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Abstract: Two-wave with diffuse power (TWDP) is one of the most promising models for the de-
scription of small-scale fading effects in 5G networks, which employs mmWave band, and in wireless
sensor networks deployed in different cavity environments. However, its current statistical character-
ization has several fundamental issues. Primarily, conventional TWDP parameterization is not in
accordance with the model’s underlying physical mechanisms. In addition, available TWDP expres-
sions for PDF, CDF, and MGF are given either in integral or approximate forms, or as mathematically
untractable closed-form expressions. Consequently, the existing TWDP statistical characterization
does not allow accurate evaluation of system performance in all fading conditions for most modula-
tion and diversity techniques. In this regard, physically justified TWDP parameterization is proposed
and used for further calculations. Additionally, exact infinite-series PDF and CDF are introduced.
Based on these expressions, the exact MGF of the SNR is derived in a form suitable for mathematical
manipulations. The applicability of the proposed MGF for derivation of the exact average symbol
error probability (ASEP) is demonstrated with the example of M-ary PSK modulation. The derived
M-ary PSK ASEP expression is further simplified for large SNR values in order to obtain a closed-form
asymptotic ASEP, which is shown to be applicable for SNR > 20 dB. All proposed expressions are
verified by Monte Carlo simulation in a variety of TWDP fading conditions.

Keywords: TWDP fading channel; MGF; M-ary PSK; ASEP

1. Introduction

Due to the tremendous growth of Internet data traffic, bandwidth requirements have
become especially pronounced. To cope with these requirements, the fifth generation (5G)
mobile network is emerging as the latest wireless communication standard. At the heart of
this technology lies the use of the millimeter wave (mmWave) frequency band.

However, a signal propagating in a mmWave band exhibits unique propagation prop-
erties, making traditional small-scale fading models inadequate and thus demanding more
generalized models. To address this issue, Durgin et al. [1] proposed the two-wave with
diffuse power (TWDP) model, which assumes that the complex envelopes consist of two
strong specular components and many weak diffuse components. As such, it encom-
passes Rayleigh, Rician, and two-ray fading models as its special cases [1], simultaneously
enabling modeling of both worse-than-Rayleigh and Rician-like fading conditions.

In the last twenty years, the TWDP model has been extensively studied
theoretically [2–20]. Additionally, its existence is supported by practical evidence both in
mmWave 5G communication networks equipped with directional antennas or arrays [21]
and in wireless sensor networks deployed in cavity environments [22]. Namely, the appli-
cability of TWDP for modeling mmWave outdoor radio propagation channel is verified by
ray-tracing simulation for modeling train-to-infrastructure wireless communications [23]
and for modeling vehicle-to-vehicle communication in urban environments at 60 GHz [24].
Two indoor mmWave measurement campaigns performed in [25] revealed that the TWDP
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model is also adequate for modeling indoor mmWave communication. Therewith, the
TWDP fading model is also the best choice for modeling near-body mmWave channels,
both in front and back regions [26]. In addition, TWDP fading conditions are also met
in static sensor networks with their nodes placed within cavity environments, such as
aircrafts and buses [22] and abroad a large transport helicopter [27].

However, despite the fact that there are more than 5000 TWDP related results on
Google, to the best of the authors’ knowledge, there are at least two factors that motivate
further studies of TWDP fading and its performance:

1. Existing TWDP parameterization is not in accordance with the model’s underlying
physical mechanisms,

2. Analytical forms of the existing expressions for PDF and MGF disallow accurate
evaluation of the effects of TWDP fading on system performance.

To describe TWDP fading, Durgin et al. [1] proposed two parameters, K ≥ 0 and
0 ≤ ∆ ≤ 1, which reflect the relationship between specular and diffuse components, and be-
tween the specular components themselves, respectively. However, from the definition of
parameter ∆, it is obvious that it introduces a nonlinear relationship between magnitudes of
specular components, which, according to the underlying physical mechanisms of TWDP,
has to be linear. Consequently, for a significant range of values (0 ≤ ∆ ≤ 0.5), the effect
of ∆ increments on the system performance metrics (e.g., ASEP and outage probability)
is almost unobservable (in fact, from ([2], Figure 7) it can be seen that the corresponding
curves almost overlap for the considered range of ∆). This is obviously counterintuitive
considering the physical meaning attributed to the parameter ∆. It is thus essential to
examine the TWDP parameterization problem in depth.

Regarding TWDP PDF expressions, they are primarily proposed in integral ([1],
Equation (29)), ([1], Equation (32)), ([2], Equation (16)), and approximate ([1], Equation (17))
forms. Therefore, the exact evaluation of system performance metrics based on the existing
integral expressions is not mathematically tractable, disabling direct observation of TWDP
fading effects on system performance. Accordingly, the closed-form results of performance
evaluation (e.g., error and outage probability, etc.) are mostly obtained in approximate
forms [3–14], derived using the approximate PDF expression. However, it has been shown
that analysis based on an approximate PDF expression is accurate only for a narrow
range of K and ∆ values [1,15], which can only be used for the description of limited
fading conditions.

To overcome these limitations, Rao et al. [16] proposed an alternative approach to
statistical characterization of TWDP fading based on the observation that the TWDP fading
model can be expressed in terms of a conditional underlying Rician distribution. Thus,
by invoking the observed similarities and the existing expressions of Rician fading, Rao et al.
derived a novel form of TWDP MGF expression ([16], Equation (25)). Thereby, in contrast to
previously derived approximate MGF expressions ([11], Equation (8)) ([5], Equation (12)),
the one proposed in [16] is given as a simple closed-form solution. However, this form is
also not suitable for mathematical manipulations, and consequently, for calculation of the
exact ASEP expressions for most modulation and diversity schemes. Accordingly, most of
the existing results regarding ASEP are provided in integral form, which may not always
be convenient for practical purposes [17]. The exceptions are ASEP expressions for M-ary
FKS and DBPSK modulations, derived in [2] and [16], respectively.

Recently, the exact infinite-series TWDP PDF expression was proposed ([17],
Equation (6)) and used for derivation of the exact infinite-series PDF expression of the ex-
tended generalized fluctuating two-ray (FTR) fading with arbitrarily distributed phases of
specular components ([18], Equation (22)). However, similarly to the exact MGF from [16],
the exact FTR PDF expression is used mostly for derivation of the exact ABEPs of binary
modulated signals [18,28,29], approximate ASEP for M-ary PSK modulation [19] and the
exact expression for QAM ASEP [20] expressed in terms of bivariate Meijer’s G function,
which is difficult to compute in common software packages (such as Matlab, Mathematica
and Maple) since it is not a built-in function [20].



Sensors 2021, 21, 7513 3 of 15

Accordingly, in order to accurately evaluate the effects of TWDP fading on error rate
performances, it is of tremendous importance to provide mathematically tractable PDF and
MGF expressions.

Considering the above, our contributions are as follows:

1. We proposed alternative TWDP parameterization, which is in accordance with the
model’s underlying physical mechanisms.

2. We introduced the exact convergent infinite-series TWDP envelope PDF and CDF
expressions (previously derived in [30,31]).

3. We derived the alternative exact form of SNR MGF based on the adopted CDF expres-
sion and proposed parameterization, which is shown to be suitable for mathematical
manipulations.

4. Based on the obtained MGF, we derived M-ary PSK ASEP in exact infinite-series form,
which is, to the best of our knowledge, the first such expression proposed to date.

5. We also derived asymptotic M-ary PSK ASEP as a simple closed-form expression,
which tightly follows the exact one for the practical range of SNR values, i.e., for
SNR > 20 dB.

The rest of the paper is structured as follows. In Section 2, the TWDP fading model
is introduced and statistically described using alternative envelope PDF and CDF expres-
sions, given in terms of newly proposed parameters. The alternative MGF of the SNR
expression is derived in Section 3. In Section 4, the applicability of the proposed MGF for
accurate performance analysis is demonstrated by deriving the exact and asymptotic M-ary
PSK ASEP expressions, which are then verified by Monte Carlo simulation. The main
conclusions are outlined in Section 5.

2. TWDP Fading Model

In the slow, frequency nonselective fading channel with TWDP statistic, the complex
envelope r(t) is composed of two strong specular components: LOS v1(t) and reflected
v2(t), and many low-power diffuse components treated as a random process n(t):

r(t) = v1(t) + v2(t) + n(t)

= V1 exp (jΦ1) + V2 exp (jΦ2) + n(t)
(1)

Specular components are assumed to have constant magnitudes V1 and V2 and uni-
formly distributed phases Φ1 and Φ2 in [0, 2π), while diffuse components are treated as a
complex zero-mean Gaussian random process n(t) with average power 2σ2. Consequently,
the average power of a signal r(t) is equal to Ω = V2

1 + V2
2 + 2σ2.

2.1. The Revision of Parameter ∆

Conventional parameterization of TWDP fading, originally proposed in [1], intro-
duced two parameters:

K ,
average specular power

diffuse power
=

V2
1 + V2

2
2σ2 (2)

∆ ,
peak specular power

average specular power
− 1 =

2V1V2

V2
1 + V2

2
(3)

Parameter K, (0 ≤ K < ∞), such as in the Rician fading model, characterizes TWDP
fading severity. Parameter ∆, (0 ≤ ∆ ≤ 1) for V1 ≥ 0, V2 ≥ 0, and V2 ≤ V1, implicitly
characterizes the relationship between the magnitudes of specular components. However,
the physical justification of the relationship between V1 and V2, introduced by the definition
of parameter ∆ in (3), is questionable. Namely, according to [32] “for 0 < ∆ < 1 there is
a nonlinear relation between the magnitude of the specular components V1 and V2, i.e., V2 =
V1(1−

√
1− ∆2)/∆. However, the physical facts suggest a different conclusion about the relation

between V1 and V2. In particular, according to the model for TWDP fading, specular components
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are constant, and they are a consequence of specific propagation conditions. Since an electromagnetic
wave is propagating in a linear medium, a natural choice to appropriately characterize the relation
between magnitudes V1 and V2 is given by Γ , V2/V1, where V2 ≤ V1. Seemingly, parameters
∆ and Γ are both motivated by physical arguments. However, they do not have the same level of
physical intuition.” Hence, since v2(t) is nothing but a reflection of an LOS component v1(t)
and both are propagating over the linear medium, the relation between their magnitudes
can be nothing but linear. Accordingly, in contrast to parameter ∆, suggested parameter
Γ—defined as a reflection coefficient Γ = V2/V1—does not violate the natural relation
between V1 and V2.

Based on the above, it is now necessary to investigate the impact of nonlinear ∆-based
parameterization of TWDP statistics.

Accordingly, parameters K and ∆ are written in terms of V2/V1, as:

K =
V2

1 + V2
2

2σ2 =
V2

1
2σ2

[
1 +

(
V2

V1

)2
]
= KRice(1 + Γ2) (4)

∆ =
2 V2

V1

1 +
(

V2
V1

)2 (5)

where Γ = V2/V1 and KRice = V2
1 /(2σ2) represent the Rician parameter K of a domi-

nant specular component (introduced in this analysis only in order to provide clearer
observations). Based on the above, parameter K is also expressed in terms of ∆, as:

K =
V2

1 + V2
2

2σ2 =
1

2σ2
2V1V2

∆
V1

V1
=

V2
1

2σ2
2
∆

V2

V1
=

= KRice2
1−
√

1− ∆2

∆2

(6)

Figure 1 illustrates the functional dependence of parameter ∆ versus V2/V1 (5). In the
same figure, the linear dependence of Γ on V2/V1 is also illustrated as a benchmark. From
Figure 1, it is evident that for 0 < V2/V1 < 1, ∆ differs Γ not only in value, but also in
terms of the character of their functional dependence on V2/V1. Consequently, when V2/V1
changes from 0.6 to 1, ∆ changes only between 0.9 and 1. In general, for 0 < V2/V1 < 1, ∆
is always greater than Γ.

Figures 2 and 3 illustrate the dependencies of the normalized parameter K (K/KRice)
on ∆ (6) and Γ (4), which are clearly very different. For ∆ ≤ 0.8, K vs. ∆ has a relatively
small slope, while for ∆ > 0.8, the slope is very sharp. In contrast, for 0 ≤ Γ ≤ 1,
the change in parameter K is relatively uniform. In other words, parameter Γ does not
change the character of the definition expression of parameter K (see (4)), while parameter
∆ completely changes its character (see (6)).

Consequently, although some analytical results obtained using K and ∆ can be cor-
rected by replacing parameter ∆ with Γ, using the relation ∆ = 2Γ/(1 + Γ2), parameteriza-
tion based on a nonlinear relationship between V1 and V2 causes anomalies in graphical
representations of PDF and ASEP expressions. Namely, corresponding ASEP curves are
indistinguishably dense spaced for the entire range of ∆ < 0.5, which can be clearly ob-
served from ([15], Figure 3) and ([2], Figure 7). In addition, the shapes of the corresponding
PDF curves for all ∆ < 0.5 are almost the same as the shape of a Rician PDF curve obtained
for ∆ = 0 and the same value of K, which is evident from ([1], Figure 7) and ([2], Figure 3).
Therefore, its obvious that ∆-based parameterization does not clearly reflect the impact of
the ration between V1 and V2 on the PDF shape and ASEP values.
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Figure 1. Dependence of ∆ and Γ on V2/V1.
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Figure 2. Dependence of K/KRice on ∆.
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Figure 3. Dependence of K/KRice on Γ.

Consequently, in most TWDP literature, PDF and ASEP curves are plotted only for
specific values of ∆, i.e., ∆ = 0.5 and ∆ = 1, for which the mentioned differences can be
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easily distinguished, thus avoiding graphical presentation and explanation of the results
for 0 ≤ ∆ ≤ 0.5.

On the contrary, within the expressions obtained by integration or derivation with re-
spect to parameter ∆ (e.g., expression for Cramer–Rao bound of a moment-based estimator,
etc.), simple replacement of ∆ with Γ can not be performed, since different parameteriza-
tions completely change the behavior of involved expressions. In these situations, it is
necessary to entirely reconsider existing TWDP and TWDP-related results.

Accordingly, considering conducted elaboration, TWDP fading in this paper will be
characterized by parameters K and Γ.

2.2. Envelope PDF and CDF Expressions

To provide a mathematically convenient tool for TWDP performance evaluation,
alternative exact envelope PDF and CDF expressions are proposed. Namely, it is no-
ticed that assumptions about statistical characteristics of a complex envelope in a TWDP
fading channel given in (1) are the same as those from [30,31] where the sum of signal,
cochannel interference, and AWGN is modeled. However, unlike the existing approximate
TWDP PDF and CDF expressions, PDF and CDF in [30,31] are given in the exact form.
Accordingly, using ([30], Equation (6)) and ([31], Equation (12)) and considering adopted
parameterization, we propose the following TWDP envelope PDF and CDF expressions:

fR(r) =
r

σ2 exp
(
− r2

2σ2 − K
) ∞

∑
m=0

εm(−1)m

× Im

(
2r
√

K
2σ2

1
1 + Γ2

)
Im

2r

√
K

2σ2
Γ2

1 + Γ2

Im

(
2K

Γ
1 + Γ2

) (7)

and

FR(r) =
r2

2σ2 exp
(
− r2

2σ2

) ∞

∑
m=0

(−1)m

m!

(
K

1 + Γ2

)m

× 1F1

(
1−m; 2;

r2

2σ2

)
2F1

(
−m,−m; 1; Γ2

) (8)

where 0 ≤ V2 ≤ V1, ε0 = 1, εm = 2 for m ≥ 1, Iν(·) is a modified ν-th order Bessel function
of the first kind, while 1F1(·; ·; ·) and 2F1(·, ·; ·; ·) are confluent and Gaussian hypergeometric
functions, respectively.

Note that the derived expressions ((7) and (8)) are given in terms of Bessel and
hypergeometric functions, which can be easily evaluated and efficiently programmed in
most standard software packages (e.g., Matlab, Maple and Mathematica) [18].

2.2.1. Special Cases of a TWDP Model

It is easy to show that (7) and (8) can be reduced to Rayleigh and Rician PDF and
CDF expressions.

The Rayleigh model assumes the absence of specular and the presence of only diffuse
multipath components. It can be obtained from TWDP fading for V1 = V2 = 0, i.e., K = 0.
Thus, by applying K = 0 into (7) and (8), with Iν(0) = 0 for ν 6= 0 and I0(0) = 1, (7) and (8)
can be reduced to Rayleigh PDF and CDF expressions:

fR(r)
∣∣∣∣
K=0

=
r

σ2 exp
(
− r2

2σ2

)
(9)

FR(r)
∣∣∣∣
K=0

=
r2

2σ2 exp
(
− r2

2σ2

)
(10)

respectively.
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Rician fading assumes the presence of one specular component and many diffuse
components. It can be obtained from TWDP fading for V2 = 0, i.e., Γ = 0. In this case, (7)
can be reduced to a well-known Rician PDF expression:

fR(r)
∣∣∣∣
Γ=0

=
r

σ2 exp
(
− r2

2σ2 − K
)

I0

(
2r

√
K

2σ2

)
(11)

Additionally, by inserting Γ = 0 into (8) and considering that 2F1(·, ·; ·; 0) = 1 and
1F1(1; 2; x) = (ex − 1)/x, TWDP CDF reduces to:

FR(r)
∣∣∣∣
Γ=0

= 1− exp
(
− r2

2σ2

)
+

r2

2σ2 exp
(
− r2

2σ2

)
×

∞

∑
m=1

(−1)m

m!
Km

1F1

(
1−m; 2;

r2

2σ2

) (12)

which, according to ([33], Equation (8.352.1)), ([33], Equation (8.972.1)) and ([34], Equa-
tion (12)), takes the well-known form of a Rician CDF, expressed in terms of the first-order
Marcum Q-function Q1(·, ·) [2]:

FR(r)
∣∣∣∣
Γ=0

= 1−Q1

(√
2K,

r
σ

)
, (13)

2.2.2. Convergence Analysis

It is also easy to show that (7) and (8), as infinite-series expressions, are convergent.
To prove convergence of (7), the d’Alembert’s ratio test is used. According to the test,

the infinite-series ∑k ck is convergent if the limiting expression limk→∞ |ck+1/ck| is smaller
than 1. Thus, the ratio test applied to (7) yields the following expression:

lim
k→∞

∣∣∣∣ ck+1
ck

∣∣∣∣ = lim
k→∞

[
Ik+1

(
2r
√

K
2σ2

1
1+Γ2

)
Ik

(
2r
√

K
2σ2

1
1+Γ2

)
×

Ik+1

(
2r
√

K
2σ2

Γ2

1+Γ2

)
Ik+1

(
2K Γ

1+Γ2

)
Ik

(
2r
√

K
2σ2

Γ2

1+Γ2

)
Ik

(
2K Γ

1+Γ2

) ] (14)

which can be calculated using ([35], Equation (3.12)) as:

lim
k→∞

∣∣∣∣ ck+1
ck

∣∣∣∣ = lim
k→∞

[ (
2r
√

K
2σ2

1
1+Γ2

)
(

2r
√

K
2σ2

1
1+Γ2 + k

)
×

(
2r
√

K
2σ2

Γ2

1+Γ2

)
(

2r
√

K
2σ2

Γ2

1+Γ2 + k
)

(
2K Γ

1+Γ2

)
(

2K Γ
1+Γ2 + k

)] = 0 < 1

(15)

The above expression shows that the series in (7) is convergent.
Similarly, the convergence of CDF (8) is also proven using d’Alambert’s ratio test,

with its kth term denoted by ck. Since 2F1
(
−k,−k; 1; Γ2) is kth order polynomial, due to ([33],

Equation (8.822-4), (8.911-1), (8.917.1)), it can be written as ((2k)!(1 + Γ2)k)/(2k(k!)2) +
O(xk−1). Furthermore, following ([33], Equation (8.970-1), (8.972-1)), it is evident that

1F1

(
1− k; 2; r2

2σ2

)
is also a kth order polynomial dominated by 1/k when r2 ≤ 2σ2 and
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by [((−r2)/(2σ2))(k−1)]/k! when r2 > 2σ2. Considering the above, d’Alambert’s ratio
test yields:

lim
k→∞

∣∣∣∣ ck+1
ck

∣∣∣∣ =
limk→∞

(
K r2

2σ2
(2k+1)
(k+1)3

)
, r2 > 2σ2

limk→∞

(
K (2k+1)k

(k+1)3

)
, r2 ≤ 2σ2

which is always equal to zero and thus smaller than one. Therefore, the series in (8) is
also convergent.

2.2.3. Graphical Results

In order to investigate the accuracy of (7) and (8) and their applicability for mod-
eling various fading conditions, Equations (7) and (8) are plotted for different sets of
TWDP parameters.

Equation (7) is used to plot the normalized envelope PDF, fR(r/
√

Ω), for different
fading conditions: Rician with K = 8 and Γ = 0; Rayleigh with K = 0; and others,
with K = 8 and Γ = 0.5; and K = 14 and Γ = 1. Figure 4a depicts these curves together
with corresponding normalized histograms created by Monte Carlo simulation. All curves
are obtained by limiting truncation error below 10−6, i.e., by employing up to 35 summation
terms in all tested cases. Each normalized histogram, composed of 20 equally spaced bins,
is computed independently by generating 106 samples for the considered fading conditions.
Figure 4a shows matching results between the analytical and simulated approaches, thus
validating the proposed PDF expression in diverse fading conditions.

Figure 4b compares normalized envelope CDF curves FR(r/
√

Ω) obtained from (8)
with normalized cumulative histograms. Similarly, Monte Carlo simulation is used to
generate histograms with the same set of parameters as in the PDF comparison. Analytically
obtained curves are generated by employing up to 118 summation terms in order to achieve
a truncation error of less than 10−26. Normalized cumulative histograms are created from
106 samples divided into 20 bins. The conducted comparison shows matching results
between the analytical and simulated approaches, thus demonstrating the applicability of
(8) for accurate calculation of CDF values in different fading conditions.

MonteCarlo Simulation
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3. Alternative form of TWDP SNR MGF Expression

In this section, the alternative form of the MGF of the SNR is derived based on the
proposed CDF expression. Here, the well-known relationship between CDF and MGF is
used ([36], Equation (1.2)):

Mγ(s) =
∫ +∞

0
fγ(γ) exp (sγ)dγ

= L{ fγ(γ); γ,−s}

= L
{

d
dγ

Fγ(γ); γ,−s
}

= −sL{Fγ(γ); γ,−s} − Fγ(γ = 0)

= −sL{Fγ(γ); γ,−s}

(16)

whereL{h(t); t, p} ,
∫ ∞

0 h(t)e−pt dt represents Laplace transform of h(t) from the t-domain
into the p-domain, and Fγ(γ) is the CDF of the SNR. Fγ(γ) is obtained from (8) according
to the random variable transformation γ = r2 Es

N0
, as:

Fγ(γ) =
γ

γ0
(1 + K) exp

(
− γ

γ0
(1 + K)

) ∞

∑
m=0

(−1)m

m!

×
(

K
1 + Γ2

)m

1F1

(
1−m; 2;

γ

γ0
(1 + K)

)
2F1

(
−m,−m; 1; Γ2

) (17)

where γ0 = 2σ2(1 + K) Es
N0

is the average SNR, Es denotes symbol energy, and N0/2 is the
power spectral density of the white Gaussian noise.

For simplicity, (17) is expressed in the following form:

Fγ(γ) =
∞

∑
m=0

AγBm exp(−Aγ)1F1(1−m; 2; Aγ) (18)

where Bm =
(
−K/(1 + Γ2)

)m
2F1
(
−m,−m; 1; Γ2)/m! and A = (1 + K)/γ0. Based on ([37],

Equation (07.20.16.0001.01)), (18) is further simplified as:

Fγ(γ) =
∞

∑
m=0

AγBm1F1(1 + m; 2;−Aγ) (19)

Laplace transform of (19) is then obtained using ([38], Equation (3.35.1-2)) as:

L{Fγ(γ); γ, s} =
∞

∑
m=0

ABm

s2 2F1

(
1 + m; 2; 2,−A

s

)
(20)

which, according to ([37], Equation (07.23.03.0080.01)), can be expressed in the follow-
ing form:

L{Fγ(γ); γ, s} =
∞

∑
m=0

ABm

(A + s)2

(
s

A + s

)m−1
(21)

Finally, by combining (16) and (21), the MGF is derived as:

Mγ(s) =
1 + K

1 + K− sγ0

∞

∑
m=0

1
m!

(
K

1 + Γ2

)m( γ0s
1 + K− sγ0

)m

2F1

(
−m,−m; 1; Γ2

)
(22)

which represents an alternative form of the exact TWDP MGF of the SNR.
It can be proven that (22) can be easily transformed into the well-known TWDP MGF

expression form ([16], Equation (25)) (originally given in terms of K and ∆). Namely,
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by using the identity between the Gaussian hypergeometric function and the Legendre
polynomial given by ([39], Equation (15.4.14)), as well as the identity between the Legendre
polynomial and the first-kind zero-order Bessel function given by ([40], Equation (0.6)),
and after some simple manipulations, it can be shown that:

∞

∑
m=0

1
m!

am
2F1(−m,−m; 1; b) = exp (a + ab)I0

(
2a
√

b
)

(23)

Therefore, by using (23), (22) can be written as:

Mγ(s) =
1 + K

1 + K− γ0s
exp

(
γ0Ks

1 + K− γ0s

)
I0

(
2Γ

1 + Γ2
γ0Ks

1 + K− γ0s

)
(24)

which is the same expression as the verified SNR MGF from [16], only expressed in terms
of K and Γ.

Although simple, the analytical form of MGF expressed by (24) has not been often used
for error rate performance evaluation in TWDP fading channels. The main disadvantage
with this expression is its unfavorable analytical form for mathematical manipulations. In
contrast, the analytical form of MGF as expressed by (22) enables derivation of the exact
expressions for the performance evaluation in a variety of TWDP fading conditions.

4. Error Probability of M-ary PSK Receiver in TWDP Fading Channel
4.1. The Exact M-ary PSK ASEP Expression

This section demonstrates the applicability of the proposed TWDP SNR MGF (22)
for derivation of the exact M-ary PSK ASEP expression, where M represents the order of
PSK modulation.

M-ary PSK ASEP in a TWDP fading channel can be determined from ([36],
Equation (5.78)):

Ps(γ0) =
1
π

∫ π− π
M

0
Mγ

(
−

sin2 π
M

sin2 θ

)
dθ (25)

whereMγ(·) represents the MGF of the SNR given in (22). Accordingly, Equation (25) can

be expressed as Ps(γ0) = 2I|
π
2
0 − I|

π
M
0 , where I represents the indefinite integral defined as:

I =
1
π

∫
Mγ

(
−

sin2 π
M

sin2 θ

)
dθ

=
1
π

∞

∑
m=0

1
m!

(
K

1 + Γ2

)m

2F1

(
−m,−m; 1; Γ2

)
×
∫ ( 1 + K

1 + K− γ0s

)(
γ0s

1 + K− γ0s

)m
dθ

∣∣∣∣∣
s=−

sin2 π
M

sin2 θ

(26)

which can be solved using Wolfram Mathematica as:

I =
1

3π

1 + K
γ0

∞

∑
m=0

(−1)m

m!

(
K

1 + Γ2

)m sin3 θ

sin2 π/M

× AF1

(
3
2

;
1
2

, 1 + m;
5
2

; sin2 θ,−1 + K
γ0

sin2 θ

sin2 π
M

)
× 2F1

(
−m,−m; 1; Γ2

)
, for 0 ≤ θ ≤ π

2

(27)
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where AF1(·; ·, ·; ·; ·, ·) is an Appell hypergeometric function. Considering the above, the in-
tegral in (25) can be solved as:

Ps(γ0) =
sin π

M
3π

1 + K
γ0

∞

∑
m=0

1
m! 2F1

(
−m,−m; 1; Γ2

)
×
(
−K

1 + Γ2

)m
[

3π

2 sin3 π
M

2F1

(
3
2

, 1 + m; 2;− 1 + K
γ0 sin π

M

)
−AF1

(
3
2

;
1
2

, 1 + m;
5
2

; sin2 π

M
,−1 + K

γ0

)] (28)

which represents M-ary PSK ASEP given as the exact analytical expression.
Similarly as in the cases of PDF and CDF expressions, derived M-ary PSK ASEP (28)

is also given in terms of standard mathematical functions, which can be easily evaluated
and efficiently programmed in standard software packages [18].

4.2. Asymptotic Expression of M-ary PSK ASEP

To gain further insight into the TWDP M-ary PSK ASEP behavior, the asymptotic ASEP
for large values of γ0 is derived. Furthermore, this allows us to relax the computational
complexity which occurs for large values of K.

Considering that AF1(a; b1, b2; c; z1, z) ∼ 2F1(a, b1; c; z1) and 2F1(a, b; c; z) ∼ 1 when
z −→ 0, Equation (28) for large values of γ0 can be expressed as:

Ps(γ0) ≈
sin π

M
3π

1 + K
γ0

∞

∑
m=0

(
−K

1+Γ2

)m

m! 2F1

(
−m,−m; 1; Γ2

)
×
[

3π

2 sin3 π
M
− 2F1

(
3
2

,
1
2

;
5
2

; sin2 π

M

)] (29)

Equation (29) can be further simplified using the identity ([41], p. 24) and Equation (23),
as:

Ps(γ0) ≈
1 + K
2πγ0

π − π
M + 1

2 sin 2π
M

sin2 π
M

e−K I0

(
2ΓK

1 + Γ2

)
(30)

which represents a simple, closed-form asymptotic M-ary PSK ASEP expression. By
inserting Γ = 0 and K = 0 into (30), the asymptotic expression for M-ary PSK ASEP in
the TWDP fading channel takes the well-known form of asymptotic ASEP expressions in
Rician ([42], Equation (62)) and Rayleigh ([43], Equation (9)) fading channels, respectively:

Ps(γ0)

∣∣∣∣
Γ=0
≈1 + K

2πγ0

π − π
M + 1

2 sin 2π
M

sin2 π
M

e−K (31)

Ps(γ0)

∣∣∣∣
K=0
≈ 1

2πγ0

π − π
M + 1

2 sin 2π
M

sin2 π
M

(32)

4.3. Numerical Results

In order to validate the conducted error performance analysis and to justify the
proposed parameterization, this section provides a graphical interpretation of analytically
derived M-ary PSK ASEP and its comparison to results obtained by Monte Carlo simulation.
Different modulation orders and TWDP parameters are investigated.

Figure 5a–d illustrate the exact (28) and the asymptotic (30) ASEP for 2-PSK, 4-PSK,
8-PSK, and 16-PSK modulations for a set of previously adopted TWDP parameters. ASEP
curves, obtained from (28) by limiting truncation error to 10−6, i.e., by employing up to
78 summation terms, are compared with those obtained using Monte Carlo simulations
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generated with 106 samples. Matching results between the exact and simulated ASEP,
as well as between the exact and high-SNR asymptotic ASEP, can be observed for the
considered modulation orders and the set of TWDP parameters. Accordingly, derived
ASEP expressions can be used to accurately evaluate the error probability of the M-ary PSK
receiver for all fading conditions implied by the TWDP model.
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Figure 5. Exact (solid line) and asymptotic (dashed line) expressions of TWDP ASEP for (a) 2-PSK, (b) 4-PSK, (c) 8-PSK and
(d) 16-PSK modulations compared with Monte Carlo simulation results (dots).

Based on the above, a comparison of error performance of channels with different
fading severities is also performed following Figure 5a–d. Clearly, the signal in the fading
condition characterized with K = 14, Γ = 1 exhibits worse performance compared to the
Rayleigh fading channel (K = 0), thus representing a signal in near hyper-Rayleigh fading
conditions. It also can be observed that ASEP in fading conditions described with the same
value of K increases with increasing Γ, indicating that signal performance significantly
degrades in channels with Γ = 0.5 with respect to those in typical Rician channels (Γ = 0).

Figure 6 illustrates the effect of proposed parameterization on 2-PSK ASEP curves
in the TWDP fading channel with K = 6. Obviously, Γ-based parameterization solved
the problem of densely-spaced ASEP curves observed for the entire range of ∆ between 0
and 0.5, enabling us to clearly and unequivocally observe the impact of the ratio between
specular components on ASEP values.
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Exact ASEP , eq. H28L
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Figure 6. BPSK ASEP in TWDP channel for K = 6 and different values of parameter (a) ∆ (b) Γ.

5. Conclusions

This paper proposed a novel analytical characterization of TWDP fading channels
achieved by introducing physically justified TWDP parameterization and exact PDF and
CDF expressions, and by deriving the alternative form of the exact SNR MGF expression.
Benefits of the proposed parameterization are demonstrated on TWDP PDF and ASEP
graphical interpretations. A derived MGF is used for derivation of the exact M-ary PSK
ASEP expression, which can be used to accurately evaluate the error performance of M-ary
PSK in various fading conditions.
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