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Abstract: For permanent magnet DC motors (PMDCMs), the amplitude of the current signals
gradually decreases after the motor starts. Only using the signal features of current in a single segment
is not conducive to fault diagnosis for PMDCMs. In this work, multi-segment feature extraction is
presented for improving the effect of fault diagnosis of PMDCMs. Additionally, a support vector
machine (SVM), a classification and regression tree (CART), and the k-nearest neighbor algorithm
(k-NN) are utilized for the construction of fault diagnosis models. The time domain features extracted
from several successive segments of current signals make up a feature vector, which is adopted for
fault diagnosis of PMDCMs. Experimental results show that multi-segment features have a better
diagnostic effect than single-segment features; the average accuracy of fault diagnosis improves
by 19.88%. This paper lays the foundation of fault diagnosis for PMDCMs through multi-segment
feature extraction and provides a novel method for feature extraction.

Keywords: fault diagnosis; permanent magnet DC motor; support vector machine; classification and
regression tree; k-nearest neighbor; feature extraction

1. Introduction

Permanent magnet DC motors (PMDCMs) are widely used in automobiles, house-
hold electrical appliances, industrial production, and so on. PMDCM faults can bring in
additional noise, harmful vibration and equipment shutdown, which will result in lots of
economic losses and poor user experience. Thus, it is necessary to carry out comprehensive
fault diagnosis for PMDCMs before they leave the factory. However, artificial diagnosis
easily leads to misjudgment since the current amplitude of PMDCMs gradually decreases
after the motor starts. Note that artificial intelligence (AI) is an effective way to solve
this problem.

Machine learning (ML) has been widely utilized for fault diagnosis, which involves
industry, medical, and many other fields [1–3]. Previous studies show that feature engineer-
ing is of great importance in ML application. Thus, feature extraction plays an important
role in motor fault diagnosis. Most studies for motor fault diagnosis focus on time domain,
frequency domain, and time-frequency domain features of vibration or current signals [1,3].
The difficulty of feature extraction lies in finding the features that can represent the original
signal attribute [3]. Li et al. [4] presented a composite fault diagnosis method for rolling
bearing by means of compressed sensing framework, which can effectively extract fault
characteristics. Plaza et al. [5] applied four feature extraction methods to surface roughness
prediction. The results show that singular spectrum analysis and the wavelet packet trans-
form perform better than time-direct analysis and power spectral density. Ding et al. [6]
presented a transient feature extraction method of encoder signal for condition assessment
of planetary gearboxes under variable rotational speed, which was confirmed by simu-
lation and case study. Shi et al. [7] presented a feature extraction method based on the
fractional Fourier transform, which was utilized to estimate the load of a tubular ball mill.
Cai et al. [8] applied sparsity-enabled signal decomposition for fault feature extraction of
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the gearbox, which outperformed empirical mode decomposition and spectral kurtosis.
Li et al. [9] proposed a novel feature extraction method by combining the advantages of
the empirical wavelet transform and reverse dispersion entropy, which outperformed the
other five latest feature extraction technologies. Lin et al. [10] presented a novel feature
extraction model based on the concept of the discriminative graph signal, which outper-
formed the existing methods. Yang et al. [11] presented a Bag-of-Words-based feature
extraction method for change detection in the rotational speed of industrial machinery,
which had better robustness than the state-of-the-art competitors. Chen et al. [12] reviewed
and categorized most based on the existing data-driven detection and diagnosis of faults
(FDD) mainstream methods for traction systems in high-speed trains and summarized the
challenges of successful implementations of FDD on practical high-speed trains. Benefiting
from theoretical developments of data-driven FDD strategies, an explosive growth of
data-driven FDD methods would be witnessed in the coming years. Azamfar et al. [13]
utilized the motor current signature by multi-sensor data fusion for gearbox fault detection
and diagnosis based on a 2-D convolutional neural network without any need for manual
feature extraction. The performance of the proposed method was evaluated in two different
experimental studies. Compared with some of the well-known ML methods, the proposed
method exhibits the best performance in terms of classification accuracy. Juez-Gil et al. [14]
proposed a new technique based on multiple sensor information for early diagnosis of
faulty conditions in induction motors. The principal component analysis (PCA) utilized to
reduce the number of multiple sensor information features, and the effectiveness of the
proposed method is verified by using a complete set of experimental data. Glowacz [15]
proposed a fault diagnosis technique of three-phase induction motors by using acoustic
signals and proposed two feature extraction methods: SMOFS-32-MULTIEXPANDED-
2-GROUPS and SMOFS32-MULTIEXPANDED-1-GROUP. The k-NN, back propagation
neural network (BPNN), and modified classifier based on words coding were used for the
recognition of acoustic signals. Widodo et al. [16], based on transient signal, presented a
method for induction motor fault diagnosis by using component analysis and an SVM.
The start-up transient current signal was used for fault diagnosis by extractive features.
Moreover, PCA is also used to study the influence of the number of features towards the
classification accuracies (training and testing). It should be noted that application of these
feature extraction methods is mainly focused on the case that the original signal is relatively
stable. However, these methods may not be suitable for the non-stationary current signals
of PMDCMs.

Previous studies have focused on feature transform and feature compression, such
as PCA, ICA, and so on. Some scholars have focused on the innovation of the algorithm.
Others have used multi-sensors, which can obtain more signals for the same object. Having
the best performance of fault diagnosis, the classifier can approach the best performance
infinitely; thus, finding suitable features that can reflect the attributes of the signal seems
so important. Time domain, frequency domain, and time-frequency domain can only
represent the local features of signals. To overcome the shortcoming of feature extraction
and improve the fault diagnosis performance of PMDCMs, this paper presents a new
multi-segment feature extraction method based on the time domain features. The time
domain features of current signals in several successive segments are put together to
make up a feature vector, which is adopted as the input of fault diagnosis. A support
vector machine (SVM) [17,18], classification and regression tree (CART) [18], and k-nearest
neighbor (k-NN) [19] are utilized for the construction of the fault diagnosis model. In this
work, an experimental platform is set up for proving the effectiveness of multi-segment
feature extraction.

This paper is organized as follows: Section 2 introduces the backgrounds of the SVM
classifier, CART classifier, k-NN classifier, k′-fold cross-validation [20,21] theory, and feature
extraction; Section 3 introduces the proposed multi-segment feature extraction method;
the experimental platform, data collection, and experimental results are given in Section 4;
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performance discussion and future research focuses are provided in Section 5; and, finally,
Section 6 concludes this paper.

2. Backgrounds
2.1. Classifier

A support vector machine (SVM) [17,18], classification and regression tree (CART) [18],
k-nearest neighbor algorithm (k-NN) [19] are utilized to verify the effectiveness of the
proposed multi-segment feature extraction method.

2.1.1. SVM

An SVM realizes binary classification through data interval maximization in input
space or feature space. SVMs can be divided into linear-separable SVM, linear SVM, and
nonlinear SVM. When the training samples are linearly separable in input space, the linear-
separable SVM can find a hyper-plane with maximum interval to classify these data. In
most cases, training samples are linearly inseparable in input space, and the nonlinear SVM
can find a hyper-plane with maximum interval to classify these data by mapping them into
a feature space. This process is called kernel transformation. The most widely-used kernel
function in SVMs contains a polynomial function, a Gaussian function, and a sigmoid
function. In this work, the Gaussian function is adopted as the kernel function. The penalty
parameter C and the kernel parameter σ2 need to be confirmed by the SVM with the
Gaussian kernel function.

In this paper, the grid-search method is utilized to determine the two model parame-
ters (C and σ2) of the SVM. Optimization of the model parameters in the SVM is carried out
in a two-dimensional space:

(
Ci, σ2

i
)
∈
[
2−8, 28]× [2−8, 28]. The grid size ∆Ci and ∆σ2

i
is set to 21 and 21, respectively. In the grid-search method, intersections in the grid space
are formed by the combination of Ci and σ2

i . Each intersection corresponds to a fitness.
The SVM belongs to binary classifier. The One-versus-one (OVO) or one-versus-rest

(OVR) method can be utilized to realize the multi-category classification. In this work,
the OVO method is utilized to realize multi-category classification, in consideration of the
sample size and limited categories.

2.1.2. CART

Classification and regression have the same essence for CART. The feature space is
gradually divided from the root node until the leaf node gives the prediction result. The
classification tree gives discrete values, while the regression tree gives continuous values.
The classification tree selects the characteristics of the decision tree based on the Gini-index,
and the regression tree selects the segmentation points based on square error.

The CART should discretize the continuous-value attributes, divide each possible
value a of the existing feature A into positive and negative, and at the same time calculate
the Gini-index. The feature with the smallest Gini-index was selected as an optimal divide
feature, which divided the training set into two training subsets. The Gini-index should be
circularly calculated, and the dataset should be circularly segmented until data samples
are below than the data samples’ threshold value, or Gini-index is less than the Gini-index
threshold value, or there are no more features.

2.1.3. k-NN

The k-NN algorithm is a clustering algorithm; the main idea of the k-NN algorithm
is that each sample can be represented by its nearest k neighbors. Most of the nearest k
samples belong to a certain class, so the sample belongs to the class. The k-NN algorithm is
a lazy algorithm, which can predict classes without model training. The main steps of the
k-NN algorithm are exhibited as follows:

Step 1: Normalize the feature to interval [0, 1], according to Equation (1) [19];
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x′ =
x− xmin

xmax − xmin
(1)

Step 2: Calculate the distance between the sample to be tested and all training samples. In
this paper, Euclidean distance is used, which is given by [19]:

d(x, y) =

√√√√ n

∑
j=1

(
xj − yj

)2 (2)

Step 3: Sort the Euclidean distance in descending order that is calculated in step 2;
Step 4: Utilize the majority vote for the first k-sorted training samples according to the

Euclidean distance, and the class of the sample to be tested is the one with the
largest number of votes.

2.2. k′-Fold Cross-Validation

The procedure of k′-fold cross-validation is utilized to ensure the stability of the model
results. Firstly, the training dataset is averagely divided into k′ subsets. Secondly, the fault
diagnosis model is trained and verified (i.e., model construction and evaluation) for k′

iterations. In the i th iteration, the i th subset is adopted as the test set, while the remaining
k′ − 1 subsets are adopted as the training set. The accuracy rate of the model is adopted
as the evaluation indicator. Thirdly, the average of the k′ indicators in the iterations is
considered the fitness. The k′-fold cross-validation procedure is shown in Figure 1.
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2.3. Feature Extraction

Most of the time, the features of raw signals are adopted as the input of machine
learning (ML) since the raw signals contain lots of redundant information. However, with
the increase in storage space and the enhancement of data processing ability, as a branch
of ML in deep learning (DL), models’ raw time series signals are indeed used as inputs.
Consider the efficiency of the training model; when the training samples are not enough to
train DL model, the other ML methods play a great role. The input of the other ML methods
is the features extracted from the raw signal. Objectively speaking, feature extraction plays
an important role in ML application. The extracted features should retain the characteristics
of the raw signals as much as possible. Time domain features, frequency domain features,
and time-frequency domain features can reflect the features of signals. This paper proposes
a novel feature extraction method based on a comparison of the multi-segment feature
extraction method with the single-segment feature extraction method. Therefore, in this
work, nine time domain features are extracted for motor fault diagnosis, as shown in
Table 1.
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Table 1. The extracted time domain features.

No. Abbreviation Features Expression

1 F1 Mean (µ) µ = E(xi)

2 F2 Root Mean Square (RMS) xRMS =
{

E
(

x2
i
)}1/2

3 F3 Maximum (Max) xMax = max(xi)
4 F4 Peak to Valley (PV) xPV = max(xi)−min(xi)

5 F5 Standard deviation (Std) xStd = σ =
{

E
[
(xi − µ)2

]}1/2

6 F6 Skewness (Ske) xSke = E
{
[(xi − µ)/σ]3

}
7 F7 Kurtosis (Kur) xKur = E

{
[(xi − µ)/σ]4

}
8 F8 Shape Factor (SF) xSF = xRMS/µ
9 F9 Crest Factor (CF) xCF = xMax/xRMS

3. Proposed Multi-Segment Feature Extraction Method

Anmpulse current will be generated as soon as the PMDCMs are powered on, and
then it will gradually reach a stable level. As shown in Figure 2, the current signals of each
type of PMDCM are different in both starting and stable stages. To distinguish the fault
type of PMDCMs effectively, the time domain features as listed in Table 1 are extracted
from several successive segments of current signals, respectively, and the extracted signal
features make up a feature vector, which is adopted for fault diagnosis of PMDCMs.
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The impulse current signal is divided into multiple segments for feature extraction.
After being powered on for 1 s, the current of PMDCMs tends to be stable and have a
steady downward trend; therefore, a 2 s length of current signal can reflect the fault of
PMDCMs. In order to collect the complete start current signal of PMDCMs, the start time
of the signal acquisition card is 0.5 s earlier than the start time of PMDCMs. In the time
from 0.5 s to 1 s, the current signal of PMDCMs changes obviously, and between different
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faults of PMDCMs, the current signal is distinguished obviously. Therefore, the current
signal from 0.5 s to 1 s was divided into multi-segment and extract features.

As shown in Figure 2, the current signals (0.5∼2 s) of PMDCMs are divided into eight
segments, i.e., A, B, C, D, E, F, G, and H. Among them, A, B, C, D, E, and F are the starting
stages of the current signal, with a duration of 0.05 s. Additionally, G and H are the stable
stages of the current signal, with a duration of 0.5 s. The nine time domain features (see
Table 1) are extracted from the eight segments of current signals, respectively. A total of
8× 9 = 72 signal features can be extracted from each data file (i.e., data sample) and make
up a feature vector. This process is referred to as multi-segment features extraction.

To optimize the size and number of the signal segments, seven kinds of multi-segment
feature extraction strategies are utilized in this paper, as shown in Table 2.

Table 2. The strategies of multi-segment feature extraction.

Duration 1 Segment No. 1 Duration 2 Segment No. 2 Feature No.

S0025 0.025 s 12 0.25 s 4 144
S005 0.05 s 6 1 s 2 72
S0018 0.1 s 8 0 0 72
S0028 0.2 s 8 0 0 72
S0038 0.3 s 8 0 0 72
S0048 0.4 s 8 0 0 72
S0058 0.5 s 8 0 0 72

To verify the validity of the proposed multi-segment feature extraction, which is used
to fault diagnosis of PMDCMs, the SVM, CART, and k-NN were utilized to construct the
fault diagnosis model separately. The procedure of fault diagnosis of PMDCMs based on
multi-segment feature extraction by the SVM, CART, and k-NN can be seen in Figure 3.
The main steps of fault diagnosis of PMDCMs based on the SVM, CART, and k-NN by
multi-segment features was as follows:

Step 1: The PMDCMs’ current signal acquisition platform was established; for more details,
see Figure 4 and Section 4.1;

Step 2: A total of 1200 sets of PMDCMs current signals were collected; more details are
given in Section 4.2;

Step 3: The current signals of PMDCMs were divided into eight segments; details of the
segment method are given in Section 3;

Step 4: Extract the time domain features (see Table 1) of multi-segment signals, which are
made up of feature vectors;

Step 5: The SVM-based fault diagnosis models of PMDCMs were trained with the train-
ing set. Two parameters (the penalty parameter C and the kernel parameter σ2)
affected the performance of the Gaussian kernel-based SVM. Thus, the k′-fold
cross-validation and grid-search method were utilized for optimizing the penalty
parameter C and the kernel parameter σ2. After the penalty parameter C and the
kernel parameter σ2 optimization, the model’s performance was assessed indepen-
dently in the corresponding test set. For more details, please see Section 4.3 and
Figure 5;

Step 6: A total of 1200 samples were divided into k′ equal size partitions randomly. The
1200 samples were randomly sorted and then numbered from 1 to k′. One group of
samples with the same number (i.e., subset) was used as the test set, and the other
samples were used as the training set. This procedure repeats k′ times by taking
each subset as the test set in turn. This constructs the CART and k-NN-based fault
diagnosis models of PMDCMs, respectively. For more details, please see Section 4.3.
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4. Experimental Results and Analysis

This study aims at constructing an effective and feasible fault diagnosis model for
permanent magnet DC motors (PMDCMs) by means of multi-segment feature extraction.

4.1. Experimental Introduction

The left half of the Figure 4 shows the data acquisition platform, which consists of
a personal computer (PC), a control cabinet, and PMDCMs. The PC is mainly used for
data storage, data processing, results display, and so on. The detail structure of the control
cabinet is shown in the right half of Figure 4. It consists of a 24 V power supply, 12 V
power supply, front-end relay, timer relay, 4-channel relay, sampling resistance with high
frequency, and a data acquisition card. The type and function of these apparatuses are
listed in Table 3. The 24 V power supply provides the power source for the relays and data
acquisition card. To eliminate the cross effect of current signals, one 12 V power supply
provides the power source for only one PMDCM. The 4-channel relay serves to control the
power on and off for the PMDCMs. The timer relay serves to delay the power on of the
circuit, which aims at collecting the current signals of the PMDCMs when powered on. The
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intermediate relay can be triggered by 5 V input voltage and controls the power on and
off for the timer relay. The data acquisition card serves to monitor the starting signal and
collect the current signals of PMDCMs.

Table 3. Type and function of the apparatuses in the control cabinet.

No. Name Type Function

1 24 V power supply Mean Well EDR-120-24 220 V AC→ 24 V DC
2 12 V power supply Mean Well NDR-120-12 220 V AC→ 12 V DC
3 Front-end relay BMZ 02R1-E Switch of the whole circuit
4 Timer relay ANLY AH3-2 Trigger delay: 0∼10 s
5 4-channel relay Schneider Electric RX4AB2BD Switch of the motors
6 Sampling resistance TO247-100W-0.2 High-frequency-based digital sampling
7 Data acquisition card ZTIC EM9118B Collection of current signals

Note: AC represents alternating current, DC represents direct current.
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The studied PMDCMs fall under six categories: healthy, slight noise, loud noise, harsh
noise, shaft unbalance, and bearing slipping, as shown in Table 4.

Table 4. Categorization for healthy and faulty PMDCMs.

Class Actual Status Number of PMDCMs

1 Healthy 3
2 Slight noise 1
3 Loud noise 2
4 Harsh noise 1
5 Shaft unbalance 1
6 Bearing slipping 1

Note: PMDCM represents permanent magnet DC motor.

4.2. Data Collection

In this work, the collected current signals of PMDCMs are graphically shown in the PC
terminal (see Figure 2). Sampling frequency and sampling duration of the current signals of
PMDCMs are set to 10 kHz and 5 s, respectively. The current signals are collected by data
acquisition card and saved in LVM format through the software LabVIEW. A collection of
200 data files (i.e., data samples) is obtained from each type of PMDCM. Thus, a total of
200× 6 = 1200 data files are obtained in the stage of data collection.

4.3. Performance of Multi-Segment Features Model

A total of 1200 data files are obtained in the stage of data collection (see Section 4.2).
Additionally, the feature vector is extracted from each data file in the stage of feature
extraction (see Section 3). Thus, a total of 1200 feature vectors can be obtained, which are
randomly divided into two subsets of equal size: the training dataset and test dataset.
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In this work, in order to prove the effectiveness of the proposed multi-segment
feature extraction method for fault diagnosis of PMDCMs, the SVM, CART, and k-NN
are utilized to construct the fault diagnosis model of PMDCMs based on the training
dataset. The corresponding test dataset is adopted to verify the effectiveness of the fault
diagnosis model.

As for the SVM-based fault diagnosis model of PMDCMs, there are two model pa-
rameters that directly affect the performance, i.e., the penalty parameter C and the kernel
parameter σ2. The procedure of the parameter optimization in SVM for fault diagnosis of
PMDCMs is illustrated in Figure 5.
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In this work, sevenfold cross-validation is selected. The intersection that corresponds
to the minimum fitness contains the two optimized model parameters (C∗ = 8 and
σ2
∗ = 0.0156). Then, the SVM-based fault diagnosis model can be constructed by using

the training dataset and the determined model parameters (C∗ = 8 and σ2
∗ = 0.0156).

The test dataset is adopted to evaluate the performance of the constructed SVM-based
fault diagnosis model, as shown in Table 5. The accuracy of the constructed SVM-based
fault diagnosis model using the multi-segment features (the S005 feature set) reaches up
to 93.83%.

Table 5. The performances of different multi-segment feature extraction strategies.

S0025 S005 S0018 S0028 S0038 S0048 S0058

SVM 90.67 93.83 86.5 89.5 85 82.33 85.83
CART 89.41 89.16 86.25 84.75 79.59 77.75 77.42
k-NN 92.08 92.5 89.33 90.67 87.08 84.4 83

As for the CART-based fault diagnosis model of PMDCMs, sevenfold cross-validation
is selected. (Typically, sevenfold cross-validation can produce better and more stable results,
as we can see in Figure 6. A total of 1200 feature vectors are randomly divided into seven
subsets on average. Six subsets are adopted as the training set, and the remaining one
subset is taken as the test set. The accuracy rate of the CART-based fault diagnosis model
is adopted as the evaluation indicator, as shown in Table 5. The accuracy of the constructed
sevenfold cross-validation CART-based fault diagnosis model using the multi-segment
features (the S0025 feature set) reaches up to 89.41%.
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As for the k-NN-based fault diagnosis model of PMDCMs, the grid-search method
is utilized to determine the two model parameters. The k of the k-NN ranges from 3 to
11 with step size 1. The k′ of k′-fold cross-validation ranges from 3 to 11 with step size
1, respectively. The accuracy of the constructed k-NN-based fault diagnosis model with
cross-validation using the multi-segment features (the S005 feature set) is shown in Table 6.
It is apparent that when the k of k-NN is set to 5 always can perform best, and also when k′

of k′-fold cross-validation is set to 7, most times (5/9), it can perform better. See Figure 6
for visual illustration of the selection process regarding k and k′. The accuracy of the
constructed sevenfold cross-validation k-NN-based (k = 5) fault diagnosis model using the
multi-segment features (the S005 feature set) reaches up to 92.5%. Naturally, in next section
(Section 4.4), the k-NN based fault diagnosis model of PMDCMs utilizing single-segment
features (nine-dimension) is constructed with the k of k-NN being set to 5 and the k′ of
k′-fold cross-validation being set to 7.

Table 6. The k-NN-based testing results for multi-segment features the S005 features).

k
′

k
3 4 5 6 7 8 9 10 11

3 91.75 91 91.83 90.58 90.5 90.08 90.33 90.17 89.92
4 92.5 92.08 91.42 91.17 91 90.42 89.92 89.75 89.5
5 92.5 91.67 92 91.42 91.58 91.42 91 90.58 90.33
6 92.42 91.42 91.92 91 91.25 90.83 90.75 90.33 89.92
7 91.66 91.67 92.5 91.5 91.83 91.67 91.16 89.75 89.58
8 92.92 92.17 91.75 91.5 91.83 91.17 90.67 90.42 90.25
9 92 91.33 92.08 91.33 91.25 91.42 90.41 90 89.83

10 92.42 91.33 92.25 91.5 91.58 91.25 90.92 90.08 90.17
11 92.34 91.08 92.34 91.17 91.25 91.34 91.09 90.5 90.42

Note: k represents the k of k-NN and k′ represents the k′ of k′-fold cross-validation.

From F1 to F9, some of the features are correlated, so each feature is extracted sepa-
rately in each single segment, and the SVM-, CART-, k-NN-based models are established by
utilizing the eight-dimension features. The performances of the SVM-, CART-, k-NN-based
models utilizing the F1 to F9 feature sets separately are shown in Table 7, the models
utilizing the F1 feature set achieve the best performance one time, and the models utilizing
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the F2 feature set achieve the best performance time times. Therefore, F2 was used as
the benchmark feature, and the other eight features and calculated Pearson correlation
coefficients [22] with F2, respectively, are shown in Table 8. The Pearson correlation co-
efficients of F1 and F3 are more than 0.5 with F2; thus, the No_F1 and No_F3 feature
sets are formed by eliminating the F1 and F3 from the S005 feature set, respectively; the
No_F1_F3 feature set is formed by eliminating the F1 and F3 from the S005 feature set at
the same time. The performances of the SVM-, CART k-NN-based models utilizing the
No_F1, No_F3, and No_F1_F3 are shown in Table 9. Whether F1 or F3 are eliminated or F1
and F3 are eliminated at the same time, the performances of the model are not as strong as
the performances of the model using the S005 feature set.

Table 7. The performances of models utilizing the F1 to F9 features set.

F1 F2 F3 F4 F5 F6 F7 F8 F9

SVM 94 93 85 72.33 77.67 62.67 64.33 74.5 69.17
CART 88.42 89.16 79.33 58.41 69.58 49.58 55.58 69.83 60.84
k-NN 91.25 91.75 77.75 59.09 66.59 52.42 52.17 66.42 52.5

Table 8. The Pearson correlation coefficients between F2 and the other eight features.

F1 F3 F4 F5 F6 F7 F8 F9

F2 0.9999 0.9342 0.2305 0.2474 0.2047 −0.2243 −0.395 −0.4567

Table 9. The performances of the model.

S005 No_F1 No_F3 No_F1_F3

SVM 93.83 92.33 93.5 93.33
CART 89.16 90 90.45 90.41
k-NN 92.5 91.83 92.24 91

Note: No_F1 represents the features set, except F1; No_F3 represents the features set, except F3; and
No_F1_F3 represents the features set, except F1 and F3.

The three fault diagnosis models of PMDCMs is aimed at proving the effectiveness
of the multi-segment features extraction method. As we can see in Table 10, the accuracy
of the fault diagnosis model using the multi-segment (S005 feature set) features reach
up to 93.83%, 89.16%, 92.5%, respectively, for more a intuitive explanation and deeper
understanding of the effect of the proposed multi-segment feature extraction method. In
this paper, 1200 samples are divided into two groups. One is used to train and the other is
used to test. Figure 7 shows the confusion matrices of three fault diagnosis models, and
the x-axis corresponds to the predicted status, while the y- represents the actual status. In
Figure 7a, the confusion matrix utilizing the SVM-based (C∗ = 8 and σ2

∗ = 0.0156) fault
diagnosis model of PMDCMs is shown. In Figure 7b, the confusion matrix utilizing the
CART-based fault diagnosis model of PMDCMs is shown. In Figure 7c, the confusion
matrix utilizing the k-NN-based fault diagnosis model of PMDCMs is shown. It can be seen
from the three confusion matrices that most samples were correctly classified; however,
they still have a small mounts class 5 predicted as class 1 or class 2, class 1 predicted as
class 1, and class 2 predicted as class 1. As shown in Table 4, class 1 represents healthy,
class 2 represents slight noise, and class 5 represents shaft unbalance. There is no obvious
difference between class 1 and class 2; shaft unbalance only produces slight vibration and
no noise, so class 5 is close to class 1.
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Table 10. Testing results for single-segment features and multi-segment features.

A B C D E F G H Ave Multi

C∗ 64 256 2 128 4 4 4 4 8
SVM σ2

∗ 0.063 0.031 0.125 0.063 0.25 0.25 0.25 0.25 0.016
Acc 71.83 68.67 72.17 76.33 78.5 73.5 79.33 81.67 75.25 93.83 18.58

CART Acc 68.83 68.83 68.08 72.75 69.59 69.91 73.67 72.92 70.57 89.16 18.59
k-NN Acc 70.17 64.67 68.33 71.33 69.83 67.34 72.42 76.25 70.04 92.5 22.46

Ave 70.28 67.39 69.53 73.47 72.64 70.25 75.14 76.95 71.95 91.83 19.88

Note: Acc represents accuracy, unit (%); Ave represents average; and Multi represents multi-segment features.
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4.4. Performance of Single-Segment Features Model

To show the effectiveness of the multi-segment features (seventy-two-dimension), the
single segment (i.e., A, B, C, D, E, F, G, and H) features (nine-dimension), as shown in
Figure 2, are used for model construction and evaluation, respectively. The detailed process
is the same as that in Section 4.3. The testing results for each segment are listed in Table 10.

The best prediction performance of the SVM-based fault diagnosis model reaches up
to 81.76% based on H-segment features, followed by 79.33% based on G-segment features.
The best prediction performance of the CART-based fault diagnosis model reaches up to
73.67% based on G-segment features, followed by 72.92% based on H-segment features.
The best prediction performance of the k-NN-based fault diagnosis model reaches up to
76.25% based on H-segment features, followed by 72.42% based on G-segment features.
The SVM-, CART-, and k-NN-based models all achieved better prediction results on G or H
single-segment features than A, B, C, D, E, and F single-segment features. The reason for
this might be not only that G and H segments have longer durations than A, B, C, D, E,
and F segments but also that in the stable stage, they can have more stable features.

It can be seen from the data in Table 10 that the accuracy of the constructed SVM-
based fault diagnosis model using the single-segment features (nine-dimension) varies
from 68.67% to 81.67%, and the average accuracy is 75.25%. It can be found that the SVM-
based fault diagnosis model using multi-segment features (93.83%) has a better diagnostic
effect than using single-segment features (68.67~81.67%), and it increased by 18.58% on
average. The accuracy of the constructed CART-based fault diagnosis model using the
single-segment features (nine-dimension) varies from 68.08% to 73.67%, and the average
accuracy is 70.57%. It can be found that the CART-based fault diagnosis model using multi-
segment features (89.16%) has a better diagnostic effect than using single-segment features
(68.08~73.67%), and it increased by 18.59% on average. The accuracy of the constructed k-
NN-based (k = 5) fault diagnosis model using the single-segment features (nine-dimension)
varies from 64.67% to 76.25%, and the average accuracy is 70.04%. It can be found that the
k-NN-based (k = 5) fault diagnosis model using multi-segment features (92.5%) has a better
diagnostic effect than using single-segment features (64.67~76.25%), and it increased by
22.46% on average. Fault diagnosis of PMDCMs based on multi-segment features has better
performance than that based on single-segment features by utilized the SVM, CART, and
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k-NN classifier. Compared with the single-segment features-based fault diagnosis models,
multi-segment features-based fault diagnosis models have more features. However, in our
opinion, the more important reason is that the multi-segment features reflect the potential
information between different single segments.

5. Discussion

As mentioned in the introduction, in order to construct a stable and efficient fault
diagnosis of PMDCMs, this paper presents a new multi-segment feature extraction method
based on the time domain features. As we can see in Table 10, it can be found that
the presented multi-segment feature extraction method performs better than the single-
segment feature extraction method on the SVM, CART, and k-NN, respectively. A possible
explanation for this might be that multi-segment features not only reflect the signals’ time
domain feature but also reflect the correlation between different segments. The multi-
segment feature extraction method may not be suitable for all kinds of signals; in other
words, the multi-segment feature extraction method suitable for these signals, which have
large fluctuations in different time periods. The proposed multi-segment feature extraction
method provides a reliable fault diagnosis of PMDCMs.

In future research, frequency domain and time-frequency domain features should be
considered. Feature dimensionality enhancement and feature dimensionality reduction
methods should be taken into account, such as principal component analysis (PCA) and ker-
nel principal component analysis (KPCA). The proposed multi-segment feature extraction
method is not limited to the time series history of 2 s, which can be optimized according to
the raw signal, and not limited to fault diagnosis, which can be utilized in pre-diagnosis.
In the future work, optimization of the interval and number of single segments for the
time series not being a stationary signal will be a significant study. Deep learning (DL) will
be utilized for fault diagnosis of PMDCMs, such as convolutional neural network (CNN),
recurrent neural network (RNN), and transfer learning. In addition, the combination of DL
and attention mechanisms will also be carried out for further improving the fault diagnosis
effect of PMDCMs.

6. Conclusions

In this paper, a novel multi-segment feature extraction method has been presented,
which is utilized for fault diagnosis of PMDCMs. The main conclusions are as follows:

(1) Multi-segment features-based fault diagnosis models have better performance than
single-segment features-based fault diagnosis models.

(2) A combination of the grid-search method and k′-fold cross-validation is helpful to
determine the parameters of the SVM.

(3) Normally, the SVM-based model has better fault diagnosis performance than the
CART-based and k-NN-based models for fault diagnosis of PMDCMs.

The effectiveness of the presented multi-segment feature extraction is validated
through the fault diagnosis experiment of PMDCMs. This paper provides theoretical
guidance for multi-segment feature extraction and fault diagnosis of PMDCMs.
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