar value to normalize the input. In this study, the number of input samples was 401, with values ranging from 0 to 1 corresponding to frequencies from 0.8 to 1.5 GHz. The DNN output is given by the values of the series and parallel capacitors. As these values influence each other in the matching circuit, we considered two branches followed by addition (ADD layer) to reflect the influence, as shown in Figure 5. Each output value of the DNN for the corresponding capacitor value was obtained from one layer. As the DNN output should also be normalized, each capacitor value should be weighted. Input impedance S11 is highly sensitive to small values of the series capacitor. Therefore, we use the reciprocal of the series capacitor value as output. On the other hand, the value of the parallel capacitor was weighted by 0.1, as a larger value has a greater influence on the impedance. As a result, the weighted values of the two capacitors for training ranged from 0 to 1.5. The activation function of the output layer was linear, and the remaining layers used rectified linear unit (ReLU) activation to prevent the vanishing gradient problem. Each stage in the DNN implements a dense layer that fully connects the input and output neurons. As processing through the layers proceeded, the number of output neurons decreased. The number of neurons is expressed as a number in parentheses under the layer in Figure 5. The ADD layer functions to add two input values. RMSProp was used as the optimizer for learning DNN. The RMSProp does not simply accumulate gradients, but uses an exponentially weighted moving average to reflect the latest gradients larger. The loss function for DNN training was based on the mean squared error to perform optimization via root mean square propagation. The learning rate was set to 0.00005. For the DNN, 377 samples (Table 1) were used for training, and 110 samples (Table 2) were used for validation. Training proceeded for 2000 epochs with a batch size of 10.
The loss throughout training is shown in Figure 6. As training proceeds, the loss values converged at 0.0010 for training and 0.013 for validation. In this study, it took approximately 10.5 min to train the DNN in a computer equipped with an Intel(R) Xeon(R) processor at 2.30 GHz and 16 GB memory.

5. Simulation Results and Discussion

To validate the proposed DNN, two test sets with ground truths (i.e., calculated values) were considered. The selected capacitor values in the matching circuit are listed in Table 3. Samples with S11 magnitude up to 0.3 were selected, as antenna design requires S11 to be small. The S11 magnitudes from the test sets were used as input for the proposed DNN to obtain the corresponding capacitor values as outputs, as listed in Table 3. The capacitor values obtained from the DNN have some errors with respect to the calculated values. To analyze the effect of this error on antenna impedance matching, we conducted a simulation using the output capacitor values in HFSS. Figure 7 shows the comparison of S11 between the ground truths and DNN predictions, which are very similar.
Using the trained DNN, the output was derived using ideal S11 patterns that cannot be implemented in practice as inputs. Table 4 lists the DNN outputs for three ideal patterns. The first ideal pattern is a square wave with S11 having magnitudes of 0.3 in 0.9–1.0 GHz and 0.97 in the other frequencies. The second ideal pattern is a triangular wave with the S11 magnitude decreasing linearly from 1.1 GHz until a minimum value of 0.3 at 1.15 GHz and then increasing linearly up to 1.2 GHz with a magnitude of 0.99. The third ideal pattern is also a square wave, but in a frequency range of 1.3–1.4 GHz. Figure 8 shows the comparison between the ideal S11 patterns and the simulated S11 patterns that use the output matching values obtained from the DNN. The DNN provides appropriate matching values for an ideal input. For the first, second, and third ideal patterns, the resonant frequencies were 0.95, 1.16, and 1.34 GHz, respectively. However, a completely consistent solution is infeasible because ideal patterns cannot be implemented in practice. Nevertheless, the DNN manages to determine the matching element values that approximate the desired S11 waveform.
Machine learning has been applied for impedance matching using neural networks, as listed in Table 5. However, those applications consider frequencies in the order of megahertz, which is relatively lower than the gigahertz band required for antenna impedance matching. Moreover, those applications are limited to implementable impedance patterns. On the other hand, the proposed DNN can perform antenna impedance matching in the gigahertz frequency band. Unlike conventional methods, it uses only the magnitude instead of the complex impedance value to learn antenna matching values. Moreover, reasonable capacitor values for antenna impedance matching can be obtained even for S11 magnitudes that cannot be implemented in practice. In reference papers [20,21], matching values for ideal inputs were not presented.
This study applied deep learning to antenna matching through simulation. For experimental verification, it is necessary to implement the tunable matching network with a control circuit including a DNN, and the magnitude of the S11 should be measured at the rear end of the matching circuit using a device that can measure the reflection coefficient. Using the switching value of tunable matching circuit and magnitude of the measured impedance, the applicability of the proposed DNN can be verified experimentally. It is also necessary to research whether the matching value is properly found when there is noise in the impedance data. The practical performance of the deep learning method in selecting the value of the matching circuit element is an interesting future work.

6. Conclusions

We proposed a DNN to determine the capacitor values in the circuit for antenna impedance matching. The matching circuit consists of a series capacitor and a parallel capacitor and is intended for an inverted-F antenna, which is often used in small wireless devices. S11 data were acquired by simulating the antenna structure for various capacitor values. Then, the DNN was constructed using the S11 magnitude as input and the capacitor values of the matching circuit as outputs. After training on 377 training samples and 64 validation samples, the DNN achieved a loss of 0.001. The trained DNN was then applied to S11 magnitudes of ideal square and triangular waves. The simulated S11 obtained from DNN outputs shows the desired resonant frequency even for physically impossible patterns, suggesting that deep learning can be used for robust antenna impedance matching.

Author Contributions

Conceptualization, J.H.K.; methodology, J.H.K.; validation, J.H.K.; data curation, J.B.; supervision, J.B. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2021-0-00763, Innovative Fusion Technologies of Intelligent Antenna Material/Structure/Network for THz 6G) and This work was supported by the Education and Research Promotion Program of KOREATECH in 2021.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Sun, C.; Zheng, H.; Zhang, L.; Liu, Y. A Compact Frequency-Reconfigurable Patch Antenna for Beidou (COMPASS) Navigation System. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 967–970. [Google Scholar]
  2. Nie, Z.; Zhai, H.; Liu, L.; Li, J.; Hu, D.; Shi, J. A Dual-Polarized Frequency-Reconfigurable Low-Profile Antenna With Harmonic Suppression for 5G Application. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1228–1232. [Google Scholar] [CrossRef]
  3. Chi, P.-L.; Waterhouse, R.; Itoh, T. Compact and Tunable Slot-Loop Antenna. IEEE Trans. Antennas Propag. 2011, 59, 1394–1397. [Google Scholar] [CrossRef]
  4. Kulkarni, A.N.; Sharma, S.K. Frequency Reconfigurable Microstrip Loop Antenna Covering LTE Bands with MIMO Implementation and Wideband Microstrip Slot Antenna all for Portable Wireless DTV Media Player. IEEE Trans. Antennas Propag. 2013, 61, 964–968. [Google Scholar] [CrossRef]
  5. Li, T.; Zhai, H.; Wang, X.; Li, L.; Liang, C. Frequency-Reconfigurable Bow-Tie Antenna for Bluetooth, WiMAX, and WLAN Applications. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 171–174. [Google Scholar] [CrossRef]
  6. Chen, Y.; Manteuffel, D. A Tunable Decoupling and Matching Concept for Compact Mobile Terminal Antennas. IEEE Trans. Antennas Propag. 2017, 65, 1570–1578. [Google Scholar] [CrossRef]
  7. Ko, J.B.; Kim, D. A Wideband Frequency-Tunable Dipole Antenna Based on Antiresonance Characteristics. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3067–3070. [Google Scholar] [CrossRef]
  8. Firrao, E.L.; Annema, A.J.; van Vliet, F.E.; Nauta, B. Hardware Implementation Overhead of Switchable Matching Networks. IEEE Trans. Circuits Syst. I 2017, 64, 1152–1163. [Google Scholar] [CrossRef]
  9. Lee, C.; Yang, C. Matching Network Using One Control Element for Widely Tunable Antennas. Prog. Electromagn. Res. C 2012, 26, 29–42. [Google Scholar] [CrossRef] [Green Version]
  10. Rahola, J. Optimization of frequency tunable matching circuits. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–4. [Google Scholar]
  11. Wang, H.; Wu, Z.; Wang, Y.; Sim, C.; Yang, G. Small-Size Folded Monopole Antenna with Switchable Matching Circuit for Ultra-Thin Mobile Applications. Prog. Electromagn. Res. C 2016, 65, 131–138. [Google Scholar] [CrossRef] [Green Version]
  12. Melde, K.; Park, H.-J.; Yeh, H.-H.; Fankem, B.; Zhou, Z.; Eisenstadt, W.R. Software Defined Match Control Circuit Integrated With a Planar Inverted F Antenna. IEEE Trans. Antennas Propag. 2010, 58, 3884–3890. [Google Scholar] [CrossRef]
  13. Kim, J.H.; Choi, S.W. A Deep Learning-Based Approach for Radiation Pattern Synthesis of an Array Antenna. IEEE Access 2020, 8, 226059–226063. [Google Scholar] [CrossRef]
  14. El Misilmani, H.M.; Naous, T.; Al Khatib, S.K. A review on the design and optimization of antennas using machine learning algorithms and techniques. Int. J. RF Microw. Comput. Eng. 2020, 30, e22356. [Google Scholar] [CrossRef]
  15. Bang, J.; Kim, J.H. Predicting Power Density of Array Antenna in mmWave Applications with Deep Learning. IEEE Access 2021, 9, 111030–111038. [Google Scholar] [CrossRef]
  16. Zheng, B.; Zhang, H. Deep Learning Based Multi-layer Metallic Metasurface Design. In Proceedings of the IEEE International Symposium on Antennas and Propagation, Montreal, QC, Canada, 5–10 July 2020; pp. 2049–2050. [Google Scholar]
  17. Misilmani, H.M.E.; Naous, T. Machine Learning in Antenna Design: An Overview on Machine Learning Concept and Algorithms. In Proceedings of the 2019 International Conference on High Performance Computing & Simulation (HPCS), Dublin, Ireland, 15–19 July 2019; pp. 600–607. [Google Scholar]
  18. Erricolo, D.; Chen, P.-Y.; Rozhkova, A.; Torabi, E.; Bagci, H.; Shamim, A.; Zhang, X. Machine Learning in Electromagnetics: A Review and Some Perspectives for Future Research. In Proceedings of the 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada, Spain, 9–13 September 2019; pp. 1377–1380. [Google Scholar]
  19. Yao, H.M.; Li, M.; Jiang, L. Applying Deep Learning Approach to the Far-Field Subwavelength Imaging Based on Near-Field Resonant Metalens at Microwave Frequencies. IEEE Access 2019, 7, 63801–63808. [Google Scholar] [CrossRef]
  20. Li, Y.; Dong, W.; Yang, Q.; Zhao, J.; Liu, L.; Feng, S. An Automatic Impedance Matching Method Based on the Feedforward-Backpropagation Neural Network for a WPT System. IEEE Trans. Ind. Electron. 2018, 66, 3963–3972. [Google Scholar] [CrossRef]
  21. Jeong, S.; Lin, T.-H.; Tentzeris, M.M. A Real-Time Range-Adaptive Impedance Matching Utilizing a Machine Learning Strategy Based on Neural Networks for Wireless Power Transfer Systems. IEEE Trans. Microw. Theory Tech. 2019, 67, 5340–5347. [Google Scholar] [CrossRef]
  22. Hemminger, T.L. Understanding Transmission Line Impedance Matching Using Neural Networks and PowerPoint. In Proceedings of the Frontiers in Education 35th Annual Conference, Indianopolis, IN, USA, 19–22 October 2005; p. T4E. [Google Scholar]
Figure 1. Antenna structure for impedance simulation.
Figure 1. Antenna structure for impedance simulation.
Sensors 21 06766 g001
Figure 2. Simulated antenna impedance without matching circuit (a) Smith chart, (b) real and imaginary parts.
Figure 2. Simulated antenna impedance without matching circuit (a) Smith chart, (b) real and imaginary parts.
Sensors 21 06766 g002
Figure 3. Gamma-matching circuit.
Figure 3. Gamma-matching circuit.
Sensors 21 06766 g003
Figure 4. Magnitude of input impedance S11 for (a) all training and (b) all validation samples according to the combination of series capacitor CS and parallel capacitor CP.
Figure 4. Magnitude of input impedance S11 for (a) all training and (b) all validation samples according to the combination of series capacitor CS and parallel capacitor CP.
Sensors 21 06766 g004
Figure 5. Architecture of the proposed DNN for antenna impedance matching.
Figure 5. Architecture of the proposed DNN for antenna impedance matching.
Sensors 21 06766 g005
Figure 6. Training and validation losses according to epochs.
Figure 6. Training and validation losses according to epochs.
Sensors 21 06766 g006
Figure 7. Comparison of results from ground truth and DNN output.
Figure 7. Comparison of results from ground truth and DNN output.
Sensors 21 06766 g007
Figure 8. Comparison of ideal S11 waveform with that obtained from DNN results.
Figure 8. Comparison of ideal S11 waveform with that obtained from DNN results.
Sensors 21 06766 g008
Table 1. Capacitor values in matching circuit for training.
Table 1. Capacitor values in matching circuit for training.
ElementValues (pF)No. Cases
Series capacitor CS0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, 2.7, 2.9, 3.1, 3.313
Parallel capacitor CP1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 1529
Table 2. Capacitor values in matching circuit for validation.
Table 2. Capacitor values in matching circuit for validation.
ElementValues (pF)No. Cases
Series capacitor CS1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 311
Parallel capacitor CP1.1, 1.7, 2.3, 3.7, 5.5, 7.5, 9.5, 11.5, 13.5, 1610
Table 3. Capacitor values in matching circuit for validation.
Table 3. Capacitor values in matching circuit for validation.
Ground TruthDNN OutputSample
CS = 1.2 pFCS = 1.2191441 pF14
CP = 5.5 pFCP = 5.201703 pF
CS = 1.8 pFCS = 1.8085649 pF45
CP = 7.5 pFCP = 7.569376 pF
Table 4. Capacitor values obtained from DNN for ideal inputs.
Table 4. Capacitor values obtained from DNN for ideal inputs.
Ideal WaveformDNN OutputSample Number
Square (0.9–1.0 GHz)CS = 2.74568 pF
CP = 13.05057 pF
1
Triangular (1.1–1.2 GHz)CS = 1.5721719 pF
CP = 13.184719 pF
2
Square (1.3–1.4 GHz)CS = 1.0054374 pF
CP = 7.1495605 pF
3
Table 5. Comparison of machine learning methods for impedance matching.
Table 5. Comparison of machine learning methods for impedance matching.
StudyMethodArray GeometryNeural Network SizeApplicationNetwork Type
[20]Back-propagation neural network1D5 (3 hidden layers)Wireless power transferGamma matching
[21]Feedforward neural network1D12 (10 hidden layers)Wireless power transferThree cascading L-type stages
This studyDNN1D12AntennaGamma matching
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kim, J.H.; Bang, J. Antenna Impedance Matching Using Deep Learning. Sensors 2021, 21, 6766. https://doi.org/10.3390/s21206766

AMA Style

Kim JH, Bang J. Antenna Impedance Matching Using Deep Learning. Sensors. 2021; 21(20):6766. https://doi.org/10.3390/s21206766

Chicago/Turabian Style

Kim, Jae Hee, and Jinkyu Bang. 2021. "Antenna Impedance Matching Using Deep Learning" Sensors 21, no. 20: 6766. https://doi.org/10.3390/s21206766

APA Style

Kim, J. H., & Bang, J. (2021). Antenna Impedance Matching Using Deep Learning. Sensors, 21(20), 6766. https://doi.org/10.3390/s21206766

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop