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Abstract: With the recent discovery of water-ice and lava tubes on the Moon and Mars along with
the development of in-situ resource utilization (ISRU) technology, the recent planetary exploration
has focused on rover (or lander)-based surface missions toward the base construction for long-term
human exploration and habitation. However, a 3D terrain map, mostly based on orbiters’ terrain
images, has insufficient resolutions for construction purposes. In this regard, this paper introduces the
visual simultaneous localization and mapping (SLAM)-based robotic mapping method employing
a stereo camera system on a rover. In the method, S-PTAM is utilized as a base framework, with
which the disparity map from the self-supervised deep learning is combined to enhance the mapping
capabilities under homogeneous and unstructured environments of planetary terrains. The overall
performance of the proposed method was evaluated in the emulated planetary terrain and validated
with potential results.

Keywords: planetary construction mapping; exploration rover; visual SLAM; deep learning; 3D
terrain map

1. Introduction

The recent discovery of water-ice on the Moon and Mars has increased more potential
for long-term human exploration and habitation, along with the technology development
of in situ resource utilization (ISRU) [1–4]. ISRU refers to the generation of consumable
products from raw materials on planetary surfaces, minimizing the dependence on Earth-
based resources. For example, the water-ice can be utilized to produce O2 and H2O for life
support or O2 and H2 for fuel and propellant [5,6]. Regolith, which is a major available
resource, can be cold-pressed, sintered, and mixed with additives into a brick or a block as
a construction material [7,8]. Large-scale additive manufacturing, formally known as 3D
construction printing, is recognized as an efficient means of accumulating and aggregating
the construction materials to provide quick and precise construction [9–12].

Unlike in planetary exploration, the planetary construction process indicates that
humans and rovers will repeatedly visit the same location. Similarly to the robotic construc-
tion on Earth [13–15], various types of teleoperated and unmanned robots are expected to
be employed in the planetary construction. A highly detailed and accurate 3D terrain map
is essential for planning robotic operations to avoid obstacles and to construct a planetary
infrastructure, or even a planetary base [16–18].

However, 3D terrain maps, which are mostly based on planetary orbiters, have insuffi-
cient spatial resolutions. The planetary surface has homogeneous and rough terrains in the
absence of the global navigation satellite system (GNSS). Thus, for autonomous navigation
and mapping, there have been active research efforts on 3D simultaneous localization and
mapping (SLAM) techniques that employ a variety use of sensors including monocular
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or stereo camera, an RGB-D camera, and light detection and ranging (LiDAR). The SLAM
technique enables a rover to estimate its current position and orientation as well as to
construct a consistent map of its surrounding environments. For example, RGB-D and
LiDAR SLAM utilize an active sensor technology that directly obtains a highly dense 3D
point-cloud. However, a planetary rover’s capabilities are limited by communication links
and bandwidth to Earth, a power supply, a computational resource, and a data storage
capacity [19]. A monocular or stereo camera could be an alternative sensor due to its lighter
weight and lower power consumption than those of the RGB-D camera and LiDAR. Also,
3D point-clouds with color information can be created, which are essential to remotely
control a rover’s motion and operation as well as to identify a terrain feature on a plane-
tary surface. A stereo camera can measure bearing and range avoiding a scale ambiguity
problem from a monocular camera. In addition, the stereo camera system is mounted on
recently designed rovers for the Moon and Mars explorations (e.g., Yutu rovers in Chang-E
3 and 4 missions and a Perseverance rover in the Mars 2020 mission) [20–23].

In this regard, a modern stereo SLAM is utilized to develop a robotic construction
mapping method. However, there are technical limitations, such as the sparse nature
of 3D point-clouds, a larger positional error from a longer distance measurement, and
the difficulty of estimating a rover’s positions from homogeneous terrains. Thus, in this
paper, the robotic mapping method, which is adaptive to the stereo SLAM, is proposed
with enhanced capabilities to build a highly detailed and accurate 3D point-cloud for
construction purposes.

2. Literature Review
2.1. Planetary Construction

The international space community is becoming increasingly interested in and com-
mitted to robotic explorations toward development of infrastructure and a base on the
Moon and, ultimately, to Mars [24]. The conceptual process on a planetary construction
consists of a site selection, a site investigation, a site preparation and an infrastructure
emplacement, and a base and ISRU facility construction (Figure 1).
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Over the last few decades, planetary remote sensing data has been used to build
global 3D terrain maps for landing site selection and path planning [25–27] and to assess
the availability and distribution of in situ resources [28–31]. The remotely sensed data can
also be utilized to locate the planetary infrastructure and base, meeting ISRU and civil
engineering conditions to support a permanent and sustainable human presence on the
Moon and Mars (Figure 1a) [32–34]. The ISRU conditions concern the ability to utilize
indigenous materials, resources, and environments to extract useful commodities such as
water, metals, and structural building materials. In the civil engineering conditions, the
topographic and geotechnical feasibility to improve foundation and to stabilize surface
are concerned, along with the development or maturation of engineering capability of
robotic construction.

However, due to insufficient spatial resolutions of the remote sensing data, the robotic
surface investigation is required to build the 3D terrain map with a high resolution and to
characterize the geotechnical property and the resource availability on the construction
site (Figure 1b). The 3D mapping result can then be used to plan a robotic construction
operation for the site preparation. Ground excavation and obstacle clearing proceed to
build a stable foundation for infrastructure emplacement [35,36] (Figure 1c). The planetary
construction requires repeated visits to the same location by humans and robots. Therefore,
a landing pad with a berm is a high initial priority to mitigate lander plume effects that
can disturb regolith and damage human and robots. A road improves the mobility around
the infrastructure and helps to minimize the maintenance of robots. Figure 1d shows the
planetary base and ISRU facilities for a long-term human presence. In hostile environments
of planetary surface, the lava tube is one of the potential candidate sites as it can maintain
a stable temperature and provide protection from radiation and meteorites [4,37]. In the
ISRU facilities, the highest priority is water production for life support and propellant
production. Also, metal extraction is important for in-situ fabrication of spare devices and
repairs [32].

2.2. Planetary SLAM

There have been numerous research efforts on planetary 3D SLAM techniques, in
which the terrain perceptions and mapping results mainly depend on a sensor selection
and a sensor fusion. In an early stage, the monocular SLAM frameworks were presented,
involving the extended Kalman filter (EKF) and an improved feature detection and match-
ing method to track unconstrained motion of a rover [38,39]. However, the Kalman filter
only works well when distinct features are evenly distributed. Furthermore, using a single
camera without inertial and range sensors causes scale ambiguity and the measurement
drift. The RGB-D SLAM was developed as an alternative way of directly obtaining both
depth per-pixel and visual texture information [40,41]. However, lighting circumstances
can have a significant impact on the RGB-D camera, causing noisy and homogeneous
point-clouds. Tong and Barfoot [17] proposed the LiDAR SLAM for a future lunar base.
In this research, the global terrain map was made with a sparse-feature-based method
and a batch alignment algorithm that solve the robustness problems of feature association
and measurement outliers. In addition, Shaukat et al. [42] presented the camera-LiDAR
fusion SLAM that takes advantages of either of these individual sensors. Specifically,
LiDAR overcomes the field of view and point density limitations of a camera. However,
dense 3D point-clouds from LiDAR affect a significant computation cost and a large data
storage. Also, when considering that a rover with a solar array has a limited power, LiDAR
sacrifices other scientific and civil engineering payloads to investigate in-situ resources and
underground structural properties. Carrio et al. [43] proposed the stereo-inertial SLAM
based upon a stereo camera pair, inertial measurement unit (IMU), and wheel odometer.
A terrain map was created through multisensor fusion, and its accuracy was improved
by predicting non-systematic errors from the wheel interaction with the Gaussian-based
odometer error model. Also, Schuster et al. [19] presented the lighter rover unit (LRU), in
which the field programmable gate array (FPGA) board for a stereo dense mapping aids the
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localization and mapping process in combination with the IMU and wheel encoder. In the
research, the exploration rover was designed to traverse longer with low-level supervision.
The stereo-inertial SLAM requires a high-level of onboard autonomy, and all computation
should be conducted on board.

In this paper, the stereo SLAM for construction mapping is under consideration. In
comparison with the exploration rovers, the construction mapping rover is expected to
traverse a limited extent of construction candidate sites where terrains are relatively flat
with a sparse rock distribution. In addition, a more generic approach is preferred in that
a stereo-camera is one of the compulsory payloads for current and future rovers. For
which, S-PTAM [44], which is a modern stereo SLAM, is adopted and further modified
for planetary construction mapping. S-PTAM estimates the camera pose by matching the
correspondences between a terrain feature and identical features on the stereo image. Once
the current pose is estimated, the next image pair is selected as a key frame if the feature
match is lower than a predefined threshold (e.g., 90%) of the feature match in the last
keyframe. When the threshold is satisfied, the remaining unmatched image features are
triangulated with terrain features and added to the camera pose. Those of the keyframe are
stored in the stereo keyframe database. The bundle adjustment, which involves a series of
keyframes from the beginning, is used to locally optimize the camera poses. This procedure
is repeatedly performed to localize the camera.

The construction mapping requires a rover to move around a large extent of unknown
environments. The recognition of already-visited places is required to globally optimize the
camera trajectory. When the loop-closing is detected using the Bag of Words (BoW) [45], the
camera trajectory is then optimized using the graph optimization process that minimizes
the accumulated drift and consequently maintains a globally consistent trajectory of the
camera pose. However, the sparse nature of unevenly distributed point-clouds makes
them insufficient for construction mapping. The high-resolution terrain map is essential
for a construction robot to identify an obstacle distribution and to stabilize a construction
site. In this regard, the novel dense-mapping method is proposed to enhance the mapping
capability, which is described in Section 3.

3. Proposed Method
3.1. System Architecture

The robotic mapping system is designed to simulate a planetary construction mapping
process in an exploration manner (Figure 2). The rover is a four-wheeled mobile platform
with payloads consisting of a Wi-Fi enabled router and a stereo camera mounted to the
top of pan-tilt mast. The stereo camera setup has a baseline of 20 cm with a resolution
of 484 × 366 pixels per image. The pan and tilt units are capable of 360 degrees and
90 degrees of command motions in horizontal and vertical directions, respectively. The
stereo camera system enables the rover to effectively collect terrain images, minimizing
the rover’s motions. The router allows the remote computer to control the movements of
the rover’s camera system and four wheels. Also, terrain images can be transmitted to the
remote computer for a dense 3D point-cloud mapping.

3.2. Stereo SLAM-Based 3D Mapping Method

This section describes the visual SLAM-based robotic mapping method for the plane-
tary construction sites. Figure 3 shows the overall flow of the proposed method consisting
of two main threads: mapping and localization. In the beginning, a series of stereo image
pairs from the camera are used to train the self-supervised deep-learning model, from
which the disparity map is then estimated (Section 3.2.1). The disparity map is used to
create the dense 3D point-cloud map in the mapping thread (Section 3.2.2), and also to
improve the robustness of a rover trajectory in the localization thread (Section 3.2.3).
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3.2.1. Disparity Map Prediction

Recently, the deep-learning-based approach towards the dense stereo disparity pre-
diction [46–49] has been shown to outperform traditional methods [50] in multiple bench-
marks [46,51,52]. However, the training dataset available on Earth is not practical for
planetary terrains. To build an adaptable deep-learning model without the need of build-
ing a ground-truth dataset, the self-supervised deep-learning model [53] is adopted and
modified for the planetary construction mapping. The overall training and inference flows
are shown in Figure 4, in which a dataset of planetary terrain images is collected from the
stereo cameras on the rover. A subset of the collected images is involved for training the
deep-learning model that consists of 2D and 3D convolutional layers based on geometric-
based CNN (convolutional neural network) models [54]. The 2D convolution layers, which
are used to extract image features from each image, construct a cost volume. In the 3D
convolution layers, the cost volumes are aggregated to infer disparity values using the
probability distribution at each pixel. The disparity map is eventually constructed as a
regressed from of the probability distribution.

In the training (Figure 4), the loss function (L(IL, IR→L, DL)) is computed with the
disparity map and the stereo image in Equation (1), where IL is the left image and IR→L is
the right image shifted using the predicted disparity map denoted as DL.

L(IL, IR→L, DL) = α1LSSIM(IL, IR→L) + α2LI(IL, IR→L) + α3LSmooth(IL, DL) + α4L0(DL) (1)
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The structural similarity loss (LSSIM(IL, IR→L)) is used to penalize the structural
difference between the left image and the reconstructed left image (Equation (2)), where
SSIM(IL, IR→L) is the structural similarity between the left and right images.

LSSIM(IL, IR→L) =
1
N ∑

1− SSIM(IL, IR→L)

2
(2)

The RGB difference between the left and right images at each pixel, which is denoted
as LI(IL, IR→L), is also computed as follows:

LI(IL, IR→L) =
1
N ∑|IL − IR→L| (3)

The smoothness loss (LSmooth(IL, DL)) regularizes the predicted disparity to be
smooth in Equation (4), where ∇x and ∇y denotes the gradient operators for x and y
directions, respectively.

LI(IL, IR→L) =
1
N ∑|IL − IR→L| (4)

In Equation (5), the sum of all the disparities is minimized to regularize the images,
especially for the homogeneous terrains on the planetary surface.

L0(DL) =
1
N ∑|DL| (5)

In the inference (Figure 4), to avoid erroneous disparity predictions, the structural
difference between the left and right images in Equation (2) is repeatedly computed at each
pixel. The pixels with the structural difference less than a predefined threshold are not
involved in the dense point-cloud mapping. In Equation (6), 3D points are reconstructed
from the disparity map as follows: X̂3d

Ŷ3d
Ẑ

 = K−1

 x2d · Ẑ
y2d· Ẑ

Ẑ

Ẑ = f b/DL[x2d, y2d] (6)

where K, f , and b are the intrinsic matrix, the focal length, and the baseline of the camera
obtained by camera calibration respectively. DL[x2d, y2d] is the estimated disparity at 2D
coordinate (x2d, y2d). To limit computation cost, the dense disparity map is only computed
at the keyframes instead of at every frame.

3.2.2. Disparity Map for 3D Mapping

The disparity map is a basis of creating a 3D dense point-cloud in the mapping module
(Figure 3). However, a 3D dense point-cloud at each keyframe is referenced at the local
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coordinate system as described in Section 3.2.1. To combine point-clouds at each own local
coordinate system, the coordinate transformation is required to reference all point-clouds
at the global coordinate system as follows: X3d

Y3d
Z

 = R

 X̂3d
Ŷ3d
Ẑ

+ t (7)

where R ∈ R3×3 and t ∈ R3 are the rotation and translation matrix with respect to the
global coordinate system. When all points are re-projected at the identical coordinate
system, points from different keyframes can have corresponding positions. Thus, the voxel
(or 3D grid) is used to register and handle 3D points in an identical space at the predefined
resolution. Each voxel contains the coordinate and the RGB color property of a 3D point.
When multiple points are registered into the same voxel, the voxel property is updated
accordingly. In the dense 3D mapping, the voxel can decrease the number of 3D points
with the predefined resolution as well as to remove noisy 3D points when the number of
points is less than predefined number.

3.2.3. Disparity Map for Localization

In the localization module, the disparity map is used to improve S-PTAM, mainly for
the trajectory and the loop closure shown in Figure 3. In the rover trajectory, the increased
number of feature points from each frame can be reliably tracked from the reference
keyframe, influencing the improvement of the localization accuracy.

In the feature-matching procedure, the nearest neighbor distance ratio (NNDR) con-
straint is typically employed to accept point matches if the distance ratio between the first-
and second-best matches is below a predefined threshold. However, when two matches are
too ambiguous to be discriminated, the NNDR constraint can lead to the loss of important
feature points. Thus, the disparity map is utilized as an additional constraint to increase the
number of feature point matches concerning the homogeneous planetary terrains. Given a
stereo keyframe, the nearest neighbor of the feature matches is first obtained, following the
epipolar line. The disparity between two points is then computed and compared with the
corresponding position on the disparity map. The difference between the two disparities,
which is lower than the threshold, is another constraint to accept the feature matches.
In practice, the tracking procedure uses the point matches that satisfy the NNDR or the
disparity constraint thresholds.

In addition, when the rover returns to the previously visited place, the loop closure
globally minimizes the accumulated positional errors of the rover trajectory. However, an
incorrect loop detection can lead to erroneous results of both localization and mapping.
To increase the reliability, 3D points from the disparity map are used to geometrically
verify the loop closure rather than the sparse 3D points from stereo correspondence. The
increased number of 3D points from the disparity map can improve the success rate of true
loop closure.

4. Experiments and Results
4.1. Overview

The rover depicted in Figure 2 was deployed to obtain terrain images at the test
site in the Korea Research Institute of Civil Engineering and Building Technology (KICT)
(Figure 5). The test site is the emulated planetary terrains of 40 m × 50 m where gravel is
distributed over a flat ground with rocks, craters, and mounds. In the robotic mapping
operation, the stereo camera was set up with the right (+90 degrees) or left (–90 degrees)
direction rather than the front direction (0 degrees). As a result, the rover can efficiently
collect terrain images while moving forward. Also, the stereo camera was fully rotated at
periodic stops around a terrain feature. The proposed method was then applied to terrain
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images for creating a 3D point-cloud map that is converted to a 3D terrain map such as
DEM (digital elevation model) and hillshade.
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The purpose of these experiments is to evaluate capabilities of the proposed method in
the emulated planetary terrains. In Section 4.2, the disparity map based on the stereo CNN
model was verified concerning its impacts on the mapping and localization capabilities
of the proposed method. The 3D dense point-cloud as a mapping result was evaluated
with the terrestrial LiDAR data and was converted to 3D terrain maps for demonstration
purposes in Section 4.3.

4.2. Parameter Setting in the Proposed Method

The dense disparity prediction model is closely related to the localization and mapping
modules in the proposed method. The experiment and verification of the stereo CNN
model as well as its impact on feature matching and dense mapping are presented in
this section.

4.2.1. Dense Disparity Estimation

The self-supervised stereo CNN model is first trained on the publicly available Scene-
Flow dataset [46], consisting of 35,454 synthetic training stereo images and ground truth
depth. The model is trained for 10 epochs with a learning rate of 0.001 for the first
7 epochs and 0.0001 for the remaining epochs. An Adam optimizer was used with
β1 = 0.9,β2 = 0.999. Augmentation was conducted by cropping the images into size
of 512 × 256. As the ground true depth is available for the training, the smooth loss is used
as follows:

SmoothL1 =

{
0.5x2, i f |x| < 1
|x| − 0.5, otherwise

(8)

The stereo CNN model is further finetuned using the collected terrain images from
the test site in Figure 5. The learning rate for finetuning is set at 0.0001 and trained for only
1 epoch with a dataset size of around 20,000 images. During the training, the images are
randomly cropped into a size of 320× 384. Further image augmentations in the form of
random Gaussian noise, random brightness and contrast change, and random shift of each
RGB channel, are applied to obtain a more generalized model. The loss function constants
in Equation (1) are set at α1 = 0.8,α2 = 0.2,α3 = 0.1,α4 = 0.1.

The stereo CNN model, designed to run on the RTX 2080Ti GPU, is able to run at
around 20 ms per stereo frame with a resolution of 366× 484 from the rover. In the practice,
pixels with LSSIM(IL, IR→L) values less than 0.4 are rejected and shown in black. In the
other words, a black pixel indicates that prediction is made inaccurately. In Figure 6, the
stereo CNN model is qualitatively compared to other traditional methods including block
matching (BM) and semi-global block matching (SGBM). Although a set of parameters is
carefully determined, the BM-based disparity map contains much noise comparing to the
disparity maps from SGBM and CNN. The BM and SGBM only describe disparities about
an overlapped region of the stereo image. However, the stereo CNN predicts disparities
more than the overlapped region, minimizing the number of black pixels. The experiment
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results show that the predicted disparity map from the stereo CNN model is able to build
denser 3D point-clouds, reducing the rover’s motions.
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4.2.2. Disparity-Map-Aided Feature Matching

The number of feature matches from the stereo camera is closely related to the ac-
curacy of rover trajectory. In the proposed method, the disparity map predicted by the
stereo CNN model is used as additional constraint to increase feature matches from a
stereo image pair. AKAZE [55] is selected to extract and match feature points due to
its prompt and robust performance on planetary terrain images [56] and the test site in
Figure 5. In the experiment, AKAZE with multiple thresholds is applied to three differ-
ent types of terrain features including the ground, rock, and craters. Feature matches
using the brute-force method are then filtered with the NNDR with the distance ratio
of 0.6 and the disparity constraint with the difference ratio of 3. The average of feature
matches is categorized as the relative complement of the disparity map constraint in the
NNDR constraint (NNDR∩ Disparityc), the intersection of the NNDR and disparity map
constraints (NNDR∩ Disparity), and the relative complement of the NNDR constraint
in the disparity map constraint (NNDRc ∩ Disparity). Table 1 shows that the matching
results by the NNDR, excluding disparity map constraint, are very few. Most matched fea-
tures are identical to the matched results from the disparity map constraint. Nevertheless,
the disparity map constraint yields more accepted feature matches in comparison to the
NNDAR constraint, which indicates that the dense map constraint does not miss many of
the matches accepted by NNDR and accepts the matches missed by NNDR. In Figure 7,
AKAZE with large thresholds is arbitrarily applied for visual analysis. Blue lines are feature
matches accepted by both constraints, and green lines are feature matches accepted by
the disparity map but not the NNDR constraint. Feature-matching results confirm that
all of the green and blue lines are correctly matched, which indicates that the disparity
map constraint in each keyframe increases the number of extracted map points and may
improve the robustness of the localization module in the proposed method.
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Table 1. Number of feature matches with different thresholds in AKAZE.

Thresholds Number of Feature
Detected

Matching Constraint

NNDR ∩ Disparityc NNDR ∩ Disparity NNDRc ∩ Disparity

0.001 337 2 133 58
0.0001 1758 9 589 329

0.00001 2983 3 898 603
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not NNDR constraint). (a) Crater with AKAZE (0.005); (b) rock with AKAZE (0.002); (c) ground with
AKAZE (0.002).
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4.3. Terrain-Mapping Results

A 3D terrain map derived from the high-resolution terrain imagery of the Moon’s
and Mars’ orbiters depicts a general representation of terrain features. However, for
construction purposes, the terrain map has an insufficient resolution to clearly identify the
size and distribution of obstacles as well as to accurately compute an earthwork volume of
craters and mound. Thus, in the experiment, the rover traversed the entire test site for a
detailed 3D reconstruction of the emulated planetary terrain.

In the robotic mapping, the disparity map computed from stereo images estimates
the depth per pixel. The depth value combined with the color information is used create
a colored point-cloud. The rover operation in the test site imposed sensing restrictions
due to variant lighting conditions and rugged terrains. All terrain images were collected
in daytime. However, changes in weather and solar altitude led point-clouds to have
inconsistent color properties, making it difficult to identify the morphological properties of
terrain features (Figure 8a). Figure 9 shows point-clouds of craters and mounds, each of
which is indexed in Figure 8b. The crater and mound contain bright and consistent colors
of point-clouds in Figure 9a,g. However, the atmospheric clouds decreased the brightness
of terrain images, and the point-clouds have dark colors in Figure 9b,d. Partial and moving
atmospheric clouds continually changed illumination conditions, and the point-cloud in
Figure 9c consequently has a mixture of beige and gray colors. Also, the multiple circles
were created when the stereo camera was fully rotated in horizontal direction. The point-
clouds in Figure 9e,f are dark gray due to the low solar altitude in the late afternoon. In
addition, the mounds, shown in Figure 9e–g, have empty point-clouds on top as they are
higher than the stereo camera mounted on the rover mast.
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Figure 9. The 3D dense point-clouds of terrain features: (a) crater I; (b) crater II; (c) crater III; (d) mound I; (e) mound II;
(f) mound III; (g) mound IV.

The terrestrial LiDAR was used to create the reference point-cloud to evaluate the
quality of the 3D point-cloud derived from the proposed method. The two sets of point-
clouds were optimally aligned by iterative closest point (ICP). The root mean Square Error
(RMSE) was then computed as 0.27 m. Also, in Figure 10, the positional error distribution
is computed along with the positional error histogram. The RMSE result shows a good
indication of the overall performance of the proposed method. However, the positional
errors are not evenly distributed over the test site in Figure 10b, where the positional errors
in the marginal area are larger, in that the rover mainly traversed around the middle area
of the test site. In Figure 10a, the positional error histogram shows that more than 95% of
positional errors are within 0.5 m.
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The proposed method aims to build a 3D terrain map for construction purposes. The
DEM and hillshade with 0.3 m resolution were created concerning the accuracy and density



Sensors 2021, 21, 7715 13 of 17

of the measured point-clouds (Figure 11a). Also, for comparison purposes, the emulated
DEM and hillshade of 1 m and 2 m resolutions, shown in Figure 11b,c, respectively, were
created from the reference point-cloud. Figure 11 shows that all 3D terrain maps depict the
distribution of major terrain features (e.g., crater and mound). However, the size and shape
of the terrain features become distorted and exaggerated as the resolution of 3D terrain
maps decreases. For example, the emulated train maps in Figure 11b,c have the larger
grid size than obstacle (e.g., a rock and stone pile). The types of an obstacle are not clearly
distinguished from each other. Figure 11a shows that the 3D terrain map from the proposed
method has sufficient spatial resolution to show the obstacle distribution as well as to
clearly identify the shape of craters and mound for the construction planning (e.g., path
planning and obstacle clearing) and design (e.g., infrastructure emplacement) purposes.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 17 
 

 

density of the measured point-clouds (Figure 11a). Also, for comparison purposes, the 
emulated DEM and hillshade of 1 m and 2 m resolutions, shown in Figure 11b,c, respec-
tively, were created from the reference point-cloud. Figure 11 shows that all 3D terrain 
maps depict the distribution of major terrain features (e.g., crater and mound). However, 
the size and shape of the terrain features become distorted and exaggerated as the resolu-
tion of 3D terrain maps decreases. For example, the emulated train maps in Figure 11b,c 
have the larger grid size than obstacle (e.g., a rock and stone pile). The types of an obstacle 
are not clearly distinguished from each other. Figure 11a shows that the 3D terrain map 
from the proposed method has sufficient spatial resolution to show the obstacle distribu-
tion as well as to clearly identify the shape of craters and mound for the construction 
planning (e.g., path planning and obstacle clearing) and design (e.g., infrastructure em-
placement) purposes. 

  

(a) 

  
(b) 

  

(c) 

Figure 11. The 3D terrain maps (resolution): (a) measured DEM and hillshade (0.3 m); (b) emulated DEM and hillshade (1 
m); (c) emulated DEM and hillshade (2 m). 

Figure 11. The 3D terrain maps (resolution): (a) measured DEM and hillshade (0.3 m); (b) emulated DEM and hillshade
(1 m); (c) emulated DEM and hillshade (2 m).



Sensors 2021, 21, 7715 14 of 17

5. Summary and Conclusions

The recent discovery of water-ice and lava tubes from the Moon and Mars has fa-
cilitated new ideas and proposals to construct a base station for the long-term human
exploration and habitation. Meanwhile, the ISRU technology provides a means of substan-
tially reducing the cost and mass of resources that must be launched from Earth. In the
planetary construction, humans and rovers are required to repeatedly visit the same loca-
tion to build an infrastructure and a base station. The 3D terrain map with high resolution
is essential for the construction design and the construction robot operation. For which, a
robotic mapping method should be employed, as 3D terrain maps mostly derived from an
orbiter’s terrain images have insufficient resolutions. However, the planetary surface has
homogeneous and unstructured terrains under a GNSS-denied environment.

In this regard, this paper presents the visual SLAM-based robotic mapping method for
planetary construction. The proposed method combines the stereo SLAM with the deep-
learning-based stereo dense matching method to produce a highly detailed 3D point-cloud
in unknown planetary environments. Specifically, S-PTAM is adopted as a base stereo
SLAM framework. However, due to its sparse nature of unevenly distributed point-clouds,
the self-supervised stereo CNN model for disparity map estimation is used to enhance
the mapping capabilities. The major innovations of the proposed method are as follows:
first, the stereo CNN model is able to build the disparity map without the ground-true
disparity maps of a planetary terrain. Second, the disparity map prediction is used to
enrich point-clouds more than the stereo image overlapped region. A high-resolution 3D
terrain map can be constructed minimizing the rover’s motions. Third, the disparity map is
also utilized as an additional constraint to increase the number of point-clouds for tracking
and loop closing. The proposed method was applied to the emulated planetary terrain and
evaluated with point-clouds from the terrestrial LiDAR. Experiment results confirmed that
the stereo camera system on the rover can create highly detailed 3D point-clouds to build a
3D terrain map under homogeneous and unstructured environments.

Although the proposed method shows the potential use for planetary exploration
and construction, the camera system on the rover is vulnerable to variant illumination
conditions. The degraded images reveal limitations to visually identify and analyze terrain
features, and thereby the image enhancement method will be definitely worth investigating
to restore the visibility, color, and natural appearance of planetary terrain features. In
addition, although the proposed method is effective for a local 3D terrain mapping, the
rover trajectory is relatively referenced to its own coordinate system. The global localization
is another concern to correct the estimate of a rover trajectory and to align a rover-based
3D local map to an orbiter-based 3D global map.
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