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Abstract: In recent years, cerium oxide (CeO2) nanoparticles (NPs) have drawn significant attention
owing to their intrinsic enzyme mimetic properties, which make them powerful tools for biomolecular
detection. In this work, we evaluated the effect of pyrophosphate (PPi) on the oxidase activity of
CeO2 NPs. The presence of PPi was found to enhance the oxidase activity of CeO2 NPs, with
enhanced colorimetric signals. This particular effect was then used for the colorimetric detection of
target nucleic acids. Overall, the PPi-enhanced colorimetric signals of CeO2 NPs oxidase activity
were suppressed by the presence of the target nucleic acids. Compared with previous studies using
CeO2 NPs only, our proposed system significantly improved the signal change (ca. 200%), leading
to more sensitive and reproducible colorimetric analysis of target nucleic acids. As a proof-of-
concept study, the proposed system was successfully applied to the highly selective and sensitive
detection of polymerase chain reaction products derived from Klebsiella pneumoniae. Our findings
will benefit the rapid detection of nucleic acid biomarkers (e.g., pathogenic bacterial DNA or RNA)
in point-of-care settings.

Keywords: cerium oxide; colorimetry; nucleic acid; oxidase activity; pyrophosphate

1. Introduction

Fast, robust, and ultrasensitive detection of target nucleic acids has important ap-
plications in molecular diagnostics for the detection of pathogens and viruses [1,2]. The
gold standard for the detection of specific nucleic acid involves the exponential ampli-
fication of a target DNA fragment using polymerase chain reaction (PCR) followed by
gel electrophoresis [3]. However, gel-based assay is not only time consuming but also
requires user expertise. In recent years, real-time PCR, which can amplify DNA in real
time, has been widely utilized as a promising alternative [4,5]. However, despite its high
accuracy, real-time PCR requires expensive reagents (fluorescence-labeled probes or DNA
binding dyes) and bulky equipment. These shortcomings become more problematic for
point-of-care testing (POCT) applications [6].

In this regard, colorimetric strategies, whose results can be identified even with the
naked eye, are a good option for POCT applications or facility-limited settings. Several
assays are available for the rapid and sensitive colorimetric detection of target nucleic
acids and other various target biomolecules [7]. The representative examples rely on metal
nanomaterials (gold [8–12] and silver [13–15]) that exhibit distinct, size-dependent color
changes and enzyme-mimicking activities. For example, the peroxidase-mimicking activity
of magnetic nanoparticles (Fe3O4 NPs) [16] and the oxidase-mimicking activity of cerium
oxide nanoparticles (CeO2 NPs) [17,18] catalyze the conversion of transparent substrates
(e.g., 3,3′,5,5′-tetramethylbenzidine [TMB]) into colorimetric products. These catalytic

Sensors 2021, 21, 7567. https://doi.org/10.3390/s21227567 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4535-8044
https://orcid.org/0000-0002-0545-0970
https://doi.org/10.3390/s21227567
https://doi.org/10.3390/s21227567
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21227567
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21227567?type=check_update&version=1


Sensors 2021, 21, 7567 2 of 9

reactions are suppressed by the presence of the target nucleic acids, thus leading to the
development of facile colorimetric assay. These procedures are simple, and their results can
be quickly analyzed without the need for expensive instruments. However, in the case of
AuNPs, several factors (e.g., salt) can cause AuNPs to aggregate regardless of the presence
of target nucleic acids, leading to unexpected false-positive or false-negative results [19]. In
the case of Fe3O4 NPs, it requires a relatively long reaction time (ca. 30–90 min) [16,20,21]
to generate the colorimetric signal and there are hydrogen peroxide (H2O2)-related toxicity
issues [21,22]. Furthermore, the signal change caused by the presence of target nucleic
acids is not strong enough to achieve reproducible results. On the other hand, CeO2 NPs
with oxidase activity effectively catalyze the colorimetric reaction within a few minutes
and do not involve H2O2 [23], which is more desirable for POCT application.

In the current study, we aimed to devise an advanced method to enhance the colori-
metric signal change caused by CeO2 NPs by improving their oxidase-mimicking activity.
Specifically, we evaluated PPi as an effective enhancer molecule of CeO2 NP-catalyzed
oxidation reactions in an effort to amplify the signal changes caused by the presence of
target nucleic acids. We then developed the colorimetric system for the detection of target
nucleic acids. As described in Figure 1a, when negatively charged nucleic acids are present,
it binds to the positively charged CeO2 NPs through electrostatic interaction, reducing
the effective surface area for the interaction with PPi and TMB substrate. As a result, the
sample with target nucleic acids exhibits a suppressed colorimetric signal as compared
with the one without target nucleic acids. Importantly, CeO2 NPs that are known to possess
phosphatase-like activity as well [24–26] can release energy by hydrolyzing phosphate
ester bonds in PPi, which thereby can contribute to the enhancement of colorimetric signal
change (Figure 1b) [27]. In the effort described below, we successfully determined the
target nucleic acids originated from Klebsiella pneumoniae with high selectivity. Results from
the study may benefit the development of a molecular diagnostic system that can be used
in POCT settings.
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Figure 1. (a) Schematic illustration of the proposed CeO2 NPs-based colorimetric detection of target DNA using pyrophos-
phate (PPi) as an enhancer. (b) Reaction mechanism for the hydrolysis of phosphate ester bonds in PPi by CeO2 NPs.

2. Materials and Methods
2.1. Reagents

Cerium (IV) oxide nanoparticles (CeO2 NPs) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Sodium acetate, sodium phosphate, and sodium pyrophosphate
were purchased from Samchun Chemical (Seoul, Korea); SYBR Green II and TMB were
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purchased from Thermo Fisher Scientific (Waltham, MA, USA). Deoxynucleoside triphos-
phate (dNTPs) and ribonucleoside triphosphate (rNTPs) were purchased from Enzynomics
(Seoul, Korea). All DNA oligonucleotides were synthesized by Integrated DNA Tech-
nologies (Coralville, IA, USA). Ultrapure DNase/RNase-free distilled water from Bioneer
(Daejeon, Korea) was used in all experiments. All chemicals used in this study were of
analytical grade.

2.2. Confirmation of DNA Binding to CeO2 NP by Fluorescence Microscope

20 µL of 10 µM synthetic DNA (5′-AGT TCG AGCAGC AAG CTA TAT TTC CTT
AAC AA-3′, 32 nt) were added to 2.7 µL of a CeO2 NP stock solution (2.5 wt.% colloidal
dispersion in 0.4 M sodium acetate buffer), and to this solution, 22.3 µL of 0.4 M sodium
acetate buffer (pH 3.7) and 41 µL of deionized water were added. After incubation for
5 min, 4 µL of 10 mM PPi was added and incubated for 30 min. Finally, images were
obtained using fluorescence microscopy (KI-2000F; Korea Lab Tech, Gyeonggi-do, Korea)
with filter cube (excitation: 450–480 nm; barrier: 515 nm) after adding 10 µL of 10× SYBR
Green II, a staining dye specific for single-stranded DNA.

2.3. Bacteria Cultivation and Genomic DNA Isolation

Klebsiella pneumoniae (ATCC 700603), Pseudomonas aeruginosa (ATCC 27853), Escherichia
coli (ATCC 25922), and Enterobacter cloacae (KCTC 2519) were grown in Luria-Bertani (LB)
medium (BD, Franklin Lakes, NJ, USA) at 37 ◦C with constant shaking for 18–20 h. After
the cultures were centrifuged at 5000× g for 5 min, the supernatant was carefully discarded,
and the cell pellet was resuspended in 200 µL of the TCL buffer supplied with the Total
DNA Extraction S&V Kit (Bionics, Seoul, Korea). The cells were then lysed by mixing with
Proteinase K and heating for 1 h at 56 ◦C. Finally, genomic DNA (gDNA) was isolated
according to the instructions of the gDNA extraction kit. The purity and concentration
of the extracted gDNA were evaluated using a Nanodrop Spectrometer (Spectramax iD5
multi-mode microplate reader; Molecular Devices, San Jose, CA, USA) prior to storage of
the gDNA at −20 ◦C until use.

2.4. PCR Amplification

Bacterial gDNA was amplified by PCR. The total reaction solution of 20 µL that
contained 1 µL of bacterial gDNA, 0.5 µM of each primer, and 10 µL Topreal qRCR 2×
PreMIX (SYBR Green with low ROX) (Enzynomics, Daejeon, Korea), was heat-denatured
at 95 ◦C for 10 min, followed by 25 cycles of 95 ◦C for 20 s, 64 ◦C for 30 s, and 72 ◦C for 60 s.
For the specific amplification of K. pneumoniae, wabG gene (GenBank accession number
KX842082) was targeted, and the following primers were used for PCR amplification:
forward, 5′-ACC ATC GGC CAT TTG ATA GA-3′ and reverse, 5′-CGG ACT GGC AGA
TCC ATA TC-3′. After amplification, the PCR products were purified with NucleoSpin
Gel & PCR Clean-up kit (Takara Bio, Kusatsu, Japan) according to the manufacturer’s
protocol. The length and concentration of the PCR products were determined by agarose
gel electrophoresis and Nanodrop Spectrometer (Spectramax iD5 multi-mode; Molecular
Devices), respectively.

2.5. CeO2 NP-Based Colorimetric Detection Using PPi as an Enhancer

First, 20 µL of 10 µM synthetic DNA, PCR products or gDNA at different concen-
trations were added to 2.7 µL of a CeO2 NP stock solution (2.5 wt.% colloidal dispersion
in 0.4 M sodium acetate buffer), and to this solution, 22.3 µL of 0.4 M sodium acetate
buffer (pH 3.7) and 1 µL of deionized water were added. After incubation for 5 min, to the
solution was added 50 µL of 1× TMB substrate solution and 4 µL of 10 mM PPi, which
was then incubated for 30 min to develop the colorimetric signal. Not only PPi, but also
other substances such as dNTP and rNTPs (4 µL, 10 mM) were tested to evaluate their
enhancement effect on the CeO2 NP-catalyzed oxidation reactions. After centrifugation at
5900× g for 30 s to separate CeO2 NPs from the reaction solution, the colorimetric signal
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of the supernatant was measured at a wavelength of 650 nm using a microplate reader
(Spectramax iD5 multi-mode; Molecular Devices).

3. Results and Discussion
3.1. Selection of the Best Enhancer for CeO2 NPs Oxidase Activity

First, we investigated the effect of phosphate ester bonds using different substances,
such as dNTP, rNTP, and PPi, on the oxidase activity of CeO2 NPs during a CeO2 NPs-
catalyzed oxidation reaction. As shown in Figure 2a, PPi substantially increased the
catalytic activity of CeO2 NPs and induced the highest signal change in the presence of
nucleic acids. We assumed that PPi without sugar and bases can interact with the positively
charged CeO2 NPs more effectively than dNTP and rNTP. In addition, the energy released
after PPi is cleaved by CeO2 NPs boosted the oxidase activity of CeO2 NPs, resulting in
substantial colorimetric signal change.
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Figure 2. Selection of the best enhancer for CeO2 NPs oxidase activity. (a) Relative signal change (%)
of dNTPs (0.4 mM), rNTPs (0.4 mM), and PPi (0.4 mM). Relative signal change (%) was calculated as
the DNA-induced signal change in the presence of dNTPs and rNTPs divided by that in the presence
of PPi and multiplied by 100 (%). (b) Absorbance signal at 650 nm (A650) in the absence (−) and
presence (+) of PPi (0.4 mM). Black and gray bars indicate the absence and presence of synthetic
DNA, respectively.

Next, using PPi as the best enhancer, we evaluated the detection feasibility of target
DNA. Figure 2b shows that the presence of DNA suppressed the oxidase activity of CeO2
NPs, as evidenced by the low colorimetric signal at 650 nm, the maximum absorbance
of oxidized TMB, regardless of the presence or absence of PPi. In contrast, the oxidase
activity of CeO2 NPs in the absence of DNA was increased by the presence of PPi, thereby
increasing the signal difference between reactions with and without DNA. Taken together,
these results indicate that PPi is the key factor for the enhanced signal change in the
presence of DNA.

3.2. Confirmation of DNA Binding to CeO2 NPs and Reaction Optimization

As shown in Figure 1, the binding between the DNA and CeO2 NPs was assumed to
drive the suppression of catalytic activity of CeO2 NPs. To confirm this, we investigated
the adsorption of DNA onto CeO2 NPs using fluorescence microscopy after preparing
the samples containing CeO2 NPs, DNA, and SYBR Green II, a staining dye specific for
single-stranded DNA. Figure 3 shows that CeO2 NPs displayed a high fluorescence signal
when the DNA was present with CeO2 NPs, whereas a negligible fluorescence signal was
observed when the DNA was absent. This clearly confirms that the DNA binds to CeO2
NPs to inhibit the catalytic reaction of CeO2 NPs. We also optimized the reaction conditions,
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including the concentrations of CeO2 NPs and PPi, for the efficient analysis of DNA by
comparing the absorbance signals in the absence and presence of DNA. Figure 4 shows
that 0.07 wt.% of CeO2 NPs and 0.4 mM of PPi were ideal to achieve the highest signal
change, which were thus used for further experiments.
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3.3. Analytical Performance of the Proposed System

Under the optimized conditions, we demonstrated the detection feasibility of target
nucleic acids originating from pathogenic bacteria. As proof of concept, we selected
K. pneumoniae as the target pathogen and designed the specific primers by targeting wabG
in K. pneumoniae. First, we verified the PCR amplification with the designed primers. As
shown in Figure 5a, gDNA extracted from K. pneumoniae generated a PCR product with a
size of 683 bp, which was distinguished from that formed in the absence of gDNA. Next,
we detected the PCR product using the proposed colorimetric system, which was compared
to its counterpart without using PPi. Figure 5b shows that the presence of the PCR product
suppressed the colorimetric signal both without and with PPi; however, signal change
(∆A650) was more evident in the presence of PPi. These results were consistent with those
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using a synthetic target DNA (Figure 2b), demonstrating that our proposed system with
PPi as enhancer is more suitable for the sensitive and selective colorimetric detection of
target nucleic acids.
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Figure 5. Detection of PCR products from K. pneumoniae. (a) PCR amplification curves in the absence
(black) and presence (red) of gDNA from K. pneumoniae (1.6 × 103 copies/µL). Inset shows the
corresponding gel electrophoresis results. Lanes 1 and 2 indicate the samples obtained after PCR
in the absence and presence of gDNA, respectively. RFU: relative fluorescence unit. (b) ∆A650 in
the absence (−) and presence (+) of PPi. Change in absorbance signal (∆A650) was calculated by
subtracting A650 in the presence of target DNA from that in the absence of target DNA.

Next, we evaluated the selectivity and sensitivity of the proposed detection system.
Because the primers were designed specifically for K. pneumoniae, the highest signal change
(∆A650) was obtained only in the presence of K. pneumoniae, whereas the presence of other
control bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Enterobacter cloacae,
did not generate any PCR product and exhibited a negligible signal change, indicating the
high specificity of the proposed system (Figure 6a). In addition, we measured the colori-
metric signal in the presence of PCR products at different concentrations. Figure 6b shows
that as the concentration of PCR products increased, the colorimetric signal decreased with
a limit of detection (LOD) of 1.04 nM (3σ/S, where σ and S are the standard deviation of
the blank and the slope). It should be noted that the LOD obtained in this assay is good
enough to be used in various areas for the detection of pathogens and viruses because
the general concentration of PCR products ranges from 10 to 100 nM [28]. Furthermore,
the proposed system was applied to the detection of extracted gDNA from K. pneumoniae.
The results in Figure 7 show that the presence of gDNA led to the signal change (∆A650),
proving the direct detection feasibility of extracted gDNA even without PCR amplification.
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from target bacteria. Our findings may pave the way for the reproducible detection of 
various target molecules and can be used in combination with various nucleic acid ampli-
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Figure 6. Detection selectivity (a) and sensitivity (b,c) of the proposed system. (a) Change in absorbance signal (∆A650)
was calculated by subtracting A650 in the presence of target DNA from that in the absence of target DNA. Inset shows a
photographic image of each sample containing PCR products. 1: the absence of target DNA; 2: Pseudomonas aeruginosa;
3: Enterobacter cloacae; 4: Escherichia coli; 5: Klebsiella pneumoniae. (b) Absorbance spectra in the presence of PCR products
at different concentrations and images of a control sample without PCR products and a sample containing 40 nM PCR
products. (c) Linear relationship between ∆A650 and PCR concentration (2.5–40 nM).
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Figure 7. Direct detection of gDNA extracted from Klebsiella pneumoniae. (a) Absorbance spectra
and (b) ∆A650 in the presence of extracted gDNA at different concentrations. Change in absorbance
signal (∆A650) was calculated by subtracting A650 in the presence of extracted gDNA from that in the
absence of extracted gDNA. p value is indicated by stars, **** p < 0.0001. Inset shows a photographic
image of each sample containing extracted gDNAs at different concentrations.

4. Conclusions

We developed a simple, colorimetric assay for the detection of target nucleic acids
using the oxidase activity of CeO2 NPs and PPi as an enhancer to improve the oxidase ac-
tivity of CeO2 NPs, leading to more evident colorimetric signal change. Using the proposed
system, PCR products from the pathogenic bacteria, K. pneumoniae, were quantitatively
analyzed with high selectivity. In addition, it can directly analyze gDNA extracted from
target bacteria. Our findings may pave the way for the reproducible detection of various
target molecules and can be used in combination with various nucleic acid amplification
methods, such as isothermal nucleic acid amplification. Overall, our proposed system
provides rapid colorimetric results without the need for a complicated and expensive
instrument and can thus be used in POCT applications and facility-limited settings.
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