Low-Dimensional Dynamics of Brain Activity Associated with Manual Acupuncture in Healthy Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design and EEG Recording
2.2. Measurement of Dimensionality
2.3. Method for Extracting Low-Dimensional Latent Variables
3. Results
3.1. The Oscillatory Properties of Brain Activity Evoked via Manual Acupuncture Stimulation
3.2. Dimensionality of Brain Activity
3.3. Low-Dimensional Dynamics of Brain Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaptchuk, T.J. Acupuncture: Theory, efficacy, and practice. Ann. Intern. Med. 2002, 136, 374–383. [Google Scholar] [CrossRef]
- Han, J.S. Acupuncture and endorphins. Neurosci. Lett. 2004, 361, 258–261. [Google Scholar] [CrossRef]
- Margolin, A.; Kleber, H.D.; Avants, S.K.; Konefal, J.; Gawin, F.; Stark, E.; Sorensen, J.; Midkiff, E.; Wells, E.; Jackson, T.R.; et al. Acupuncture for the treatment of cocaine addiction-A randomized controlled trial. JAMA-J. Am. Med. Assoc. 2002, 287, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Vickers, A.J.; Vertosick, E.A.; Lewith, G.; MacPherson, H.; Foster, N.E.; Sherman, K.J.; Irnich, D.; Witt, C.M.; Linde, K. Acupuncture for chronic pain: Update of an individual patient data meta analysis. J. Pain 2018, 19, 455–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Tian, T.; Li, X.; Wang, Y.; Xu, T.; Ni, X.; Li, X.; He, Z.; Gao, S.; Sun, M.; et al. Revealing the neural mechanism underlying the effects of acupuncture on migraine: A systematic review. Front. Neurosci. 2021, 15, 674852. [Google Scholar] [CrossRef]
- Galasso, A.; Urits, I.; An, D.; Nguyen, D.; Borchart, M.; Yazdi, C.; Manchikanti, L.; Kaye, R.J.; Kaye, A.D.; Mancuso, K.F.; et al. A comprehensive review of the treatment and management of myofascial pain syndrome. Curr. Pain Headache Rep. 2020, 24, 8. [Google Scholar] [CrossRef]
- Park, J.; Hopwood, V.; White, A.R.; Ernst, E. Effectiveness of acupuncture for stroke: A systematic review. J. Neurol. 2001, 248, 558–563. [Google Scholar] [CrossRef]
- Wu, M.-T.; Hsieh, J.-C.; Xiong, J.; Yang, C.-F.; Pan, H.-B.; Chen, Y.-C.I.; Tsai, G.; Rosen, B.R.; Kwong, K.K. Central nervous pathway for acupuncture stimulation: Localization of processing with functional MR imaging of the brain-Preliminary experience. Radiology 1999, 212, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.S.; Cheon, S.; Park, J.Y. Central and peripheral mechanism of acupuncture analgesia on visceral pain: A systematic review. Evid.-Based Complement. Altern. Med. 2019, 2019, 1304152. [Google Scholar] [CrossRef] [PubMed]
- Dhond, R.P.; Kettner, N.; Napadow, V. Neuroimaging acupuncture effects in the human brain. J. Altern. Complement. Med. 2007, 13, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, X.; Nie, D.; Zhuo, Y.; Li, J.; Hu, Q.; Xu, J.; Yu, H. Magnetic resonance imaging studies on acupuncture therapy in depression: A systematic review. Front. Psychiatry 2021, 12, 1336. [Google Scholar]
- Bai, L.; Zhang, D.; Cui, T.-T.; Li, J.-F.; Gao, Y.-Y.; Wang, N.-Y.; Jia, P.-L.; Zhang, H.-Y.; Sun, Z.-R.; Zou, W.; et al. Mechanisms underlying the antidepressant effect of acupuncture via the CaMK signaling pathway. Front. Behav. Neurosci. 2020, 12, 563698. [Google Scholar] [CrossRef]
- Song, Z.; Deng, B.; Wei, X.; Cai, L.; Yu, H.; Wang, J.; Wang, R.; Chen, Y. Scale-specific effects: A report on multiscale analysis of acupunctured EEG in entropy and power. Phys. A 2018, 492, 2260–2272. [Google Scholar] [CrossRef]
- Hauck, M.; Schröder, S.; Meyer-Hamme, G.; Lorenz, J.; Friedrichs, S.; Nolte, G.; Gerloff, C.; Engel, A.K. Acupuncture analgesia involves modulation of pain-induced gamma oscillations and cortical network connectivity. Sci. Rep. 2017, 7, 16307. [Google Scholar] [CrossRef]
- Yi, G.; Wang, J.; Tsang, K.-M.; Chan, W.-L.; Wei, X.; Deng, B.; Han, C. Ordinal pattern based complexity analysis for EEG activity evoked by manual acupuncture in healthy subjects. Int. J. Bifurc. Chaos 2014, 24, 1450018. [Google Scholar] [CrossRef]
- Tanaka, Y.; Koyama, Y.; Joda, E. Effects of acupuncture to the sacral segment on the bladder activity and electroencephalogram. Psychiatry Clin. Neurosci. 2002, 56, 249–250. [Google Scholar] [CrossRef]
- Qi, S.-Y.; Lin, D.; Lin, L.-L.; Huang, X.-Z.; Lin, S.; Yu, Y.-Y.; Cao, C.-H.; Wang, Z.-X. Using nonlinear dynamics and multivariate statistics to analyze EEG signals of insomniacs with the intervention of superficial acupuncture. Evid.-Based Complement. Altern. Med. 2020, 2020, 8817843. [Google Scholar] [CrossRef]
- Si, X.; Han, S.; Zhang, K.; Zhang, L.; Sun, Y.; Yu, J.; Ming, D. The temporal dynamics of functional networks are modulated by acupuncture: An EEG microstates study. Int. J. Psychophysiol. 2021, 168, S196–S197. [Google Scholar] [CrossRef]
- Wadhera, T. Brain network topology unraveling epilepsy and ASD Association: Automated EEG-based diagnostic model. Expert Syst. Appl. 2021, 186, 115762. [Google Scholar] [CrossRef]
- Yu, H.; Liu, J.; Cai, L.; Wang, J.; Cao, Y.; Hao, C. Functional brain networks in healthy subjects under acupuncture stimulation: An EEG study based on nonlinear synchronization likelihood analysis. Phys. A 2017, 468, 566–577. [Google Scholar] [CrossRef]
- Yu, H.; Wu, X.; Cai, L.; Deng, B.; Wang, J. Modulation of spectral power and functional connectivity in human brain by acupuncture stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 977–986. [Google Scholar] [CrossRef]
- Shine, J.M.; Hearne, L.; Breakspear, M.; Hwang, K.; Müller, E.J.; Sporns, O.; Poldrack, R.; Mattingley, J.B.; Cocchi, L. The low-dimensional neural architecture of cognitive complexity is related to activity in medial thalamic nuclei. Neuron 2019, 104, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Rossi-Pool, R.; Romo, R. Low dimensionality, high robustness in neural population dynamics. Neuron 2019, 103, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Aghagolzadeh, M.; Truccolo, W. Low-dimensional motor cortex dynamics preserve kinematics information during unconstrained locomotion in nonhuman primates. Front. Neurosci. 2019, 13, 1046. [Google Scholar] [CrossRef] [Green Version]
- Yoon, K.; Buice, M.A.; Barry, C.; Hayman, R.; Burgess, N.; Fiete, I.R. Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat. Neurosci. 2013, 16, 1077–1084. [Google Scholar] [CrossRef]
- Chialvo, D.R. Emergent complex neural dynamics. Nat. Phys. 2010, 6, 744–750. [Google Scholar] [CrossRef] [Green Version]
- Shine, J.M.; Breakspear, M.; Bell, P.T.; Martens, K.A.E.; Shine, R.; Koyejo, O.; Sporns, O.; Poldrack, R.A. Human cognition involves the dynamics integration of neural activity and neuromodulatory systems. Nat. Neurosci. 2019, 22, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Kerkman, J.N.; Daffertshofer, A.; Gollo, L.L.; Breakspear, M.; Boonstra, T.W. Network structure of the human musculoskeletal system shapes neural interactions on multiple time scales. Sci. Adv. 2018, 4, eaat0497. [Google Scholar] [CrossRef] [Green Version]
- Cueva, C.J.; Saez, A.; Marcos, E.; Genovesio, A.; Jazayeri, M.; Romo, R.; Salzman, C.D.; Shadlen, M.N.; Fusi, S. Low-dimensional dynamics for working memory and time encoding. Proc. Natl. Acad. Sci. USA 2020, 117, 23021–23032. [Google Scholar] [CrossRef]
- Abbaspourazad, H.; Choudhury, M.; Wong, Y.T.; Pesaran, B.; Shanechi, M.M. Mulstiscale low-dimensional motor cortical state dynamics predict naturalistic reach-and-grasp behavior. Nat. Commun. 2021, 12, 607. [Google Scholar] [CrossRef]
- Cunningham, J.P.; Yu, B.M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 2014, 17, 1500–1509. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-encoding variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Bi, L.Z.; Zhang, J.W.; Lian, J.L. EEG-based adaptive driver-vehicle interface using variational autoencoder and PI-TSVM. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2025–2033. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Wen, H.; Shi, J.; Lu, K.-H.; Zhang, Y.; Fu, D.; Liu, Z. Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex. Neuroimage 2019, 198, 125–136. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Z.; Song, D.; Zhang, Y.; Pan, J.; Wu, L.; Huo, J.; Niu, C.; Wang, D. Latent factor decoding of multi-channel EEG for emotion recognition through autoencoder-like neural networks. Front. Neurosci. 2020, 14, 87. [Google Scholar] [CrossRef]
- Kobak, D.; Brendel, W.; Constantinidis, C.; Feierstein, C.E.; Kepecs, A.; Mainen, Z.; Qi, X.-L.; Romo, R.; Uchida, N.; Machens, C.K. Demixed principal component analysis of neural population data. eLife 2016, 5, e10989. [Google Scholar] [CrossRef] [PubMed]
- Marton, C.D.; Schultz, S.R.; Averbeck, B.B. Learning to select actions shapes recurrent dynamics in the corticostriatal system. Neural Netw. 2020, 132, 375–393. [Google Scholar] [CrossRef]
- Mazzucato, L.; Fontanini, A.; Camera, G.L. Stimuli reduce the dimensionality of cortical activity. Front. Syst. Neurosci. 2016, 10, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manjarrez, E.; Diez-Martínez, O.; Méndez, I.; Flores, A. Stochastic resonance in human electroencephalographic activity elicited by mechanical tactile stimuli. Neurosci. Lett. 2002, 324, 213–216. [Google Scholar] [CrossRef]
- Xiang, A.F.; Liu, H.; Liu, S.; Shen, X.Y. Brain regions responding to acupuncture stimulation of Zusanli (ST36) in healthy subjects analyzed on the basis of spontaneous brain activity. Acupunct. Res. 2019, 44, 66–70. [Google Scholar]
- Lundeberg, T.; Lund, I.; Naslund, J. Acupuncture—Self-appraisal and the reward system. Acupunct. Med. 2007, 25, 87–99. [Google Scholar] [CrossRef]
- Liu, T. Acupuncture: What underlies needle administration. Evid.-Based Complement. Altern. Med. 2009, 6, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 1998, 70, 223–287. [Google Scholar] [CrossRef]
- Moss, F.; Ward, L.M.; Sannita, W.G. Stochastic resonance and sensory information processing: A tutorial and review of application. Clin. Neurophysiol. 2004, 115, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Faisal, A.A.; Selen, L.P.J.; Wolpert, D.M. Noise in the nervous system. Nat. Rev. Neurosci. 2008, 9, 292–303. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, M.D.; Ward, L.M. The benefits of noise in neural systems: Bridging theory and experiment. Nat. Rev. Neurosci. 2011, 12, 415–425. [Google Scholar] [CrossRef]
- Lugo, E.; Doti, R.; Faubert, J. Ubiquitous cross modal stochastic resonance in humans: Auditory noise facilitates tactile, visual and proprioceptive sensations. PLoS ONE 2008, 3, e2860. [Google Scholar] [CrossRef] [Green Version]
- Richardson, K.A.; Imhoff, T.T.; Grigg, P.; Collins, J.J. Using electrical noise to enhance the ability of humans to detect subthreshold mechanical cutaneous stimuli. Chaos 1998, 8, 599–603. [Google Scholar] [CrossRef]
- Recanatesi, S.; Ocker, G.K.; Buice, M.A.; Shea-Brown, E. Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity. PLoS Comput. Biol. 2019, 15, e1006446. [Google Scholar] [CrossRef] [Green Version]
- Litwin-Kumar, A.; Harris, K.D.; Axel, R.; Sompolinsky, H.; Abbott, L. Optimal degrees of synaptic connectivity. Neuron 2017, 93, 1153–1164. [Google Scholar] [CrossRef] [Green Version]
- Bar-Gad, I.; Morris, G.; Bergman, H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog. Neurobiol. 2003, 71, 439–473. [Google Scholar] [CrossRef]
- Tang, Y.B.; Chen, D.; Li, X.L. Dimensionality reduction methods for brain imaging data analysis. ACM Comput. Surv. 2021, 54, 87. [Google Scholar] [CrossRef]
- Rigotti, M.; Barak, O.; Warden, M.; Wang, X.-J.; Daw, N.D.; Miller, E.; Fusi, S. The importance of mixed selectivity in complex cognitive tasks. Nature 2013, 497, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Luo, L.; Li, Y.; Wu, Q.; Deng, S.; Lian, S.; Liang, F. Different manual manipulations and electrical parameters exert different therapeutic effects of acupuncture. J. Tradit. Chin. Med. 2014, 34, 754–758. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Yu, H.; Kodama, N.X.; Wang, J.; Galan, R.F. Fluctuation scaling of neuronal firing and bursting in spontaneously active brain circuits. Int. J. Neural Syst. 2020, 30, 1950017. [Google Scholar] [CrossRef]
- Olguín-Rodríguez, P.V.; Arzate-Mena, J.D.; Corsi-Cabrera, M.; Gast, H.; Marín-García, A.; Mathis, J.; Ramos Loyo, J.; del Rio-Portilla, I.Y.; Rummel, C.; Schindler, K.; et al. Characteristic fluctuations around stable attractor dynamics extracted from highly nonstationary electroencephalographic recordings. Brain Connect. 2018, 8, 457–474. [Google Scholar] [CrossRef]
- Hennequin, G.; Ahmadian, Y.; Rubin, D.B.; Lengyel, M.; Miller, K.D. The dynamics regime of sensory cortex: Stable dynamics around a single stimulus-tuned attractor account for patterns of noise variability. Neuron 2018, 98, 846–860. [Google Scholar] [CrossRef]
- Finkelstein, A.; Fontolan, L.; Economo, M.N.; Li, N.; Romani, S.; Svoboda, K. Attractor dynamics gating cortical information flow during decision-making. Nat. Neurosci. 2021, 24, 843–850. [Google Scholar] [CrossRef]
- Kawanokuchi, J.; Takagi, K.; Tanahashi, N.; Yamamoto, T.; Nagaoka, N.; Ishida, T.; Ma, N. Acupuncture treatment for social defeat stress. Front. Behav. Neurosci. 2021, 15, 685433. [Google Scholar] [CrossRef]
- Yam, W.; Wilkinson, J.M. Is acupuncture an acceptable option in stroke rehabilitation? A survey of stroke patients. Complement. Ther. Med. 2010, 18, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.Y.; Zhao, K.C. Effect of acupuncture on the motor and nonmotor symptoms in Parkinson’s disease: A review of clinical studies. CNS Neurosci. Ther. 2016, 22, 333–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, Y.; Lee, H.; Kim, H.; Kim, C.-H.; Chang, D.-I.; Kim, K.-M.; Park, H.-J. Parsing brain activity associated with acupuncture treatment in Parkinson’s diseases. Mov. Disord. 2009, 24, 1704–1802. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Lee, B.H.; Kim, H.Y.; Yang, C.H. Bidirectional role of acupuncture in the treatment of drug addiction. Neurosci. Biobehav. Rev. 2021, 126, 382–397. [Google Scholar] [CrossRef] [PubMed]
Axis | Pre-Acu | 50 Times/Min | 100 Times/Min | 150 Times/Min |
---|---|---|---|---|
p1 vs. p2 |
Axis | Pre-Acu vs. 50 Times/Min | Pre-Acu vs. 100 Times/Min | Pre-Acu vs. 150 Times/Min | 50 Times/Min vs. 100 Times/Min | 50 Times/Min vs. 150 Times/Min | 100 Times/Min vs. 150 Times/Min |
---|---|---|---|---|---|---|
p1 | ||||||
p2 |
Model | SVM | KNN | LDA | DT |
---|---|---|---|---|
Accuracy | 97.5% | 97.5% | 98.8% | 95.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Wang, J. Low-Dimensional Dynamics of Brain Activity Associated with Manual Acupuncture in Healthy Subjects. Sensors 2021, 21, 7432. https://doi.org/10.3390/s21227432
Guo X, Wang J. Low-Dimensional Dynamics of Brain Activity Associated with Manual Acupuncture in Healthy Subjects. Sensors. 2021; 21(22):7432. https://doi.org/10.3390/s21227432
Chicago/Turabian StyleGuo, Xinmeng, and Jiang Wang. 2021. "Low-Dimensional Dynamics of Brain Activity Associated with Manual Acupuncture in Healthy Subjects" Sensors 21, no. 22: 7432. https://doi.org/10.3390/s21227432
APA StyleGuo, X., & Wang, J. (2021). Low-Dimensional Dynamics of Brain Activity Associated with Manual Acupuncture in Healthy Subjects. Sensors, 21(22), 7432. https://doi.org/10.3390/s21227432