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Abstract: Despite recent stereo matching algorithms achieving significant results on public bench-
marks, the problem of requiring heavy computation remains unsolved. Most works focus on
designing an architecture to reduce the computational complexity, while we take aim at optimizing
3D convolution kernels on the Pyramid Stereo Matching Network (PSMNet) for solving the prob-
lem. In this paper, we design a series of comparative experiments exploring the performance of
well-known convolution kernels on PSMNet. Our model saves the computational complexity from
256.66 G MAdd (Multiply-Add operations) to 69.03 G MAdd (198.47 G MAdd to 10.84 G MAdd
for only considering 3D convolutional neural networks) without losing accuracy. On Scene Flow
and KITTI 2015 datasets, our model achieves results comparable to the state-of-the-art with a low
computational cost.

Keywords: stereo matching; lightweight 3D kernels; 3D channel-wise attention; network design;
3D vision

1. Introduction

Stereo matching plays an important role in 3D computer vision applications, such
as augmented reality (AR) [1], mixed reality (MR) [2], autonomous vehicle [3] and robot
navigation [4,5]. It provides accurate disparity by a pair of stereo images. We can calculate
the depth value by D = f B/d, where d denotes the disparity of the pixel, f is the focal
length of the camera and B is the distance between the camera centers [6]. To get a precise
disparity map is one of the most important tasks in stereo vision.

Classic stereo matching algorithms contain four parts: matching cost computation,
cost support aggregation, disparity computation and disparity optimization [7]. Early
studies perform machine learning methods to optimize disparity by Markov random
field [8], conditional random field [9] or random forest [10]. With the rise of convolutional
neural networks (CNNs), CNN-based approaches have been developed progressively.
MC-CNN [6] first investigates CNNs on matching corresponding points for disparity
estimation. Geometry and Context Network (GC-Net) [11] makes the training process
end-to-end with a differentiable ArgMin operation on disparity estimations. The Pyramid
Stereo Matching Network (PSMNet) [12] introduces spatial pyramid pooling and a stacked
hourglass module for an accurate disparity map. These famous studies form a CNN-based
approach framework: 2D Siamese feature extraction, cost volume aggregation, cost volume
regularization and disparity regression.

One major problem with current CNN-based stereo matching algorithms is the enor-
mous computation for cost volume regularization. The cost volume aggregation stage
builds correspondence between left and right feature maps, aggregating disparity as an
additional dimension on left feature maps to form 4D cost volumes [11]. For the cost vol-
ume regularization stage, most CNN-based methods build 3D convolution layers and 3D
deconvolution layers, composing a 3D encoder–decoder architecture for regularizing 4D
cost volumes. Compared to 2D convolution kernels, the additional dimension forming 3D
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convolution kernels raises computation complexity exponentially, leading the cost volume
regularization to contain most of the computation among the entire architecture. Therefore,
we build the 3D version of resource efficient kernel-based methods which can match up
with the logic of a 3D encoder–decoder. By classifying all 3D layers in PSMNet according to
their functions, we replace the original layers with our lightweight 3D convolution layers
and implement a series of comparative experiments. Eventually, compared to the original
PSMNet, we save 34.3% parameters and 73.1% multiply-add operations (MAdd) (95.50%
paramters and 94.53% MAdd for 3D CNNs) without losing performance. We evaluate our
model on Scene Flow and KITTI 2015 public datasets and obtain competitive results with
other state-of-the-art stereo matching algorithms.

Our main contributions are listed below:

• A throughout discussion about optimizing already established 3D convolution kernels
on stereo matching algorithms;

• A network design guideline when optimizing 3D convolution kernels on stereo match-
ing algorithms for accurate disparity estimation and less computational complexity;

• By following the guideline above and without changing the architecture, our model
performs comparable results to modern stereo matching algorithms with significantly
less computational complexity.

2. Related Works
2.1. Kernel-Based Methods

Plenty of recent studies focus on building lightweight convolution kernels, which com-
prise the CNN-based application suitable for low resource devices, such as mobile phone
and navigation robot. The origin SqueezeNet [13] achieves AlexNet [14]-level accuracy
with 50 times fewer parameters. Xception [15] and MobileNetV1 [16] implement depthwise
separable convolutions for reducing the model parameters. MobileNetV2 [17] proposes
an inverted residual block with channel expansion for boosting the performance. Shuf-
fleNetV1 [18] presents grouped pointwise convolution and a channel shuffle operation to
save computation. ShuffleNetV2 [19] further considers the relationship between hardware
and network design, improving their performance in terms of speed and accuracy.

The channel-wise attention mechanism has proven the potential for enhancing the
performance with a small implementation. Squeeze and excitation networks (SE-Net) [20]
firstly present an effective attention mechanism by aggregating a feature map with global
average pooling along the channel and weights it on the respective channel. Selective kernel
networks (SK-Net) [21] improve the performance with optimizing the channel-wise infor-
mation in two different sizes of receptive fields. Efficient channel attention networks (ECA-
Net) [22] propose an effective channel attention module for saving computational burden.

2.2. Stereo Matching

GC-Net [11] settles the basic framework of end-to-end deep learning-based stereo
matching algorithms: 2D Siamese CNNs, cost volume aggregation, cost volume regular-
ization and disparity regression. Zhou et al. [23] draw a review of deep learning-based
methods on stereo matching algorithms, which shows that recent stereo matching algo-
rithms follow this framework and improve network performance by modifying partially
with other mechanisms. We explain the main recent works according to where they are
modified in Table 1.
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Table 1. Recent studies on stereo matching. We clarify where their modifications target stereo matching architecture.

Name Main Feature Targeting Part

GwcNet [24] Performs a group-wise correlation to generate Cost volume aggregation &
a multi-feature cost volume. Cost volume regularization

StereoNet [25]
Utilizes more downsampling to form a low-resolution

cost volume, 2D Siamese CNNs &

which lead a great improvement in speed. Cost volume regularization

GANet [26]
Introduces a semi-global guided aggregation layer and

Cost volume regularizationa local guided aggregation layer
for replacing 3D convolution layer in 3D

encoder-decoder.

Zhu et al. [27] Apply edge-preserving guided-Image-filtering (GIF) at Cost volume regularization
different resolutions on multi-scale stereo matching.

AcfNet [28] Includes the ground truth cost volume and Cost volume regularization
confidence map for intermediate supervision.

DeepPruner [29] Aggregates a sparse cost volume Cost volume aggregation
with a differentiable PatchMatch [30] module.

AANet [31]
Presents a intra-scale aggregation module

Cost volume regularizationfor replacing 3D convolution layer & cross-scale
aggregation for

integrating multi-scale cost volume.

CSN [32] & Implements the architecture in a coarse-to-fine manner. Cost volume aggregation &
CFNet [33] Cost volume regularization

Wei et al. [34] Improve StereoNet[25] with edge-guided refinement & 2D Siamese CNNs &
multi-cross attention module on multi-level cost

volumes. Cost volume regularization

Huang et al. [35]
Implement ResNetXt [36] and Atrous Spatial Pyramid

Pooling 2D Siamese CNNs
(ASSP) [37] on 2D CNNs.

JDCNet [38]
Use the 2D stereo encoder-decoder to generate a

disparity range 2D Siamese CNNs &

for guiding 3D aggregation network. Cost volume aggregation

According to Table 1, most of the works focus on optimizing the network architec-
ture, especially the cost volume aggregation part, which costs the greatest computational
resources. Yet, 3D convolution layers and 3D transposed convolution layers, the basic
elements of cost volume aggregation, have been rarely studied. For exploring the limitation
of the 3D kernel-based method on stereo matching methods, inspired by [39], we conduct
a complete investigation optimizing network architecture with 3D kernel-based methods.
We perform PSMNet as the basic architecture, attempting an elaborate study on all stages
of the cost volume normalization with 3D kernel-based methods. By analyzing the model’s
complexity and accuracy on Scene Flow and the KITTI 2015 data set, we receive a model
with comparable results and less computational complexity.

3. Network Architecture

We first introduce the details about our network structure, including the architecture of
the prototype PSMNet [12], and a series of 3D convolution kernels as the basic components
of the network design pipeline.
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3.1. PSMNet

In our paper, we take the PSMNet as the baseline and explore a series of 3D kernel-
based methods to find a lightweight and accuracy model. In Figure 1, we separate all
3D convolution kernels into five categories: 3D head, 3D convolution, 3D convolution
with stride = 2, 3D deconvolution and 3D output. Table 2 shows the network settings
of PSMNet, we optimize the network design by experimenting with the 3D kernel-based
method on different stages of the architecture.

The 4D cost volumes (disparity× height×width× channel) are formed by concatenating
the left and the right feature maps fl , fr (height× width× channel) in Equation (1):

C(d, x, y, channel) = (Concat fl(x, y), fr(x− d, y), channel). (1)

The 3D stacked hourglass module performs cost volume regularization. The contin-
uous disparity map is obtained by the disparity regression process in [11]. The output
disparity d̂ is calculated as the summation of each disparity d weighted by corresponding
probability σ(−cd),

d̂ =
Dmax

∑
d=0

d× σ(−cd). (2)

The σ(.) denotes softmax operation, and the maximum disparity Dmax is set to 192.
For generating a smooth disparity map, the PSMNet uses a smooth L1 loss function to

train the whole architecture. The loss function of PSMNet is defined as:

L(d, d̂) =
1
N

N

∑
i=1

smoothL1(di − d̂i), (3)

where

smoothL1(x) =

0.5x2, i f |x| < 1

|x| − 0.5, otherwise
. (4)

N is the amount of label pixels. d and d̂ are the ground-truth disparity and predicted
disparity, respectively.

Left image

Right image
share weights

2D CNNs

2D CNNs

share weights

SPP module

SPP module

3D Stacked
Hourglass

regression

Disparity map

conv4_3

conv2_16

conv

conv

conv

conv 3D Head

upsam
pling

Spatial Pyramid Pooling module

64 x 64

32 x 32

16 x 16

8 x 8

concat

bilinear
3D Conv, stride=2

3D Deconv

3D Stacked Hourglass module

3D  Conv

3D Out

Cost Volume

In
pu

t

regression

bilinear bilinear

regression regression

Figure 1. Architecture of PSMNet: We specified all 3D CNN kernels with different colors representing different interactions
on the size and channel of cost volumes.
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Table 2. Parameters of PSMNet architecture. Batch normalization and ReLU layers are used except the summation
operations. H and W denote the height and width of an input pair. D means the disparities of the stereo input images.

2D Part: Feature Extraction 3D Part: Cost Volume Optimization

Layer Name Setting Output Dimension Layer Name Setting Output Dimension

Stereo input -
[

H ×W × 3
]
× 2 Concat left and right feature maps - 1

4 D× 1
4 H × 1

4 W × 64

2D CNNs 3D Stacked Hourglass module

Conv0_x
[
3× 3, 32

]
× 3 1

2 H × 1
2 W × 32 3DConv0(3D Head) 3× 3× 3, 32 1

4 D× 1
4 H × 1

4 W × 32

Conv1_x

[
3× 3, 32

3× 3, 32

]
× 3 1

2 H × 1
2 W × 32 3DConv1(3D Conv)

[
3× 3× 3, 64

]
× 3 1

4 D× 1
4 H × 1

4 W × 32

Conv2_x

[
3× 3, 64

3× 3, 64

]
× 16 1

4 H × 1
4 W × 64 3DStack1_x(3D Conv, stride = 2) 3× 3× 3, 64, stride = 2 1

8 D× 1
8 H × 1

8 W × 64

Conv3_x

[
3× 3, 128

3× 3, 128

]
× 3 1

4 H × 1
4 W × 128 3DStack2_x(3D Conv) 3× 3× 3, 64 1

8 D× 1
8 H × 1

8 W × 64

Conv4_x

[
3× 3, 128

3× 3, 128

]
× 3, dila = 2 1

4 H × 1
4 W × 128 3DStack3_x(3D Conv, stride = 2) 3× 3× 3, 64, stride = 2 1

16 D× 1
16 H × 1

16 W × 64

Spatial Pyramid Pooling (SPP) module 3DStack4_x(3D Conv) 3× 3× 3, 64 1
16 D× 1

16 H × 1
16 W × 64

Branch_1
64× 64, 128, Avg_pooling

1
4 H × 1

4 W × 32 3DStack5_x(3D Deconv) ConvTranspose3d 3× 3× 3, 64 1
8 D× 1

8 H × 1
8 W × 641× 1, 32, Conv

Upsample, Biliner interpolation

Branch_2
32× 32, 128, Avg_pooling

1
4 H × 1

4 W × 32 3DStack6_x(3D Deconv) ConvTranspose3d 3× 3× 3, 32 1
4 D× 1

4 H × 1
4 W × 321× 1, 32, Conv

Upsample, Biliner interpolation

Branch_3
16× 16, 128, Avg_pooling

1
4 H × 1

4 W × 32 Out1_x(3D Conv) 3× 3× 3, 32 1
4 D× 1

4 H × 1
4 W × 321× 1, 32, Conv

Upsample, Biliner interpolation

Branch_4
8× 8, 128, Avg_pooling

1
4 H × 1

4 W × 32 Out2_x(3D Out) 3× 3× 3, 1 1
4 D× 1

4 H × 1
4 W × 11× 1, 32, Conv

Upsample, Biliner interpolation

Concat[Conv2_16,Conv4_3,Branch_1,Branch_2,Branch_3,Branch_4] 1
4 H × 1

4 W × 320 Upsampling Trilinear interpolation D× H ×W

Fusion 3× 3, 128 1
4 H × 1

4 W × 32
- Disparity regression H ×W

1× 1, 32,

3.2. Architecture of 3D Convolution Kernels

In this section, we introduce the architecture of our 3D kernel-based methods. We
build all 3D kernels based on their 2D version and fit them to the 3D part of PSMNet
according to categories of layers in Figure 1.

3.2.1. 3D MobileNetV1

As shown in Figure 2a, 3D MobileNetV1 [16] decomposes a standard 3× 3× 3 convo-
lution kernel into a 3× 3× 3 depthwise separable convolution and a 1× 1× 1 pointwise
convolution. The 3D depthwise separable convolution exploits a series of convolutional fil-
ters according to the channel number of the input cost volume and extracts local context in
a channel-wise manner. Pointwise convolution walks through the cost volumes, restoring
spatial information across different channels.

By isolating local context extraction and channel interaction, MobileNetV1 decreases
computational complexity and model size significantly. Unlike most recent CNN ar-
chitecture, MobileNetV1 excludes ResNet-like residual connections [40] or multi-branch
operations, which makes it accessible for channel-wise operations (3D Head in Table 2).

3.2.2. 3D MobileNetV2

Figure 2b shows the 3D MobileNetV2 [17] block. It follows the main idea of Mo-
bileNetV1 by building depthwise convolution layers and pointwise convolution layers
for reducing computational complexity. It also proposes inverted residual blocks with
linear bottlenecks and residual connections. The linear bottlenecks increase the cost vol-
ume channels with an expansion factor for solving the problem that high dimensional
targeting feature expression often collapses when operating the rectified linear unit (ReLU)
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activation. The 3D MobileNetV2 block with stride = 1 (Figure 2b-left) comprising the
inverted residual structure helps to construct a deeper model as ResNet [40], while the
block with stride = 2 (Figure 2b-right) keeps excluding the residual connections for a
smooth channel-wise operation.

Input

               DWConv,   

                 Conv,   

Output

BN, ReLU

BN, ReLU

Input

                Conv,   

              DWConv,    

                  Conv,   

BN, ReLU6

BN, ReLU6

BN

Add

Output

Input

               Conv,   

             DWConv,    
stride=(2,2,2) 

                Conv,   

BN, ReLU6

BN, ReLU6

Output

BN

Input

                GConv,   

Channel Shuffle

              DWConv,   

                  GConv,   

Add

Output

BN, ReLU

BN

BN

ReLU

Input

               GConv,   

              AvgPool,   
stride=(2,2,2) 

Channel Shuffle

           DWConv,   
stride=(2,2,2) 

               GConv,   

Concat

Output

Input

Channel Split

                Conv,   

             DWConv,   

                Conv,   

Concat

Channel Shuffle

Output

BN, ReLU

BN

BN

ReLU

BN, ReLU

BN

BN, ReLU

Input

               Conv,   

           DWConv, 
stride=(2,2,2)   

              DWConv,   

               Conv,   

              Conv,   

Concat

Channel Shuffle

Output

BN, ReLU

BN, ReLU

BN

BN

BN, ReLU

(a) (b)

(c) (d)

Figure 2. The architecture of 3D lightweight CNN kernels. (a) 3D MobileNetV1. (b) 3D MobileNetV2. (c) 3D ShuffleNetV1.
(d) 3D ShuffleNetV2. Each module has the same effect as a 3× 3× 3 convolution kernel.

3.2.3. 3D ShuffleNetV1

Compared to other lightweight CNNs, ShuffleNetV1 [18] uses 1× 1× 1 pointwise
group convolutions (GConv) for computational efficiency. As shown in Figure 2c, the
symbolic channel shuffle operation helps to break through the barriers of different groups
to build a more robust model. Unlike MobileNetV2, ShuffleNetV1 follows the residual
structure to decrease the feature map channels to make it lightweight.

The 3D ShuffleNetV1 block with stride = 1 (Figure 2c-left) builds the standard ResNet-
like residual connections, while the stride = 2 version constructs the residual connections in
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another way. As shown in Figure 2c-right, the main branch keeps the structure unchanged,
downsamples the feature maps by half with a strided depthwise convolution (DWConv).
On the other hand, the shortcut branch utilizes average pooling to halve the feature maps.
As the output feature channels of two branches are C, the concatenation results raise feature
channels to 2C.

3.2.4. 3D ShuffleNetV2

Compared to ShuffleNetV1, ShuffleNetV2 [19] changes the 1× 1× 1 pointwise group
convolution into standard pointwise convolution. In Figure 2d, since the pointwise con-
volution is not grouped, the channel shuffle operation is placed after the two-branches
concatenation to enable information communication between two branches.

The 3D ShuffleNetV2 block with stride = 1 (Figure 2d-left) shuffles the feature chan-
nels and splits all feature maps by two with a channel split operation. Half of them remain
untouched with the residual connection. Another half follows a three convolutions scheme
without changing the channels. The stride = 2 version (Figure 2d-right) makes use of
all feature maps on each branch. Commonly, the down sampling layers contain channel
increases. The main branch (right) accomplishes the channel variation on the first pointwise
convolution. However, the identity branch compiles the channel change after the 3× 3× 3
depthwise convolution to keep the channel-wise dependency until the pointwise layer.

3.2.5. 3D ECA Blocks

For the outputting cost volume followed by 3D CNNs, we build the 3D ECA [22]
blocks for optimizing channel-wise attention. Figure 3 shows that our 3D ECA blocks
aggregate cost volumes (D× H ×W) along the channel with a 3D global average pooling
operation. Different from other channel-wise attention modules, ECA blocks do not
perform dimensionality reductions when extracting channel-wise information with 3D
global average pooling. Then 1D convolution achieves information aggregation on the
nearby extracted channel information. After passing a Sigmoid activation function (σ), we
implement the channel-wise product on the input cost volume to form a 3D channel-wise
attention mechanism.

GAP3D

 

Conv1D
k=3

: Channel-wise production 

: Sigmoid activation function

Figure 3. The architecture of 3D ECA blocks. We build the 3D ECA blocks for exploring channel-wise attention during cost
volume regularization. In the original paper, the kernel size k of Conv1D is adaptively determined according to channel
dimension C. In the 3D part of PSMNet, we set all kernel sizes k to 3 in terms of the relatively small feature channels.

4. Computational Complexity Matrics

Before we dive into the network design pipeline, we introduce the metrics for evaluat-
ing the computational complexity as follows:

• Parameters are the number of trainable neurons in the designed convolutional neural
network;
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• Multiply-Add operations(MAdd) describe the accumulated operations when training
neural networks. [41] explain the calculation of floating point operations (FLOPs).
MAdd is approximately half of FLOPs;

• Memory Access Cost (MAC) is the amount of allocating computational resource
during the training process;

• Model Size shows the storage size of all trained parameters.

5. Network Design Pipline

In this chapter, we use the 3D kernel-based methods introduced above to replace
the standard 3D CNNs in PSMNet, and design a series of comparative experiments to
illustrate the impact of different 3D convolution kernels on the performance. Since we
focus on discussing the role of 3D convolution kernels in the stereo matching algorithm,
we completely follow the original PSMNet on the network layer setting in Table 2.

5.1. Implementation

For all models, we use the same implementation for a fair comparison.

5.1.1. Dataset and Evaluation Metrics

We evaluate our models on Scene Flow [42] and KITTI 2015 [43] datasets:

• Scene Flow is a large scale dataset with synthetic stereo images. It contains 35,454
training and 4370 testing image pairs with 940× 540 resolutions. We report the end-
point-error (EPE) for evaluations, where EPE shows the average disparity error in
pixels;

• KITTI 2015 contains real street scenes taken by driving a car. It includes 200 training
image pairs with ground truth disparity maps collected by LiDAR and 200 other test
image pairs without ground truth disparity. The size of the training and test images is
1240× 376. We repot D1-all metrics as the official leaderboard.

5.1.2. Implementation Details

We train all models with an Adam optimizer on one NVIDIA RTX 3090 GPU. During
the training process, all input images are randomly cropped to 512× 256. We first train our
models from scratch on the Scene Flow dataset for 20 epochs with a batch size of four. The
learning rate is 0.0005 constantly. Then we train the models on KITTI 2015 with Scene Flow
pre-trained weights for 2000 epochs. The initial learning rate is 0.0005 and is decreased
by half at 400th, 600th and 800th epochs. Since the training dataset of KITTI 2015 only
contains 200 input pairs, we perform the training process with 10-fold cross validation
[44] for preventing overfitting. In Appendix A, we discuss the difference between normal
cross validation and 10-fold cross validation during the re-implementation of the original
PSMNet on KITTI 2015 dataset.

5.2. Optimize 3D Convolution Kernels in PSMNet

In Figure 1 and Table 2, we specify all 3D convolution kernels in PSMNet to five
categories: 3D Head, 3D Conv, 3D Conv stride = 2, 3D Deconv and 3D Out. We replace the
traditional CNNs in PSMNet with the 3D convolution kernels in Section 3.2 according to
different functions of 3D convolution kernels.

5.2.1. 3D Head

The first 3D convolution layer (3D Head) reduces the number of channels of the cost
volume from 64 to 32. Among all 3D convolution kernels, MobileNetV1 builds without
residual connection, which is beneficial when operating feature channels. We build 3D
MobileNetV1 on the first layer.
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5.2.2. 3D Convoltion Layers

For all 3D convolution layers (3D Conv and 3D Conv stride = 2), we used Mo-
bileNetV1, MobileNetV2, ShuffleNetV1 and ShuffleNetV2 to replace the original kernels.

In Figure 2c-right, ShuffleNetV1 with stride = 2 always blocks double the channels to
2C. However, as shown in Table 2, 3DStack3_x layer downsamples the cost volume without
changing the channels. To make an impartial comparison with PSMNet, as shown in
Figure 4, we build a ShuffleNetV1 block with downsampling without changing the number
of output channels. In the main branch, we modify the channel of the last pointwise group
convolution into C

2 . As for the identity branch, we add a pointwise group convolution
followed by the 3D average pooling layer and decrease the channels to C

2 . Therefore, the
output cost volumes remain with the same channel number as the PSMNet architecture.

Input

              GConv,   

            AvgPool,   
stride=(2,2,2) 

Channel Shuffle

           DWConv,   
stride=(2,2,2) 

            GConv,   

Concat

Output

ReLU

              GConv,   

Figure 4. The implementation of 3D ShuffleNetV1 with stride = 2 at 3DStack3_x layer. Following
the PSMNet, we downsample the cost volume by half without changing the channels.

After obtaining the results in Table 3 through comparative experiments, we found that
3D ShuffleNetV2 performs the best among all 3D convolution kernels. Then, we added the
3D ECA block on 3D ShuffleNetV2. The original paper only implements the ECA block
on residual connection modules. However, the concatenation in ShuffleNetV2 and the
addition operation in the residual connection reflect different logic when operating the
channels of cost volumes. We discussed the most suitable position for inserting a 3D ECA
block in ShuffleNetV2 in Appendix B. The 3D ECA-ShuffleNetV2 is shown in Figure 5.
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Input

Channel Split

               Conv,   

            DWConv,   

                Conv,   

Concat

Channel Shuffle

Output

BN, ReLU

BN

BN, ReLU

Input

               Conv,   

          DWConv, 
stride=(2,2,2)   

             DWConv,   

               Conv,   

              Conv,   

Concat

Channel Shuffle

Output

BN, ReLU

BN, ReLU

BN

BN

BN, ReLU

3D ECA block 3D ECA block

(a) (b)

Figure 5. We build the 3D ECA blocks after the channel shuffle operations on 3D ShuffleNet V2.
(a) 3D ECA-ShuffleNetV2 with stride = 1. (b) 3D ECA-ShuffleNetV2 with stride = 2.

5.2.3. 3D Deconvoltion Layers

Three dimensional (3D) transposed convolutions upsample the input cost volumes
to twice the size. It first expands the input size by zero padding the cost volume of each
channel, and then compiles the standard 3D convolution to introduce learning parameters
for more refined textural information. In our implementation, we follow the ShuffleNetV2
as the 3D convolution. However, when inserting 0 values to restore the size, the pointwise
convolution will destroy the learned semantic information and textural information. We
add upsamping with trilinear interpolation before ShuffleNetV2 for a continuous and
rough cost volume, then the ShuffleNetV2 block restores the cost volume with a series of
parameterized convolution layers.

Following the architecture of PSMNet in Table 2, we build the 3DStack5_x layer by
simply adding an upsampling layer as we mentioned. Since the channel needs to be
reduced to half, we construct the 3DStack6_x layer as illustrated in Figure 6. The channel
split operation divides the input channels into two branches. In the main branch (right), the
first pointwise convolution decreases the channels to C

4 instead C
2 . In the identity branch

(left), we include a pointwise convolution to reduce the channels to C
4 . Eventually, we get

the output cost volume with twice the size and half the channels.
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Figure 6. The trilinear interpolation upsamples the input to roughly twice the size of cost volume,
then the 3D ECA-ShuffleNetV2 refines the resolution of cost volume with parameterized layers.
(a) 3D Transposed ECA-ShuffleNetV2 at 3DStack5_x layer. (b) 3D Transposed ECA-ShuffleNetV2 at
3DStack6_x layer.

5.2.4. 3D Out

For the last 3D CNN layer (Out2_x), we keep the 3D convolution kernel unchanged
for establishing the disparity and textural information.

5.2.5. Network Design Overview

As shown in Table 3, in the first stage, we discuss the influence of MobileNetV1,
MobileNetV2, ShuffleNetV1 and ShuffleNetV2 as the basic 3D convolution kernels of
the PSMNet on the accuracy and computational complexity. Then we follow the same
strategy for designing comparative experiments. We put the MobileNetV1 on the first
layer for saving computation, ECA blocks on every 3D convolution kernel for boosting
the model accuracy and transposed ShuffleNetV2 for switching all 3D parts of PSMNet
to a lightweight method. Eventually, the computational complexity (MAdd) of PSMNet
reduced from 256.66 G to 69.03 G 3D convolution kernels implementation. Parameters and
model size also decrease from 5.23 M to 3.43 M, and from 21.1 M to 14.1 M, respectively.
MAC increases to build more small layers during training. We reduced the computational
complexity of the model while keeping the performance almost unchanged. In Appendix C,
we parameterize of all models in a layer-manner to emphasize how different 3D convolution
kernels change the model computational complexity.
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Table 3. Experiments for 3D convolution kernels on PSMNet. We calculate the MAdd with 512× 256 resolution as input. EPE
is the end-point-error on the Scene Flow dataset. D1-all denotes the evaluation of the KITTI 2015 leaderboard. MobelNetV2*
denotes implementation of the kernel with expansion ratio = 2 considering the MAC of the model. At each stage, we
select the best 3D convolution kernel (grey line) and optimize it on the model.

3D Conv Kernel EPE D1-All Parameters (Millon) MAdd (Gb) MAC (Mb) Model Size (Mb)

3D Convolution Layers

Baseline(re-implemented) 1.123 2.41 5.23 256.66 3895 21.1
MobileNetV1 1.252 2.68 3.97 168.96 5421 16.2
MobileNetV2* 1.215 2.60 4.11 175.93 6097 16.8
ShuffleNetV1 1.295 2.88 3.91 164.39 4651 16.0
ShuffleNetV2 1.241 2.62 3.96 168.03 5071 16.2

3D Head

3D CNN 1.241 2.62 3.96 168.03 5071 16.2
MobileNetV1 (Head) 1.233 2.61 3.91 147.81 5411 16.0

3D ECA Blocks

Without ECA Blocks 1.233 2.61 3.91 147.81 5411 16.0
ECA Blocks 1.160 2.50 3.91 147.92 5835 16.0

3D Deconvoltion Layers

3D Transposed CNN 1.160 2.50 3.91 147.92 5835 16.0
Transposed ShuffleNetV2 1.124 2.43 3.43 69.03 6771 14.1

6. Benchmark Results

In Section 5, we built 3D convolution kernels and explored the best combination of 3D
kernels with comparative experiments. Due to the number of comparative experiments
being relatively large, for saving time, we only train all models to close results without
convergence. For benchmarking, we train our model on two NVIDIA V100 for setting
the batch size to eight. Since now we have a larger batch size, we double the learning
rate for two stages of training. For Scene Flow, the learning is 0.001 constantly. For KITTI
2015, the initial learning rate is 0.001 and is decreased by half at the 400th, 600th and 800th
epochs. We perform 10-fold cross validation on the first 1000 epochs. Then we train another
1000 epochs without 10-fold cross validation with a 0.000125 learning rate.

We evaluate our model on Scene Flow and KITTI 2015. In Table 4, our model achieves
accurate results on these datasets with a low-cost MAdd in terms of computation. For
Scene Flow, our model outperforms the original PSMNet 0.18 on end-point-errors. As for
KITTI 2015, Table 5 demonstrates that our model achieves similar results to PSMNet, only
taking 26.9% of the MAdd. Meanwhile, our model surpasses the PSMNet significantly in
foreground pixels (D1-fg in the table). Figure 7 further visualizes the disparity estimation
result on the KITTI 2015 test set.

Table 4. Evaluation results on the Scene Flow dataset. Our model is competitive with other top-performing models.

Method Ours Baseline [16] GC-Net [11] GANet [26] DeepPruner-Best [29] DispNetC [42] StereoNet [25] JDCNet [38]

EPE 0.91 1.09 2.51 0.84 0.86 1.68 1.10 0.83
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Table 5. Evaluation results on the KITTI 2015 dataset. The first seven methods are accurate methods (included the
baseline). The other five are considered fast methods. Our model not only achieves results comparable to those of some
accurate methods but also requires significantly less computational complexity. We only calculated the MAdd of some
representative models.

Method All (%) Noc (%) Runtime(s) MAdd (G)
D1-Bg D1-Fg D1-All D1-Bg D1-Fg D1-All

Baseline [12] 1.86 4.62 2.32 1.71 4.31 2.14 0.41 256.66
PSMNet-lite (Ours) 1.91 4.56 2.35 1.75 4.06 2.13 0.63 69.03

MC-CNN [6] 2.89 8.88 3.89 2.48 7.64 3.33 67 -
GC-Net [11] 2.21 6.16 2.87 2.02 5.58 2.61 0.9 733.36
GwcNet [24] 1.74 3.93 2.11 1.61 3.49 1.92 0.32 247.6

DeepPruner-Fast [29] 1.87 3.56 2.15 1.71 3.18 1.95 0.18 -
GANet-15 [26] 1.55 3.82 1.93 1.40 3.37 1.73 0.36 -

CSN [32] 1.59 4.03 2.00 1.43 3.55 1.78 0.6 -
SMD-Net [45] 1.69 4.01 2.08 1.54 3.70 1.89 0.41 -

StereoNet [25] 4.30 7.45 4.83 - - - 0.015 47.08
DispNetC [42] 4.32 4.41 4.34 4.11 3.72 4.05 0.03 -

DeepPruner-Best [29] 2.32 3.91 2.59 2.13 3.43 2.35 0.06 -
AANet [31] 1.99 5.39 2.55 1.80 4.93 2.32 0.062 -

Fast DS-CS [46] 2.83 4.31 3.08 2.53 3.74 2.73 0.02 -
JDCNet [38] 1.91 4.47 2.33 1.73 3.86 2.08 0.079 -

(a) (b) (c) (d)

Figure 7. Visualization of prediction error on KITTI test set (red and yellow pixels denote error
disparities). The red boxes denote foreground regions and green boxes denote background regions.
(a) Left image. (b) Our model. (c) PSMNet. (d) AANet.

7. Discussion

In Table 5, compared to other studies, our model contains very little computational
complexity. However, the runtime is longer than that of the original PSMNet. As mentioned
in [47,48], the reason may be that the cuDNN library does not fully support depthwise
convolutions and pointwise convolutions. For the GPU platform of the cuDNN library, the
optimization of classic convolutions on end-to-end training is better. So, it will be faster
than some lightweight convolutions, although it produces more computation theoretically.
We present the runtime of all models in Table 6.
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Table 6. Inference time of all models in the network design pipeline. We use one NVIDIA RTX 3090 for all implementations.
“+ MobileNetV1” replaces the 3DConv0 with the 3D MobileNetV1 module. “+ ECA block” add 3D ECA block on all 3D
kernels. “+ Transposed ShuffleNetV2” replaces the 3DStack5_x and 3DStack6_x deconvolution layers with 3D Transposed
ECA-ShuffleNetV2.

Method MobileNetV1 MobileNetV2 ShuffleNetV1 ShuffleNetV2 + MobileNetV1 + ECA Blocks + Transposed
Head ShuffleNetV2

Runtime (s) 0.48 0.53 0.35 0.40 0.41 0.60 0.63

8. Conclusions

In this paper, based on PSMNet as a prototype, we design a series of kernel-based
methods aiming for a lightweight and accurate model without modifying the original
architecture. By optimizing 3D convolution kernels with corresponding kernel-based
methods, our model greatly reduces computational complexity and achieves comparable
results to the modern stereo matching algorithms. In future work, as we mentioned in
Section 7, we will investigate the implementation of 3D depthwise convolutions and 3D
pointwise convolutions on the cuDNN library and improve our model to become faster in
training and inference.
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Appendix A. 10-Fold Cross Validation

Since KITTI 2015 has a small amount of training set, during the re-implementation of
PSMNet, we examine the normal training manner and 10-fold cross validation with the
same pretrained model on Scene Flow data set.

Table A1. The re-implementation of PSMNet with cross validation and 10-fold cross validation. Both
follow the same implementation details in Section 5.1.2. We calculate the average 3-pixel error of all
image pairs in the whole training set with the model we submitted for evaluation.

Method All (%) Noc (%) Loss 3-Pixel Error in
D1-Bg D1-Fg D1-All D1-Bg D1-Fg D1-All Training Set

Cross Validation 2.03 4.89 2.51 1.86 4.53 2.30 0.291 0.707
10-fold Cross Validation 1.94 4.76 2.41 1.75 4.42 2.22 0.314 0.747

As illustrated in Table A1, the cross validation training manner leads to a lower loss
and more accurate disparity map on the training set, while the evaluation result is worse.
This situation reflects it has an explicit overfitting on the training set.

https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
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Appendix B. 3D ECA-ShuffleNetV2 Blocks

In order to achieve the attention mechanism on each channel of the cost volumes, we
build the 3D ECA block after concatenation of the main branch and the identity branch.
Two potential 3D ECA-ShuffleNetV2 blocks are shown in Figure A1. For saving time, we
only train both potential 3D ECA-ShuffleNetV2 blocks on Scene Flow data set for 10 epochs
and evaluate the model by training loss.

We show the training performance in Figure A2, the (b) architecture slightly outper-
forms than (a) architecture. For model (a), after it learning the channel-wise attention
information, the channel shuffle operation disrupts the channel order of cost volumes.
Based on the results, we think that the order of channels contains part of the spatial
representation ability of the model.

Input
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Figure A1. We built ECA block both before and after channel shuffle operation to find a more
appropriate architecture of 3D ECA-ShuffleNetV2. (a) before channel shuffle operation. (b) after
channel shuffle operation.
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Figure A2. Training loss on Scene Flow data set with 3D ECA-ShuffeNetV2 (a) & (b).
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Appendix C. Parameterize Model Details on Optimizing 3D Convolution Kernels

In order to reflect the influence of the reduction of computational complexity on
building different 3D convolution kernels, we show the parameterize model details on
Tabel A2. Since our work mainly focused on the regularization of the cost volume, we omit
the model details of feature extraction to one output as 2DCNN. When only considering
the 3D CNNs in the model, we reduce the parameters and MAdd from 1.887M to 0.085M
(95.50%) and from 198.47G to 10.84G (94.53%).

Table A2. Parameterize model details on all 3D convolution kernels in our network design pipeline. The numbers in bold
denote the modified layers compare to former stages.

Layer

Method Basline M_V1 M_V2 S_V1 S_V2 +M_V1_Head +ECA +Transposed S_V2
Para(M) MAdd(G) Para(M) MAdd(G) Para(M) MAdd(G) Para(M) MAdd(G) Para(M) MAdd(G) Para(M) MAdd(G) Para(M) MAdd(G) Para(M) MAdd(G)

2D CNNs 3.340 58.191 3.340 58.191 3.340 58.191 3.340 58.191 3.340 58.191 3.340 58.191 3.340 58.191 3.340 58.191

3DConv0 0.055 21.781 0.055 21.781 0.055 21.781 0.055 21.781 0.055 21.781 0.004 1.560 0.004 1.573 0.004 1.573
3DConv1 0.083 32.716 0.006 2.378 0.006 2.416 0.001 0.566 0.003 1.265 0.003 1.265 0.003 1.302 0.003 1.302

3DStack1_1 0.055 2.727 0.003 0.153 0.008 1.183 0.001 0.117 0.005 0.642 0.005 0.642 0.005 0.645 0.005 0.645
3DStack2_1 0.111 5.442 0.006 0.299 0.020 1.019 0.001 0.060 0.003 0.156 0.003 0.156 0.003 0.159 0.003 0.159
3DStack3_1 0.111 0.681 0.006 0.037 0.020 0.496 0.002 0.026 0.008 0.143 0.008 0.143 0.008 0.143 0.008 0.143
3DStack4_1 0.111 0.681 0.006 0.037 0.020 0.127 0.001 0.007 0.003 0.019 0.003 0.019 0.003 0.020 0.003 0.020
3DStack5_1 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.422 0.003 0.159
3DStack6_1 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.002 0.755
3DStack1_2 0.055 2.727 0.003 0.153 0.008 1.183 0.001 0.117 0.005 0.642 0.005 0.642 0.005 0.645 0.005 0.645
3DStack2_2 0.111 5.442 0.006 0.299 0.020 1.019 0.001 0.060 0.003 0.156 0.003 0.156 0.003 0.159 0.003 0.159
3DStack3_2 0.111 0.681 0.006 0.037 0.020 0.496 0.002 0.026 0.008 0.143 0.008 0.143 0.008 0.143 0.008 0.143
3DStack4_2 0.111 0.681 0.006 0.037 0.020 0.127 0.001 0.007 0.003 0.019 0.003 0.019 0.003 0.020 0.003 0.020
3DStack5_2 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.422 0.003 0.159
3DStack6_2 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.002 0.755
3DStack1_3 0.055 2.727 0.003 0.153 0.008 1.183 0.001 0.117 0.005 0.642 0.005 0.642 0.005 0.645 0.005 0.645
3DStack2_3 0.111 5.442 0.006 0.299 0.020 1.019 0.001 0.060 0.003 0.156 0.003 0.156 0.003 0.159 0.003 0.159
3DStack3_3 0.111 0.681 0.006 0.037 0.020 0.496 0.002 0.026 0.008 0.143 0.008 0.143 0.008 0.143 0.008 0.143
3DStack4_3 0.111 0.681 0.006 0.037 0.020 0.127 0.001 0.007 0.003 0.019 0.003 0.019 0.003 0.020 0.003 0.020
3DStack5_3 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.442 0.111 5.422 0.003 0.159
3DStack6_3 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.055 21.768 0.002 0.755

Out1_1 0.028 10.91 0.002 0.793 0.002 0.805 0.0004 0.189 0.001 0.422 0.001 0.422 0.001 0.434 0.001 0.434
Out2_1 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340
Out1_2 0.028 10.91 0.002 0.793 0.002 0.805 0.0004 0.189 0.001 0.422 0.001 0.422 0.001 0.434 0.001 0.434
Out2_2 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340
Out1_3 0.028 10.91 0.002 0.793 0.002 0.805 0.0004 0.189 0.001 0.422 0.001 0.422 0.001 0.434 0.001 0.434
Out2_3 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340 0.001 0.340

3D CNNs 1.887 198.470 0.631 110.766 0.772 117.737 0.571 106.194 0.619 109.842 0.568 89.621 0.568 89.728 0.085 10.840

Full Model 5.227 256.661 3.971 168.957 4.112 175.928 3.912 164.385 3.959 168.033 3.908 147.812 3.908 147.919 3.425 69.031
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