The Influence of Filters on EEG-ERP Testing: Analysis of Motor Cortex in Healthy Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Procedure
2.4. Electroencephalogram Acquisition and ERP Recording
2.5. Statistics
3. Results
3.1. Latency and Amplitude—Influence of the Filters
3.2. Differences between Filters
3.3. Amplitude and Latency for Fingers 2, 3 and 4
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kawala-Sterniuk, A.; Podpora, M.; Pelc, M.; Blaszczyszyn, M.; Gorzelanczyk, E.J.; Martinek, R.; Ozana, S. Comparison of Smoothing Filters in Analysis of EEG Data for the Medical Diagnostics Purposes. Sensors 2020, 20, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, M.A.; Cuevas, K. Using EEG to Study Cognitive Development: Issues and Practices. J. Cogn. Dev. 2012, 13, 281–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Lu, G.; Xie, Z.; Shang, W. A Unified Framework and Method for EEG-Based Early Epileptic Seizure Detection and Epilepsy Diagnosis. IEEE Access 2020, 8, 20080–20092. [Google Scholar] [CrossRef]
- Rezaei, M.; Mohammadi, H.; Khazaie, H. EEG/EOG/EMG Data from a Cross Sectional Study on Psychophysiological Insomnia and Normal Sleep Subjects. Data Brief 2017, 15, 314–319. [Google Scholar] [CrossRef]
- Hussain, L.; Shah, S.A.; Aziz, W.; Bukhari, S.N.H.; Lone, K.J.; Chaudhary, Q.-A. Analyzing the Dynamics of Sleep Electroencephalographic (EEG) Signals with Different Pathologies Using Threshold-Dependent Symbolic Entropy. Waves Random Complex Media 2020, 1–18. [Google Scholar] [CrossRef]
- Horvath, A. EEG and ERP Biomarkers of Alzheimer Rsquo s Disease a Critical Review. Front. Biosci. 2018, 23, 183–220. [Google Scholar] [CrossRef]
- Erickson, M.A.; Kappenman, E.S.; Luck, S.J. High Temporal Resolution Measurement of Cognitive and Affective Processes in Psychopathology: What Electroencephalography and Magnetoencephalography Can Tell Us About Mental Illness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 4–6. [Google Scholar] [CrossRef]
- Sanei, S.; Chambers, J.A. EEG Signal Processing: Sanei/EEG Signal Processing; John Wiley & Sons Ltd.: West Sussex, UK, 2007; ISBN 978-0-470-51192-3. [Google Scholar]
- Goshvarpour, A.; Goshvarpour, A. Schizophrenia Diagnosis Using Innovative EEG Feature-Level Fusion Schemes. Phys. Eng. Sci. Med. 2020, 43, 227–238. [Google Scholar] [CrossRef]
- Rahman, S.; Sharma, T.; Mahmud, M. Improving Alcoholism Diagnosis: Comparing Instance-Based Classifiers Against Neural Networks for Classifying EEG Signal. In Proceedings of the Brain Informatics; Mahmud, M., Vassanelli, S., Kaiser, M.S., Zhong, N., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 239–250. [Google Scholar]
- Gross, J.; Baumgartl, H.; Kumar, R. A Novel Machine Learning Approach for High-Performance Diagnosis of Premature Internet Addiction Using the Unfolded EEG Spectra. In Proceedings of the 25th America’s Conference on Information Systems, Virtual Conference, 12–16 August 2020. [Google Scholar]
- Yadollahpour, A.; Mirzaiyan, M.; Rashidi, S. Quantitative EEG for Early and Differential Diagnosis of Bipolar Disorders: A Comprehensive Review of the Literature. Int. J. Ment. Health Addict. 2017, 15, 387–393. [Google Scholar] [CrossRef]
- Shen, J.; Zhao, S.; Yao, Y.; Wang, Y.; Feng, L. A Novel Depression Detection Method Based on Pervasive EEG and EEG Splitting Criterion. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 1879–1886. [Google Scholar]
- Raab, D.; Baumgartl, H.; Buettner, R. Machine Learning Based Diagnosis of Binge Eating Disorder Using EEG Recordings. In Proceedings of the 24th Pacific Asia Conference on Information Systems, Dubai, United Arab Emirates, 20 June 2020. [Google Scholar]
- Attademo, L.; Bernardini, F.; Verdolini, N. Neural Correlates of Schizotypal Personality Disorder: A Systematic Review of Neuroimaging and EEG Studies. Curr. Med. Imaging 2021. [Google Scholar] [CrossRef]
- Boland, C.; Jalihal, V.; Organ, C.; Oak, K.; McLean, B.; Laugharne, R.; Woldman, W.; Beck, R.; Shankar, R. EEG Markers in Emotionally Unstable Personality Disorder—A Possible Outcome Measure for Neurofeedback: A Narrative Review. Clin. EEG Neurosci. 2021, 52, 254–273. [Google Scholar] [CrossRef] [PubMed]
- Pernet, C.; Garrido, M.I.; Gramfort, A.; Maurits, N.; Michel, C.M.; Pang, E.; Salmelin, R.; Schoffelen, J.M.; Valdes-Sosa, P.A.; Puce, A. Issues and Recommendations from the OHBM COBIDAS MEEG Committee for Reproducible EEG and MEG Research. Nat. Neurosci. 2020, 23, 1473–1483. [Google Scholar] [CrossRef]
- Robbins, K.A.; Touryan, J.; Mullen, T.; Kothe, C.; Bigdely-Shamlo, N. How Sensitive Are EEG Results to Preprocessing Methods: A Benchmarking Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Lawhern, V.; Hairston, W.D.; McDowell, K.; Westerfield, M.; Robbins, K. Detection and Classification of Subject-Generated Artifacts in EEG Signals Using Autoregressive Models. J. Neurosci. Methods 2012, 208, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Calderon, J.; Luck, S.J. ERPLAB: An Open-Source Toolbox for the Analysis of Event-Related Potentials. Front. Hum. Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diana, N.; Kalsum, U.; Sabiq, A.; Jatmiko, W.; Mursanto, P. Comparing Windowing Methods on Finite Impulse Response (FIR) Filter Algorithm in Electroencephalography (EEG) Data Processing. J. Theor. Appl. Inf. Technol. 2016, 88, 558–567. [Google Scholar]
- Roychowdhury, A.; Pandey, P.C. FIR Filter Design Techniques; IIT Bombay: Mumbai, India, 2002; p. 12. [Google Scholar]
- Pei, S.-C.; Tseng, C.-C. Two Dimensional IIR and FIR Digital Notch Filter Design. In Proceedings of the 1993 IEEE International Symposium on Circuits and Systems, Chicago, IL, USA, 3–6 May 1993; pp. 890–893. [Google Scholar]
- Kim, G.; Lim, S.; Kim, H.; Lee, B.; Seo, S.; Cho, K.; Lee, W. Is Robot-Assisted Therapy Effective in Upper Extremity Recovery in Early Stage Stroke?—A Systematic Literature Review. J. Phys. Ther. Sci. 2017, 29, 1108–1112. [Google Scholar] [CrossRef] [Green Version]
- Nitschke, J.B.; Miller, G.A.; Cook, E.W. Digital Filtering in EEG/ERP Analysis: Some Technical and Empirical Comparisons. Behav. Res. Methods Instrum. Comput. 1998, 30, 54–67. [Google Scholar] [CrossRef]
- Fernández, A.; de Santiago, L.; Blanco, R.; Pérez-Rico, C.; Rodríguez-Ascariz, J.M.; Barea, R.; Miguel-Jiménez, J.M.; García-Luque, J.R.; Ortiz del Castillo, M.; Sánchez-Morla, E.M.; et al. Filtering Multifocal VEP Signals Using Prony’s Method. Comput. Biol. Med. 2015, 56, 13–19. [Google Scholar] [CrossRef]
- Rubinson, M.; Horowitz, I.; Naim-Feil, J.; Gothelf, D.; Levit-Binnun, N.; Moses, E. Effects of Methylphenidate on the ERP Amplitude in Youth with ADHD: A Double-Blind Placebo-Controlled Cross-over EEG Study. PLoS ONE 2019, 14, e0217383. [Google Scholar] [CrossRef] [Green Version]
- Engell, A.; Junghöfer, M.; Stein, A.; Lau, P.; Wunderlich, R.; Wollbrink, A.; Pantev, C. Modulatory Effects of Attention on Lateral Inhibition in the Human Auditory Cortex. PLoS ONE 2016, 11, e0149933. [Google Scholar] [CrossRef]
- Yang, J.; Singh, H.; Hines, E.L.; Schlaghecken, F.; Iliescu, D.D.; Leeson, M.S.; Stocks, N.G. Channel Selection and Classification of Electroencephalogram Signals: An Artificial Neural Network and Genetic Algorithm-Based Approach. Artif. Intell. Med. 2012, 55, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Widmann, A.; Schröger, E. Filter Effects and Filter Artifacts in the Analysis of Electrophysiological Data. Front. Psychol. 2012, 3, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- VanRullen, R. Four Common Conceptual Fallacies in Mapping the Time Course of Recognition. Front. Psychol. 2011, 2, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acunzo, D.J.; MacKenzie, G.; van Rossum, M.C.W. Systematic Biases in Early ERP and ERF Components as a Result of High-Pass Filtering. J. Neurosci. Methods 2012, 209, 212–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousselet, G.A. Does Filtering Preclude Us from Studying ERP Time-Courses? Front. Psychol. 2012, 3, 131. [Google Scholar] [CrossRef] [Green Version]
- Zoefel, B.; Heil, P. Detection of Near-Threshold Sounds Is Independent of EEG Phase in Common Frequency Bands. Front. Psychol. 2013, 4, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, G.S.; Bhatnagar, M.; Kumar, S.; Sinha, R.K. A Comparative Study of Application of Different Non-Conventional Filters on Electroencephalogram. Biomed. Res. 2020, 31, 1–9. [Google Scholar]
- Keil, A.; Debener, S.; Gratton, G.; Junghöfer, M.; Kappenman, E.S.; Luck, S.J.; Luu, P.; Miller, G.A.; Yee, C.M. Committee Report: Publication Guidelines and Recommendations for Studies Using Electroencephalography and Magnetoencephalography: Guidelines for EEG and MEG. Psychophysiology 2014, 51, 1–21. [Google Scholar] [CrossRef]
- Puce, A.; Hämäläinen, M. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies. Brain Sci. 2017, 7, 58. [Google Scholar] [CrossRef]
- Karpiel, I.; Drzazga, Z. Comparison Between ERP (SLORETA) and FMRI of Somatosensory Cortex for Healthy Group. Acta Phys. Pol. B Proc. Suppl. 2020, 13, 923. [Google Scholar] [CrossRef]
- Czaplewski, R.L. Variance Approximations for Assessments of Classification Accuracy; U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Ft. Collins, CO, USA, 1994; p. RM-RP-316.
- Nunez, M.; Srinivasan1, R. Electroencephalography (EEG): Neurophysics, Experimental Methods, and Signal Processing. In Handbook of Neuroimaging Data Analysis; CRC Press: London, UK; New York, NY, USA, 2016; pp. 175–197. [Google Scholar]
- Lancheros, M.; Jouen, A.-L.; Laganaro, M. Neural Dynamics of Speech and Non-Speech Motor Planning. Brain Lang. 2020, 203, 104742. [Google Scholar] [CrossRef]
- Jo, H.-G.; Habel, U.; Schmidt, S. Role of the Supplementary Motor Area in Auditory Sensory Attenuation. Brain Struct. Funct. 2019, 224, 2577–2586. [Google Scholar] [CrossRef]
- Schmidt-Kassow, M.; Thöne, K.; Kaiser, J. Auditory-Motor Coupling Affects Phonetic Encoding. Brain Res. 2019, 1716, 39–49. [Google Scholar] [CrossRef]
- Park, W.; Kwon, G.H.; Kim, Y.-H.; Lee, J.-H.; Kim, L. EEG Response Varies with Lesion Location in Patients with Chronic Stroke. J. NeuroEng. Rehabil. 2016, 13, 21. [Google Scholar] [CrossRef] [Green Version]
- Boldyreva, G.N.; Sharova, E.V.; Zhavoronkova, L.A.; Cheliapina, M.V.; Dubrovskaia, L.P.; Simonova, O.A.; Fadeeva, L.M.; Pronin, I.N.; Kornienko, V.N. Structural and functional peculiarity of brain activity to performance and imaginary motor tasks in healthy persons (EEG and fMRI study). Zh. Vyss. Nerv. Deiat. Im. I. P. Pavlov. 2013, 63, 316–327. [Google Scholar] [CrossRef]
- De Cheveigné, A.; Nelken, I. Filters: When, Why, and How (Not) to Use Them. Neuron 2019, 102, 280–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohl, D.; Rostasy, K.; Treiber-Held, S.; Brockmann, K.; Gärtner, J.; Hanefeld, F. Pediatric Multiple Sclerosis: Detection of Clinically Silent Lesions by Multimodal Evoked Potentials. J. Pediatr. 2006, 149, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Matas, C.G.; de Andrade Matas, S.L.; de Oliveira, C.R.S.; Gonçalves, I.C. Auditory Evoked Potentials and Multiple Sclerosis. Arq. Neuro-Psiquiatr. 2010, 68, 528–534. [Google Scholar] [CrossRef]
- Moore, N.C. Visual Evoked Responses in Alzheimer’s Disease: A Review. Clin. Electroencephalogr. 1997, 28, 137–142. [Google Scholar] [CrossRef]
- Djuric, S.; Djuric, V.; Zivkovic, M.; Milosevic, V.; Jolic, M.; Stamenovic, J.; Djordjevic, G.; Calixto, M. Are Somatosensory Evoked Potentials of the Tibial Nerve the Most Sensitive Test in Diagnosing Multiple Sclerosis? Neurol. India 2010, 58, 537. [Google Scholar] [CrossRef]
- Kamarajan, C. Advances in Electrophysiological Research. Alcohol Res. 2015, 37, 53–87. [Google Scholar] [PubMed]
- Schmitt, A.; Martins-de-Souza, D.; Akbarian, S.; Cassoli, J.S.; Ehrenreich, H.; Fischer, A.; Fonteh, A.; Gattaz, W.F.; Gawlik, M.; Gerlach, M.; et al. Consensus Paper of the WFSBP Task Force on Biological Markers: Criteria for Biomarkers and Endophenotypes of Schizophrenia, Part III: Molecular Mechanisms. World J. Biol. Psychiatry 2017, 18, 330–356. [Google Scholar] [CrossRef] [PubMed]
- Mathalon, D.H.; Ford, J.M.; Pfefferbaum, A. Trait and State Aspects of P300 Amplitude Reduction in Schizophrenia: A Retrospective Longitudinal Study. Biol. Psychiatry 2000, 47, 434–449. [Google Scholar] [CrossRef]
- Simson, R.; Vaughan, H.G.; Ritter, W. The Scalp Topography of Potentials in Auditory and Visual Go/NoGo Tasks. Electroencephalogr. Clin. Neurophysiol. 1977, 43, 864–875. [Google Scholar] [CrossRef]
- Soltani, M.; Knight, R.T. Neural Origins of the P300. Crit. Rev. Neurobiol. 2000, 14, 199–224. [Google Scholar] [CrossRef] [PubMed]
- Van der Stelt, O.; Belger, A. Application of Electroencephalography to the Study of Cognitive and Brain Functions in Schizophrenia. Schizophr. Bull. 2007, 33, 955–970. [Google Scholar] [CrossRef] [Green Version]
- Citrome, L.; Bilder, R.M.; Volavka, J. Managing Treatment-Resistant Schizophrenia: Evidence from Randomized Clinical Trials. J. Psychiatr. Pract. 2002, 8, 205–215. [Google Scholar] [CrossRef]
- Haupt, W.F.; Pawlik, G.; Thiel, A. Initial and Serial Evoked Potentials in Cerebrovascular Critical Care Patients. J. Clin. Neurophysiol. 2006, 23, 389–394. [Google Scholar] [CrossRef]
No | Time | Filter | Latency max (ms) | Electrode | Latency min (ms) | Electrode | Amplitude max (µV) | Electrode | Amplitude min (µV) | Electrode |
---|---|---|---|---|---|---|---|---|---|---|
1 | I /before 12 a.m. | raw | 593 | C4 | 250 | C3 | 4.16 | P4 | −4.48 | P3 |
pass band | 648 | C4 | 250 | C3 | 4.10 | P4 | −4.41 | P3 | ||
notch | 648 | C4 | 250 | C3 | 4.09 | P4 | −4.41 | P3 | ||
II /after 12 a.m. | raw | 371 | P4 | 250 | C3 | 4.01 | C4 | −2.18 | P3 | |
pass band | 371 | P4 | 250 | C3 | 3.86 | C4 | −2.18 | P3 | ||
notch | 371 | P4 | 250 | C3 | 3.89 | C4 | −2.16 | P3 | ||
2 | I /after 12 a.m. | raw | 445 | C4 | 371 | P3 | 21.4 | F4 | −20.5 | C3 |
pass band | 441 | C4 | 371 | P3 | 21.1 | F4 | −20.2 | C3 | ||
notch | 441 | C4 | 371 | P3 | 21.1 | F4 | −20.2 | C3 | ||
II /after 12 a.m. | raw | 542 | P4 | 312 | C3 | 10.7 | F4 | −9.29 | C4 | |
pass band | 398 | F4 | 328 | C3 | 10.6 | F4 | −9.27 | C4 | ||
notch | 398 | F4 | 328 | C3 | 10.6 | F4 | −9.26 | C4 | ||
3 | I /before 12 a.m. | raw | 597 | F3 | 296 | C3 | 9.66 | C4 | −11.1 | P4 |
pass band | 382 | F3 | 312 | C3 | 9.32 | C4 | −10.7 | P4 | ||
notch | 382 | F3 | 316 | C3 | 9.36 | C4 | −10.7 | P4 | ||
II /before 12 a.m. | raw | 648 | C4 | 328 | C3 | 5.22 | F3 | −4.65 | C3 | |
pass band | 519 | F4 | 328 | C3 | 5.10 | F3 | −4.14 | C3 | ||
notch | 648 | C4 | 328 | C3 | 5.25 | F3 | −4.20 | C3 | ||
4 | I /after 12 a.m. | raw | 0.66015625 | C3 | 250 | F4 | 15.4 | P4 | −8.43 | C3 |
pass band | 664 | F3 | 250 | F4 | 15.4 | P4 | −8.35 | C3 | ||
notch | 664 | F3 | 250 | F4 | 15.4 | P4 | −8.37 | C3 | ||
II /after 12 a.m. | raw | 371 | F3 | 250 | C3 | 24.2 | C4 | 5.68 | F3 | |
pass band | 367 | F3 | 250 | C3 | 24.1 | C4 | 5.59 | F3 | ||
notch | 367 | F3 | 250 | C3 | 24.2 | C4 | 5.63 | F3 | ||
5 | I /after 12 a.m. | raw | 644 | F3 | 296 | C4 | 7.42 | P3 | −12.0 | P4 |
pass band | 644 | F3 | 296 | C4 | 7.38 | P3 | −11.9 | P4 | ||
notch | 644 | F3 | 296 | C4 | 7.37 | P3 | −12.0 | P4 | ||
II /after 12 a.m. | raw | 546 | C4 | 304 | P4 | 6.99 | P4 | −4.33 | C4 | |
pass band | 550 | C4 | 304 | P4 | 6.88 | P4 | −4.30 | C4 | ||
notch | 546 | C4 | 304 | P4 | 6.91 | P4 | −4.27 | C4 | ||
6 | I /after 12 a.m. | raw | 406 | C3 | 265 | F3 | 2.14 | F3 | −2.05 | C3 |
pass band | 433 | C3 | 257 | C4 | 1.97 | F3 | −1.58 | C3 | ||
notch | 433 | C3 | 257 | C4 | 1.98 | F3 | −1.58 | C3 | ||
II /after 12 a.m. | raw | 664 | F3 | 335 | P3 | 5.52 | P4 | −2.22 | C3 | |
pass band | 660 | F3 | 250 | P4 | 5.20 | P4 | −2.07 | C3 | ||
notch | 660 | F3 | 250 | P4 | 5.29 | P4 | −2.11 | C3 | ||
7 | I /after 12 a.m. | raw | 507 | P3 | 285 | F3 | 8.17 | C4 | 0.363 | P3 |
pass band | 507 | P3 | 281 | F3 | 8.10 | C4 | 0.371 | P3 | ||
notch | 507 | P3 | 281 | F3 | 8.16 | C4 | 0.360 | P3 | ||
II /after 12 a.m. | raw | 355 | F3 | 289 | P3 | 6.03 | P4 | −2.10 | P3 | |
pass band | 359 | F3 | 289 | P3 | 6.04 | P4 | −2.07 | P3 | ||
notch | 363 | F3 | 289 | C3 | 6.06 | P4 | −2.08 | P3 |
No | Age | Sex | Hand |
---|---|---|---|
1 | 20 | M | R |
2 | 22 | F | R |
3 | 35 | M | R |
4 | 27 | F | R |
5 | 20 | F | L/R |
6 | 21 | F | R |
7 | 24 | M | R |
Filter | Electrode | Latency (ms) | Amplitude (µV) |
---|---|---|---|
RAW | O1 | 148 | 5.3 |
RAW | O2 | 156 | 2.38 |
RAW | F3 | 265 | 3.78 |
RAW | F4 | 347 | −1.23 |
RAW | C3 | 535 | −2.75 |
RAW | C4 | 265 | −1.95 |
RAW | P3 | 253 | 1.51 |
RAW | P4 | 351 | −1.95 |
FIR | O1 | 152 | 4.66 |
FIR | O2 | 152 | 2.22 |
FIR | F3 | 269 | 2.98 |
FIR | F4 | 359 | −1.34 |
FIR | C3 | 433 | −2.09 |
FIR | C4 | 250 | −1.64 |
FIR | P3 | 320 | 1.44 |
FIR | P4 | 324 | −1.69 |
IIR | O1 | 152 | 4.02 |
IIR | O2 | 152 | 2 |
IIR | F3 | 269 | 2.57 |
IIR | F4 | 359 | −1.09 |
IIR | C3 | 429 | −1.72 |
IIR | C4 | 250 | −1.45 |
IIR | P3 | 320 | 1.28 |
IIR | P4 | 324 | −1.55 |
FFT | O1 | 152 | 4.66 |
FFT | O2 | 152 | 2.22 |
FFT | F3 | 269 | 2.98 |
FFT | F4 | 359 | −1.34 |
FFT | C3 | 433 | −2.09 |
FFT | C4 | 250 | −1.64 |
FFT | P3 | 320 | 1.44 |
FFT | P4 | 324 | −1.69 |
NOTCH | O1 | 148 | 4.6 |
NOTCH | O2 | 156 | 2.18 |
NOTCH | F3 | 265 | 3.1 |
NOTCH | F4 | 359 | −1.2 |
NOTCH | C3 | 464 | −2.18 |
NOTCH | C4 | 250 | −1.57 |
NOTCH | P3 | 320 | 1.45 |
NOTCH | P4 | 324 | −1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpiel, I.; Kurasz, Z.; Kurasz, R.; Duch, K. The Influence of Filters on EEG-ERP Testing: Analysis of Motor Cortex in Healthy Subjects. Sensors 2021, 21, 7711. https://doi.org/10.3390/s21227711
Karpiel I, Kurasz Z, Kurasz R, Duch K. The Influence of Filters on EEG-ERP Testing: Analysis of Motor Cortex in Healthy Subjects. Sensors. 2021; 21(22):7711. https://doi.org/10.3390/s21227711
Chicago/Turabian StyleKarpiel, Ilona, Zofia Kurasz, Rafał Kurasz, and Klaudia Duch. 2021. "The Influence of Filters on EEG-ERP Testing: Analysis of Motor Cortex in Healthy Subjects" Sensors 21, no. 22: 7711. https://doi.org/10.3390/s21227711
APA StyleKarpiel, I., Kurasz, Z., Kurasz, R., & Duch, K. (2021). The Influence of Filters on EEG-ERP Testing: Analysis of Motor Cortex in Healthy Subjects. Sensors, 21(22), 7711. https://doi.org/10.3390/s21227711