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Abstract: To study the law that governs the complex movements of the mechanism in the process of
automatic weapon operation, the velocity tracking test technology of photon Doppler velocimetry
is introduced to accurately measure velocity, displacement and acceleration, on the condition that
there are long displacement and rapid velocity change. In the traditional way, out of interference
signal time-frequency (TF) transformation draws TF distribution, and then by modulus maxima
frequency extraction, comes to the law of velocity change. Due to the influence resulting from the
change of fundamental signal as well as that of light intensity signal in the test, based on the TF
distribution obtained by TF transformation, the traditional modulus maxima frequency extraction
can extract frequency signals, but they show abnormal sudden changes at some moments, making
the velocity discontinuous, unsmooth and unreal, which brings obvious errors to the subsequent
calculation of acceleration and accurate displacement. Addressing the above-mentioned problems,
this paper proposes a ridge extracting correction algorithm based on modulus maxima frequency
extraction; this method, based on a large number of experiments where rodless cylinders are used to
simulate the motion of a gun automatic mechanism, conducts a detailed calculation and analysis
of the experimental results. A comparison of the two algorithms’ processing results, in terms of
the speed, displacement and acceleration, suggests that the ridge extracting correction algorithm
successfully corrects the frequency selection error, which draws a more continuous and, therefore,
effective curve of the velocity change, and by so doing, the error of the displacement test (within
1.36 m displacement) is reduced from more than 3.6% to less than 0.58%, and the uncertainty dropped
97.07%. All these show that the accurate measurement of velocity, displacement and acceleration,
with sudden and rapid velocity changes considered, is realized successfully.

Keywords: photonic Doppler velocimetry; ridge extracting correction algorithm; large displacement
speed measurement

1. Introduction

Because of the explosive influence and mechanical coupling effects, there are complex
laws of impact, friction and vibration in the velocity tracking test, such as the motion law of
the gun automatic mechanism and the velocity change of the gun back seat. Therefore, it has
the characteristics of rapid changes in velocity, short periods and long displacements. At
present, target velocity tracking test methods include high-speed photography, microwave
radar and laser Doppler velocity measurement. Among them, microwave radar has poor
directivity and needs a relatively large moving surface to receive the reflected signal. High-
speed photography often fails to capture objects and suffers from image blurring and image
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oversaturation. Photonic Doppler velocimetry (PDV) only needs a single light pointed
on the object surface to be measured and obtains the speed according to the return light
Doppler frequency shift interference fringes. It has the advantages of high precision, high
reliability, and reusability. Compared with the traditional laser speed measurement system,
the PDV [1–5] speed measurement system has the advantages of strong anti-disturbance
ability, large speed measurement range, good robustness of measurement results, etc.,
and is more suitable for vibration, impact and other measurement occasions with low
signal-to-noise ratio and poor signal quality, such as high temperature, high speed and
high pressure [6]. Since the year 2004 when the conventional PDV system was proposed
by O.T. Stand using a three-port circulator, PDV systems have evolved rapidly in four
aspects: larger velocity range, higher time resolution, higher sensitivity, and multi-point
measurements. For example, in 2019, J.G. Mance and B.M. La Lone et al. [7] proposed
time-stretched PDV, which transfers spectral information to the time domain and there
it, by means of fast photodetectors and digitizers, records data quickly. In 2020, Yohan
Barbarin [4] built a 16-channel multiplexed crosstalk-free multiplexed PDV (MPDV), which
reduces the total number of fiber components through WDM and also overcomes the
crosstalk issues caused by reducing the mesh size. In 2021, Chu [8] constructed a time-
lens to extend the dynamic range of the PDV system, called the time-lens PDV system,
which successfully reduces the frequency range from 120 GHz to 12 GHz, extending the
speed measurement range by 10 times; and it is suitable for ultra-high speed. In 2021, A.V.
Pavlenko et al. [9] constructed a hybrid interferometric system for measuring the surface
velocity of targets in shock wave experiments. The system integrates an all-fiber velocity
interferometry system for any reflector with a PDV system. This hybrid interferometric
scheme makes it possible to measure the surface velocity at the same point, simultaneously
with two independent devices. Unlike the issues faced by the above-mentioned methods,
the problem we face is how to select the correct signal by avoiding harmonic interference
in the STFT results of a single point test; obviously for this the above-mentioned methods
do not work.

Signal demodulation is an important part of the PDV system. Its purpose is to
demodulate the velocity information of the measured object from the Doppler signal with
considerable noise. At present, there are four demodulation methods [10–17] for the signal
of a PDV system: the fringe method, short-time Fourier transform (STFT) method, wavelet
transform method [18,19], and phase demodulation method. In 2012, Song. and Wu.
et al. [20] discussed the performance of the STFT and the continuous wavelet transform
(CWT) in processing fast-changing low-speed fringe signals measured by PDV through
experiments. In the test based on the Kolsky-bar, both methods show effectiveness of
processing the longitudinal velocity signal of the bar. However, the CWT cannot correctly
analyze the radial velocity of the impact sample, which indicates that the CWT is sensitive
to background noise, and the STFT has strong robustness in extracting low Signal to Noise
Ratio (SNR) waveforms. In 2019, Dai. et al. [21] discussed the principles, characteristics
and applicable conditions of the four demodulation methods: the fringe method, phase
demodulation method, STFT method and wavelet transform method based on the principle
of a PDV system. The principle of the fringe method is simple, and the demodulation
process is reliable, but the calculation steps are cumbersome, and the demodulation error is
serious when the fringe is sparse. The wavelet transform has an adjustable window width
and high TF resolution, but its disadvantage is that the wavelet basis function cannot be
changed after it is determined, and the choice of the wavelet basis function depends largely
on experiments and experiences; thus, it is uncertain. The phase demodulation method
has high resolution, but it requires high signal quality and easily introduces quadrature
error. The STFT algorithm has the lowest complexity, the fastest operation speed and low
requirement for signal quality. Therefore, the STFT algorithm should be used to demodulate
the signal in the speed tracking test environment of the gun automatic mechanism, which
is characterized by long motion displacement and velocity jump, then the TF curve could
be extracted from the demodulated TF distribution.
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Owing to the effects of the fundamental signal, light intensity signal and noise, there
are always frequency jump phenomena that are not caused by acceleration when using the
STFT in actual tests, which causes obvious errors in the post calculation of acceleration and
displacement. Among all the postprocessing methods of STFT results, the synchrosqueez-
ing transform (SST) and the synchroextracting transform (SET) are commonly used. The
SST is to squeeze all TF coefficients into the instantaneous frequency (IF) trajectory. Differ
from the squeezing manner of SST, the main idea of SET is to only retain the TF information
of STFT results most related to time-varying features of the signal and to remove most
smeared TF energy, such that the energy concentration of the novel TF re-presentation can
be enhanced greatly. Both algorithms emphasize the energy enhancement but not finding
and correcting the wrong information [22]. At present, the methods that can correct the
error points of the frequency signal extracted by the modulus maxima frequency extrac-
tion (MMFE) method, are the curve fitting method, the interpolation method, the SAVER
algorithm [23] and the MeanShift algorithm [24]. Both the curve fitting method and the
interpolation method correct the velocity curve mutation term (jump point) according to
the algorithm after extracting the velocity curve, and neither of them can extract the real
velocity of the jump point. SAVER relies on importing and cropping data to the time and
velocity range of interest, and users can choose to manually crop spectrograms or set time
and velocity limits for more accurate, objective and fast PDV data analysis. SAVER was
generally unaffected by artifacts in the input spectrograms, but scatter in the extracted
results was seen to increase as the input signal quality turns worse. This method requires
manual selection and is computationally intensive, while the results are influenced by the
input signal, so it is unsuitable for the correction of speed values in large-stroke velocity
measurements. The MeanShift algorithm is based on the STFT of the original PDV signal,
the intensity threshold filtering and binarization of the generated TF matrix to obtain the
matrix, and then the connected domain is extracted from the data blocks in this matrix.
According to the constraint that the change of the slope of the trajectory cannot be greater
than a certain threshold, a search direction constraint chain table consisting of the center of
gravity of the matrix connected domain is given. Finally, because the MeanShift iterative
process has a feature that it always points to the direction with the largest increase in the
probability density function, the feature is utilized to perform a trajectory search of the
matrix for valid signals. A weight function associated with the change in the slope of the
trajectory is introduced to guide the search along the direction given by the search direction
constraint chain table. The algorithm is not suitable, because on the one hand it requires
filtering and binarization of the intensity, and on the other, it is complex and computation-
ally intensive, while the focus in the large stroke excitation velocity measurement is on the
velocity from the beginning to the end of the whole velocity change process.

Therefore, this paper proposes a new method called ridge extracting correction al-
gorithm (RECA), a ridge extracting correction algorithm based on STFT. This algorithm
completes FFT within a window length range, taking the frequency of the current FFT as
the center point, and uses a special weighting function to construct a frequency weighting
value. Therefore, when the next FFT is performed within a window length range, each
spectrum module is multiplied by the corresponding weighting value, and the frequency
corresponding to the maximum value of the new spectrum module is the frequency of
this FFT. This method solves the above mutation problem, making the speed curve of
the long stroke continuous velocity measurement more continuous, smoother and more
accurate, and provides the basis for the subsequent extraction of parameters (acceleration
and displacement).

2. System Theory Analysis
2.1. Optical Path Analysis and Design

Because the PDV is based on the Michelson interferometer model, there is a certain
requirement for the PDV system to couple the power of the signal light but no requirement
for imaging.



Sensors 2021, 21, 7520 4 of 17

According to the light intensity response principle of the photodetector, the interfer-
ence signal generated by the photodetector can be expressed as:

P(t) =
d
2

(
A2

0 + A2
1

)
+ dA0 A1 cos[(ω0 −ω1)t + (ϕ0 − ϕ1)] (1)

where d is the response coefficient of the system detector, A0 and A1 are the amplitudes
of the reference light and the signal light respectively, and ω0, ϕ0, ω1, and ϕ1 are the
initial angular velocity, initial phase, signal angular velocity, and signal phase, respectively.
Formula (1) shows that the expression (second term) contains effective information that
is only related to d, A0 and A1. Because the PDV optical path structure ensures that the
reference light has a stable signal intensity, even if the quality of the signal light is attenuated
due to the motion attitude of the object, optical parameters and coupling efficiency, the
signal-to-noise ratio of the interference signal can be ensured by increasing the signal
intensity of the reference light. The relationship between the frequency of the interference
signal and the moving speed of the object is as follows:

f =

∣∣∣∣ω0 −ω1

2π

∣∣∣∣ = 2u
λ0

(2)

where u is the velocity of the object moving in the opposite direction of the laser propagation
direction and λ0 is the laser wavelength. The detector with AC coupling output can filter
out the first DC component in Formula (1) and reduce the signal saturation.

In the practical application of PDV, because of the small numerical aperture of single-
mode fiber and the divergence angle of the laser beam from fiber aspherical lens coupling,
in the dynamic test, the effective coupling space of the coaxial optical system is severely
limited and is only limited within the paraxial region. To improve the coupling efficiency, a
micro prism infrared reflective film with 0.57◦ divergence angles is pasted on the surface of
the measured object. The diameter of the optical fiber aspherical lens was 3 mm, the output
laser was 60 mW, the spot size was 8.5 mm, as measured by an infrared photosensitive
detection card at a distance of 1.5 m from the lens surface, and the optical power was
48 mW. Place a reflecting film on the optical path and define the optical signal output from
the 3rd port of the circulator as static signal. When the distance between the lens and the
reflecting film is 150 cm, the optical power of the 3rd port static signal is 20–30 µW. The
static signal optical power can reach 260 µW at 30 cm. After Erbium Doped Fiber Amplifier
(EDFA) amplification and filtering, the response condition of the detector is satisfied. The
noise of the laser system and the detector is 8 mV. The SNR of the interference signal at
150 cm is measured by means of micro disturbance, and the result is 16 dB ≤ SNR ≤ 23 dB,
which meets the requirements of signal demodulation.

The system is designed as an all-fiber optical structure. In the method, light reflected
from the optic fiber end face interferes with the light returning from the tested objects,
namely, the heterodyne method, as shown in Figure 1. The 1550 nm laser with 14 mW
power of a 20 kHz narrow linewidth laser enters the circulator after being amplified by
an EDFA. An aspheric lens with a working distance of 300 mm is used to emit the laser
to the surface of the object to be measured, and the output laser power of the probe is
60 mW by using a space optical power meter. At the same time, a part of the reflected light
is generated at the connection between the circulator’s 2nd port and the aspheric mirror
as the reference light [25,26], the frequency of which is still f 0. The laser, with a shifted
frequency, is generated by the reflection of the object surface, which is called the signal
light, having a frequency change f d. The signal light is coupled to the circulator’s 2nd port
again through the aspheric mirror and enters the circulator’s 3rd port together with the
reference light. The interference signal light amplified by EDFA is filtered by the square
law detection of the photodetector and AC coupling output. Finally, the interference fringe
signal is recorded by an oscilloscope or by a data acquisition card, and the velocity signal
can be obtained through PC after data processing.
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Figure 1. Schematic diagram of the system light path structure.

In this system, the interferometer offers a common optical path for both signal light
and reference light (as shown in Figure 1), which has stronger anti-disturbance ability
than an interferometer with signal light and reference light passing through different
optical paths.

According to the above system design scheme, the velocity can be obtained by the
Doppler frequency shift formula:

u(t) =
λ0

2
( fd − f0) =

λ0

2
fm(t) (3)

where u(t) represents the function of velocity with time, λ0 represents the wavelength of
the laser, f 0 represents the laser frequency, f d represents the laser frequency with Doppler
frequency shift, and f m(t) represents the function of fringe frequency changing with time.

2.2. Signal Processing
2.2.1. Traditional Modulus Maxima Frequency Extraction Algorithm

The STFT method is adopted in the system. The STFT is an enhanced mathematical
method derived from the discrete Fourier transform (DFT), which is used to study the in-
stantaneous frequency and amplitude of local waves with time-varying characteristics [27].
The basic idea of the STFT is to assume that the nonstationary signal is a piecewise station-
ary signal, intercept the signal with a fixed width sliding window, perform an FFT for each
section of the signal, and obtain the spectrum of each section of the signal. The frequency of
each section of the signal is the frequency corresponding to the maximum of the spectrum
modules. The type and width N of a window, which directly affects the frequency resolu-
tion f res, should be taken into consideration before doing signal segmentation analysis. The
relation between N and f res can be described as:

fres =
fs

N
(4)

where f s represents the system sampling rate.
In the calculation, there is an Lov long overlap between the former and the latter

window, which can improve the time resolution of TF signal, making the TF curve more
continuous, and avoid occurring velocity jumping-points. Time resolution tres can be
described as:

tres =
N − Lov

fs
(5)

In addition, according to the characteristic that the energy distribution of laser in-
terference signal is relatively concentrated, the Hamming window with smaller sidelobe
component is used in this experiment to reduce the influence of spectrum leakage. The ac-
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tual frequency f of the analyzed signal can be obtained by the modulus maxima frequency
extraction (MMFE), the algorithm of which can be described as Equation (6):

ridgeline(t) = argmax
a∈R
|STFT(t, ω)| (6)

From Equation (6), the whole ridgeline can be extracted from STFT result, which could
be substituted into Equation (7) to get a time-frequency curve:

f (t) =
ridgeline(t)· fs

N
(7)

where fs is system sampling rate, N represents the number of points involved in the Fourier
transform. The velocity of the object is obtained as a function of time, u(t), over its entire
range of motion.

2.2.2. RECA Based on STFT

Due to the influence of the fundamental wave signal and light intensity signal changes,
after processing the interference signal data with the traditional MMFE, there are always
frequency jump points on the curve, simply because of incorrect frequency selection, even
though the acquired signal is relatively stable. Taking the whole movement process of the
gun automatic mechanism simulated by a rodless cylinder as an example, the speed curve
after the traditional MMFE is shown in Figure 2a.
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Figure 2. Comparison of the speed curve of the rodless cylinder throughout its motion. Speed curve
processed by (a) MMFE method and by (b) RECA method.

The traditional methods to solve this problem include interpolation and curve fitting,
but all of these algorithms add data points according to the trend of speed change after
calculation, which cannot reflect the real frequency of speed at the time of the frequency
jump. Therefore, the RECA is proposed to solve the problem of frequency jumps in the data
processing, making the calculation results more real and accurate, as shown in Figure 2b.

The main idea of the algorithm is to construct a special weighted function k(x), that is,
a constant function plus a Gaussian function. The form is as Follows (8):

k(x) = qb + qjde−(x−d f c)
2/2q2

jk (8)

where qb is the self-weight, that is, the value of the constant function; qjd is the weighted
degree, that is, the peak value of the Gaussian function; qjk is the weighted width, which
is the standard deviation of the Gaussian function, also known as the Gaussian RMS
width, and dfc is the frequency point selected in the last Fourier transform, which is the
intermediate frequency point of this transform, that is, the symmetric center point of the
Gaussian function. As shown in Figure 3, in the legend, the value of the self-weight qb is
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0.2, the value of the weighting degree qjd is 2, the value of the weighted width qjk is 500, and
the value of the intermediate frequency point dfc is 5348, forming the weighting coefficient
of each frequency energy value of the next STFT. The corresponding weighted distribution
values of this point are shown in the left part of Figure 3.
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The selection of each parameter in the equation above is recommended as follows.
The function of the self-weight qb is to retain part of the corresponding original values of
the spectral module signal corresponding to each frequency after FFT, that is, to multiply
the weight qb, to avoid the phenomenon that the actual signals are submerged by the value
weighted by the Gaussian function due to a frequency jump that is too large. The value of
qb is selected according to the strength of the effective signal and the interference signal in
the experimental test, and the value is between 0.1 and 0.2 according to experience. The
coefficient qjd is the weighting degree and the peak value of the Gaussian function. The
weighting effect is obvious in a certain range with dfc as the center and qjk as the width.
According to experience, the value is 10 times qb, that is, the value is 1 to 2; the coefficient
qjk is the weighted width, which determines the relative distribution range of the Gaussian
function, which is between 500 and 1000 based on experience. The three parameters above
can be adjusted relative to the actual signal interference.

The specific calculation method is as follows:
Step 1: Set each parameter of the weighting function qb, qjd, qjk and dfc, where dfc is the

correct frequency point extracted from the MMFE calculation after the last windowed FFT.
Step 2: Assuming that the number of points involved in FFT is L = 2n, {n|n > 0, n ∈N},

because the spectrum generated by FFT is conjugate symmetric, a row vector such as L/2
elements can be generated by weighted function Equation (8):

A = [a0, a1, · · · , aL/2−1]

In detail:

ai = k(i) = qb + qjd exp
[
−
(

i− d f c

)2
/2q2

jk

]
Thus, a column vector A composed of L/2 elements is generated.
Step 3: For a traditional FFT, define the first L/2 elements as a row vector B:

B = [b0, b1, · · · , bL/2−1]

Step 4: Row vector C is deduced from the row vector A and row vector B:

C = [c0, c1, . . . , cL/2−1]
= [a0 × b0, a1 × b1, . . . , aL/2−1 × bL/2−1]
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Step 5: The sizes of each value of the row vector are compared so as to reach the
maximum value. Setting the maximum value as cm, the final frequency of this algorithm is
f = m × fs/L, where fs is the system’s 200 MHz sampling rate and L is the number of points
participating in the Fourier transformation.

Step 6: The next calculation of the FFT frequency tracking algorithm of the next period
point (L) is started by returning to the first step. The dfc value of the next calculation is the
m value of this time.

Algorithm flow chart is shown as Figure 4.
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3. Experiment Construction and Result Analysis
3.1. Experimental Construction

In the experiment, the mechanical rodless cylinder is used as the velocity source to
replace the automatic mechanism motion of the gun, and the changing velocity in a long
displacement is measured by the PDV structure. The piston frame passes through the
fixing device to connect the piston and the slider together to drive the actuator fixed on
the slider to achieve reciprocating motion. In the experiment, a high-pressure gas pump
was connected to one end of the air hole, and a two-position three-way valve was used to
control the gas on-off. The test results show that the maximum speed of the sliding block
can reach 12 m/s–14 m/s when one end of the sliding block is filled with air.

In the experiment, a rodless cylinder was used. The length of the guide rail was
approximately 160 cm. A proximity switch was set near the air hole at one end. When the
slider was pushed away from the proximity switch by high-pressure gas, an external trigger
signal was generated. The effective movement length of the slider from the proximity
switch to the other end of the cylinder can reach 147 cm. To improve the efficiency of laser
reception, a reflective film is pasted on one side of the slider the structure of experimental
system is as shown in Figure 5.
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Figure 5. Block diagram of experimental system.

The slider of the air pump experiences four continuous processes: start-up, accelera-
tion, deceleration and impact. When the slider hits the bottom of the guide rail, the speed
does not return to zero immediately. The slider would vibrate for not only the support’s
vibration but also the slider’s rebounding, leading to a phenomenon in which the speed
would fluctuate after returning to zero and finally stop.The experiment site is as shown
in Figure 6.
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3.2. Analysis of Experimental Results
3.2.1. Calibration Analysis of Single Point Frequency Data

Analysis of Data Correction Process:
The experiment uses a 200 MHz sampling rate data acquisition card to collect 25 mil-

lion data points and uses the action of a proximity switch as the trigger. After collecting
the data, the traditional MMFE is used to process the collected data. According to the
results, the feasibility and operation method of correcting error frequency point selection
are analyzed. Single point correction will be done based on analysis results.

The figures above shows that the TF distribution obtained by the STFT (Figure 7a)
still have many energy components of other frequencies that interfere with the frequency
selection, making the TF curve obtained by the MMFE (Figure 7b) have several jumping
points. Magnify one of the incorrect frequency selection regions and we can get Figure 8:
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It can be seen from Figure 8a that the main energy trajectory weakens at around 0.1 s,
and the energy of other frequency points at the same time may exceed the value of the
main energy trajectory. At this time, if the frequency is extracted according to the MMFE,
the error will occur. Figure 8a is locally enlarged to obtain Figure 8b. It can be seen from the
figure that, owing to the changes in light intensity and other interferences, the main energy
trajectory becomes relatively weak. Necessary methods should be taken to strengthen
the wrong point’s energy, in other words, to make the energy value of this wrong point
stronger than other frequencies’ at the same time. We can obtain Figure 9b, the result after
using RECA.
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Figure 9. TF diagram obtained by using RECA. (a) the STFT result; (b) the RECA result.

In Figure 9a, data between 0.05 s and 0.16 s are corrected and then we could obtain
Figure 9b. It is obvious that there is little energy remaining except within the main trajectory.
Amplifying and observing the same region (as is shown in Figure 10a) selected before,
we found that although the enhanced energy is still weaker than other points on the
main trajectory, at the same time, the enhanced energy value is the strongest (as is shown
in Figure 10b).
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Extract frequency points through the MMFE and then obtain a TF curve as is shown
in Figure 11:
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Examples of Single Point Data Correction Calculation Method:
Firstly, appropriate STFT parameters should be determined according to the charac-

teristics of the experiment. The rodless cylinder is driven by compressed gas of 0.7 MPa
pressure. Due to the damping factor of the cylinder itself, the speed curve of the slider
is peak-like. The highest point of the speed appears in the middle part of the movement
process, and the maximum acceleration part appears before the slider hits the end of the
cylinder. Taking the TF curve in Figure 11 as an example, the motion time is about 0.15 s,
and the maximum speed is about 14 m/s. Taking 1/5000 of the maximum speed as the
speed resolution f res, which is 0.0028 m/s, and the corresponding frequency resolution
could be calculated as 3.613 kHz. According to Equation (4), we could conclude that
N ≥ 55,356. Since the premise of STFT is that the signal in the window is considered
approximately stable, N should be raised to a power of 2 and as close to 55,536 as possible,
for the closer the N is to 55,356, the higher the speed resolution is. The tres is determined
by the overlap length of the sliding window. To ensure the tres of the time-speed curve
and take into account the processing speed of the software, the overlap length of 55,536 is
used for calculation in this example; that is, the time resolution is 50 µs. Due to the concen-
trated energy of laser interference Doppler signal, the selection of window function type
should take into account the processing efficiency and ensure the low-frequency leakage
phenomenon. In this case, the Hamming window with a small side lobe component is
selected.

Take a set of data obtained in the actual test as an example. The window length of the
system is set to 65,536. The frequency obtained by the previous FFT is set to 13.22 MHz,
namely, the speed is 10.246 m/s. Generate energy weighting values at each frequency point
of the next FFT using point 13.22 MHz as the center point. In this case, the self-weighted
value is set to 0.1, the weighted value (the peak value of the Gaussian function) is set to 2,
and the weighted width is set to 720. Then the weighted coefficient distribution of the next
FFT spectrum modulus at each frequency point is shown in Figure 12a:

After obtaining the weighted values distribution, do FFT on the next set of data to
obtain the spectrum as shown in Figure 12b. Because the point A has the maximum energy
within the whole spectrum, the Figure 12b shows that the point A should be selected if we
adopt traditional MMFE algorithm, the frequency of which is 3815 Hz, meaning a velocity
of 0.03 m/s. The spectrum acquired after using RECA is shown in Figure 12c. It can be seen
from the comparison between Figure 12b,c that the energy of the interference frequency
(points near 0) far from the center point of 13.22 MHz has become very weak, so the range
of the selected frequency is concentrated near 14 MHz. The Figure 12c is amplified to
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Figure 12d, it can be seen that after the correction, according to the maximum extraction
frequency, the point will be selected at 13.11 MHz, that is, the speed of which is 10.16 m/s.
Comparing the last point’s velocity 10.246 m/s with the current 10.16 m/s, we can see that
it is obviously a deceleration process.
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3.2.2. Detailed Analysis of a Single Experiment Results

After collecting the complete motion waveform data with the data acquisition card,
the original waveform data is shown in Figure 13a; the whole TF diagram calculated
by the traditional STFT is shown in Figure 13b. From Figure 13, the TF change curve
obtained by the traditional MMFE, the velocity jump points can be clearly shown (i.e., the
corresponding frequency jump, in other words, the frequency selection error). Due to the
existence of such points, there is display error in the subsequent calculation of acceleration
and accurate displacement, so it is necessary to use the RECA to recalculate the original
data. The result calculated by the RECA is shown in Figure 13d. It can be seen from the
comparison graph that the curve obtained by the new algorithm is smoother and more
realistic than that obtained by the traditional algorithm.

In the process of the experiment, other relevant data obtained are also compared,
such as displacement and acceleration, as shown in Figure 13e,f, which correspond to the
displacement and acceleration of the test, respectively. The blue line in the figure represents
the result obtained by using the MMFE, and the red line represents the result obtained
by using the RECA. From the acceleration curve in Figure 13e, we can also see that the
acceleration curve obtained by using the traditional MMFE has huge a fluctuation and
jump at some micro points (as shown by the blue line), which is definitely wrong data for
the speed of normal moving objects. After using the RECA, the acceleration curve becomes
smooth and continuous. Therefore, the RECA can improve the stability of the system and
the reliability of data selection compared to those of the traditional STFT algorithm.
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3.2.3. Comparative Analysis of Multiple Experimental Results

After testing the whole process of rodless cylinders many times, the two algorithms
are used for processing. The results, including the original waveform, the processing
result curve of the traditional MMFE and the processing result of the RECA are shown
in Figure 14.
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From Figures 13–16, 6 different graphs compose each Figure: Graph (a) represents
the original waveform data; Graph (b) represents the TF distribution processed by STFT;
Graph (c) represents the TF curve processed by traditional MMFE; Graph (d) represents
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the TF curve obtained by using RECA to correct the region with frequency selection error;
Graph (e) and graph (f) represent the comparison between time-acceleration curve and
time-displacement curve obtained by two algorithms, respectively, the blue lines of which
show the data processed by the traditional MMFE, while the red lines show the data
processed by the RECA.
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According to our actual measurement results, the whole movement distance of the
cylinder is 1360 mm. The difference between the distances calculated by the traditional
MMFE and the actual distances range from 49 mm to 330 mm, while the difference between
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the results calculated by the RECA and the actual results is less than 8 mm, as shown in
Table 1. The uncertainty ∆ acts as

∆A =

√
∑4

i=1(Si−S)2

3
∆B = 0.05(cm)

∆ =
√

∆2
A + ∆2

B

(9)

where uncertainty type A is evaluated by statistical methods, uncertainty type B is given
by calibration reports. Value S is regarded as the true value of the length of the whole
movement, namely 1360 mm. Si represents the value obtained by MMFE or RECA in
No. (i) measurement.

Table 1. Comparison of displacement data in the motion process.

Serial
Number

Measured
Value

MMFEM
easurements

Error
Value (%) ∆MMFE

RECA
Measure-

ments

Error
Value (%) ∆RECA

Error
Reduction

(%)

1 1360 mm 1212 mm 10.88

248.46

1354 mm 0.44

7.27

10.44
2 1360 mm 1030 mm 24.26 1353 mm 0.51 23.75
3 1360 mm 1132 mm 16.76 1352 mm 0.58 16.18
4 1360 mm 1311 mm 3.6 1357 mm 0.22 3.38

According to the results in the above table, it is easy to find that the results calculated
by the RECA method have less uncertainty than those calculated by the MMFE method,
with a decrease of 97.07%. Therefore, this algorithm can play an important role in long-
distance dynamic velocity measurement.

4. Conclusions and Prospect

The system has a stronger anti-disturbance ability due to the heterodyne method and
the same optical path shared by both the signal and reference light. However, in the whole
process of long displacement changing velocity measurement, owing to the influence
of the fundamental wave, noise and light intensity jump, the results processed by the
traditional MMFE still have the phenomenon of frequency jump (frequency selection error)
at several time points. When only analyzing the trend of continuous variation of velocity,
the influence is negligible, but the influence is nonnegligible when putting forward a high
demand of velocity accuracy as there are velocity jump points, especially in measuring
acceleration variation and accurate displacement. In order to reconstruct velocity curve
with high dynamic range in long stroke, the problems should be solved when extracting TF
ridge line. The RECA proposed in this paper can solve the problems of frequency selection
error in the process of continuously measuring jumping velocity in a long displacement,
such as the movement of gun automatic mechanism, or severe frequency selection jump in
the process of nonstationary signal measurement, generating velocity curve more smoothly.
As a result, the continuity of the velocity is much better, and the accuracy of displacement
and acceleration is higher. These method’s advantages have been verified by numbers of
experiments, having great significance in measuring velocity with long stroke and high
dynamic range.
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