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Abstract: Mechatronic systems that allow motorized activation in robotic exoskeletons have evolved
according to their specific applications and the characteristics of the actuation system, including
parameters such as size, mechanical properties, efficiency, and power draw. Additionally, different
control strategies and methods could be implemented in various electronic devices to improve
the performance and usability of these devices, which is desirable in any application. This paper
proposes the integration and testing of a high-torque, servo-driven joint and its electronic controller,
exposing its use in a robotic exoskeleton prototype as a case study. Following a brief background
review, the development and implementation of the proposal are presented, allowing the control of
the servo-driven joint in terms of torque, rotational velocity, and position through a straightforward,
closed-loop control architecture. Additionally, the stability and performance of the servo-driven
joint were assessed with and without load. In conclusion and based on the obtained results, the
servo-driven joint and its control system demonstrate consistent performance under the proposed
test protocol (max values: angular velocity 97◦/s, torque 33 Nm, positioning RMSE 1.46◦), enabling
this approach for use in various applications related to robotic exoskeletons, including human
performance enhancement, rehabilitation, or support for daily living activities.

Keywords: robotics; servomotor; joint; actuator; exoskeleton; mechatronic systems; control; upper
limbs; modeling robotic systems

1. Introduction

The current technological and industrial revolution, and the appearance of various
manufacturing techniques, promote progress in the design and development of wearable
robotic exoskeletons attached to different limbs of the human body [1]. Currently, robotic
exoskeletons (also called exosuits) are one of the most versatile device families that have
been successfully developed [2,3]. A broad range of applications has made robotic ex-
oskeletons a key research topic [4], impacting cross-cutting areas beyond engineering [5].
Exoskeletons have become highly relevant, from systems with industrial applicability [6],
through the enhancement of human capabilities [7], to complex rehabilitation systems for
both upper and lower limbs [8,9].

Although developments often focus on providing mechanical support, other factors
such as implementation cost, power consumption, or device weight take a back seat in
wearable or portable systems [10]. This could limit the practical use of the proposed
actuators in applications where these improvements are required [11].

However, with the recent advancement in mechatronic systems as well as embed-
ded control techniques, new milestones in design, size, weight, and capabilities have been
reached [12]. Regardless of their application, the development of actuation systems is essen-
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tial for the improvement of various mechatronic systems that continue to be updated [13]
as it allows for increased efficiency in mechanical and electrical terms.

From an applied control engineering perspective, control system development and
enhancement have allowed increasing applications of existing actuation systems [14,15],
making hardware and software co-design an essential process. In addition, the use of
advanced processing and control techniques allows for improved actuator stability and
response times. Consequently, more demanding applications can arise from the implemen-
tation of these advantages [16].

Considering the above, this document proposes the integration of a high-torque, servo-
driven joint and its electronic controller, taking as a study case the actuation of an upper
limb exoskeleton prototype. Additionally, the paper presents the test results conducted
to determine the stability of the actuation system in different scenarios, including the
technological integration, angular velocity maximums, torque output, and positioning
error. The objective of these analyses is to determine the preliminary performance of the
proposed joint under loaded and unloaded motion conditions.

As shown in the Discussion section, the main contribution of this work is the de-
velopment of a single structure containing a high-torque actuator and its control system,
proposing a robust embedded system with balanced power consumption and demonstrat-
ing low positioning error with speeds considered high and suitable for various applications.

This paper is sequentially organized in different sections, as mentioned below. Section 2
presents a brief contextualization based on background research related to the development
of mechatronic actuation systems in robotic exoskeletons. Section 3 describes the central
proposal, emphasizing the materials and methods used for its development, including
the used protocol for the servo-driven joint testing. Section 4 shows the implementation
of the proposal and compiles the achieved results. Section 5 present the discussions and
comparison of the findings with the previously reviewed literature. Finally, Section 6 offers
conclusions and possibilities for future work derived from this research.

2. Related Works

This section provides a brief compilation of relevant studies that encompassed me-
chanical actuation systems in robotic exoskeletons, including other surrounding topics such
as embedded electronics and specific control algorithms. The reviewed papers provide
background information on the key elements addressed in this research. The scope of this
study is limited to those systems with servomotor-based actuators, which serve as a direct
reference point for the comparison and subsequent discussion of the results obtained in
this paper.

2.1. Servo-Driven Systems in Robotic Exoskeletons

As a starting point from the mechanical side, the gearbox designs presented in [17]
are relevant when exploring different ratio configurations and their potential applications.
This review highlights the inclusion of several compact mechanical transmission systems,
which can serve as a benchmark in the design of more compact, lightweight, and functional
transmissions.

As robotic systems continue to be explored, and regardless of the final application
of the exoskeleton, servomotor-based drive systems can have different implementations.
One of the most comprehensive papers shows the development of a modular and compact
drive system for a lower limb exoskeleton [18]. It highlights the high response speed of the
proposed control system, reaching a maximum of 110◦/s (2.0 rad/s peak).

The research conducted in [19] shows a compact structure offering high torque (ab-
solute maximum values of approximately 30 Nm) in knee-ankle joint motion assistance
applications. This study shows that the maximum speed is up to 180◦/s (30 RPM). In addi-
tion, various tests are performed on the actuator, which also conclude that it has sufficient
torque for lower-limb-rehabilitation applications, although it is restricted in software to
avoid thermal overstrain.
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In the same sense, [20] uses a series of servo-actuators for the development of a
walking assistance robot. Although their application focuses on the development of Body
Weight Support (BWS) systems as in [21], these systems are considered a suitable approach
to the use of servo-actuators for demanding applications in terms of torque and versatility.

Some other developments show devices implemented to allow the mobility of the
upper limbs. Such is the case of the system proposed in [22], which provides high speed
(reaching a maximum value of 0.3 m/s) combined with precise position control and
moderate torque for rehabilitation purposes. Furthermore, and derived from the presented
data, it is clear that the effective range of motion of the exoskeleton is wide, reaching
reference values for elbow flexion-extension of up to 140◦.

Finally, in [23], an experimental design of an arm motion assistance device is presented.
This device is characterized by its high portability and modularity, as well as its simple
design, which allows rapid prototyping. The results establish an estimated total torque of
5 Nm, an effective range of 48.62◦, and an average current drawing of 0.3 A.

2.2. Electronic Systems and Control Techniques

In terms of electronic devices and strategies for controlling servo-driven systems, there
are several remarkable approaches. The work developed in [24] is particularly significant
since it reviews several advanced control strategies for servo devices, mainly using sliding
methods. These advanced control methods enable better trajectory tracking as well as
active disturbance rejection, which can improve actuator performance in applications
that require higher precision in motion execution. Another controller based on sliding
modes excels in performance with servo actuators [25], achieving signal establishment
and tracking in less than 20 s and a maximum positioning error of 0.4◦. These results are
exceeded in [26], where a similar controller achieves stable position establishment in less
than 12 s and an average error of 0.21◦.

The research of [27] stands out, in which an integrated cascaded-controller system
was designed to complete rehabilitation training sessions. It has near-immediate response
rates on an electrically actuated joint, although no readily derivable numerical results
are provided compared to other proposals. The work highlights that by combining the
computational capability of a DSP and the processor power, cascade controllers can adapt
different load perturbations and make the active forces of the subjects reach maxima.

The device previously reviewed in [23] has a control system built with Arduino and
other easily accessible elements, similar to the proposal shown in [18]. Although the system
responsiveness is good, as in the case of [28], the integration of different signals types adds
value to the proposed control system. The latter work specifically highlights a response
time in the order of milliseconds, with an amount of error ranging from 7% to 9% (20◦–23◦)
under load conditions.

Regarding the field of upper limb robotic actuators, the results shown in [29] are
significant, as they use digital filtering techniques to improve system performance. Control
signal stabilization is achieved in less than 1 s, reducing the actuator positioning error close
to 20%.

The research developed in [30] provides excellent results in terms of positioning error
reduction, reaching values close to zero, ensuring the final uniform delimitation of the
lower limb exoskeleton robot. The technique employed for trajectory tracking was based
on Udwadia-Kalaba theory, which constitutes a novel, robust and adaptive control system.
Although the results are based on simulations, experiments are expected to match the
paper with high fidelity.

Finally, as for control strategies based on position and force in a single unit, the work
presented in [31] is characterized by achieving low absolute error, although its application
is based on linear actuators. The method is suitable for both trajectory tracking during
free motion and interaction force control during contact between a controlled mechanical
system and its environment. The proposed algorithm is simple and easy to implement,
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allowing its deployment in embedded systems added to conventional actuators, taking a
step towards “smart actuators”.

3. Materials and Methods

This section presents the collection of materials and methods used for the development
of the servo-driven joint. It includes the description of the actuation system; the upper
limb robotic exoskeleton (based on [32]), where the proof of concept is performed; the basic
control system that drives the joint; and finally, the test protocol designed to determine the
performance of the integrated systems.

3.1. Servo-Driven Joint and Exoskeleton Prototype

The servo-driven joint is composed of a high-speed DC motor coupled to a mechanical
transmission that provides an optimal ratio of high torque and moderate speed for the
intended application. As seen in Figure 1, the motor frame and gearbox are coupled to a
rotational hinge that binds two segments of the prototype upper limb exoskeleton together,
providing actuation at the elbow joint level for 1-DoF extension and flexion motion. On
the other hand, the specifications of the DC motor and the gearbox used are presented in
Tables 1 and 2, respectively.

The components selection, in particular the 560:1 transmission ratio, allows obtaining
a theoretical maximum rotational speed of 20 RPM (120◦/s) and a maximum theoretical
torque around 41 Nm at the output of the servo-driven joint.
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Figure 1. Actuation system based on a DC motor, a gearbox, and electronics, attached to an upper limb exoskeleton
prototype for flexion-extension movement.

Table 1. DC motor specifications.

Motor Parameter Value

Motor Type DC Brushed
Rotational Speed 11,200 RPM

Torque 75 mNm
Nominal Voltage 12–24 VDC
Nominal Current 4500 mA

Weight 285 g
Material Steel
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Table 2. Gearbox specifications.

Reducer Gearbox Parameter Value

Gearbox Type Compound Spur Gear
Max. Input Rotational Speed 12,000 RPM

Ratio 560:1
Efficiency 0.79

Output Shaft Diameter 8 mm
Weight 278 g

Material Steel

3.2. Control System

To make the best use of the available space and create a compact system, two circuit
boards are mounted on the mechanical system described above to allow the implementation
of the control system. The control system consists of the Motor Control Unit (MCU) and the
Peripheral Processing Unit (PPU), with redundant (hardware-hardened) microcontroller-
based units.

In addition, the circuit board comprising the MCU also contains sensors that contin-
uously monitor the behavior of the actuation system. (1) A current sensor is included,
allowing a further algorithmic torque calculation. (2) An embedded high-precision abso-
lute encoder determines the position of the main shaft at the gearbox output and before
coupling to the exoskeleton, eliminating possible structure oscillations. This encoder type
is less susceptible to magnetic disturbances, thus increasing its reliability. Figure 2 below
shows the functional block diagram of the proposed system.
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Figure 2. Functional block diagram integrating the power converters, control units, sensors, and the actuation system.

As for the controller architecture, a classical strategy based on a PID-type controller is
used. This controller is designed as a closed-loop system, whereby the position of the main
axis of the joint actuator (measured by the absolute encoder) is fed back into the system.
Additionally, other variables (such as those produced by the current sensor) are used to
calculate the torque exerted (although no direct control over this parameter is realized).
The desired angular velocity is also taken into account, thus controlling a PWM modulator
that regulates the direct speed of the DC motor, directly impacting the speed of the final
axis of the joint. A diagram of the simple controller implemented in this development is
shown below in Figure 3.
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This controller was designed to create a simple loop with a hardware-effective struc-
ture. The control methodology is based on obtaining an initial reference value from the
host computer, both in terms of the desired position and the desired angular velocity. The
desired position is filtered and transferred to the controller, which manages the position
of the DC motor using a PWM modulator. The PWM modulator also takes the desired
angular velocity as a reference to move the motor at different speeds. It should be noted
that the throttle-handling feature is constituted by an external static controller that applies
a modification in the time domain of the angular velocity reference.

When this is transferred to the final actuator (actuated join main shaft) through the
gearbox, the absolute encoder measures the position and feeds the signal back to the
controller, which dynamically makes the necessary adjustments to maintain the desired
reference value. Independent of this closed control loop, the current sensor sends the
information directly to the computer to provide data about the current draw of the motor
during the execution of the motion. Although this controller does not directly manage the
torque at the actuator output, an additional closed-loop stage using the current drawn by
the motor can be included to allow this functionality.

Characteristically, the frequency of feedback of information to the control loop is
120 Hz. Likewise, the position update frequency from the host (when tracking a trajectory,
for example) is 30 Hz. This allows the controller to quickly adapt to externally produced
signal changes and properly achieve the final axis position setting. The characteristic
latency of the controller was not determined.

3.3. Testing Protocol

As specified in Table 3, a testing protocol is proposed to determine the correct func-
tioning and performance of the servo-driven joint. This test protocol is independent of
the chosen application, as it allows establishing some of the mechanical and electrical
characteristics of the actuator together with the proposed embedded controller.

Table 3. Test protocols of the servo-driven joint and its control system.

Item Test Protocol

Functional integration Motion transfer checks from the servo-driven joint to the exoskeleton
mechanism and its maximum flexion-extension range.

Angular velocity Experimental determination of the maximum angular velocity at a 24 VDC
nominal voltage, both with load and without load.

Torque Analytical calculation of the maximum delivered torque. The current draw
value is recorded during the angular velocity test.

Positioning Analytical and experimental determination of the positioning error at the
maximum registered angular velocity.
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4. Results

This section shows the results obtained following the test protocol established in
Table 3. It is highlighted that the prototype exoskeleton coupled to the servo-driven joint
was used on a healthy human subject for load testing after performing the non-loaded tests,
verifying the safety measures framed within the research project.

4.1. Functional Integration

To test the functionality of the servo-driven joint and exoskeleton prototype, as well
as its basic functionality, a functional integration must be performed. Figure 4 shows the
integration of the different components of the system according to the defined methodology.
This integration process takes place in three stages. In stage 1, the motor and gearbox are
coupled and fitted into the exoskeleton prototype. In stage 2, the control elements (MCU
and PPU) are incorporated into the system as partially integrated elements while initial
validations are performed. Finally, in stage 3, a single integrated drive and control system
is assembled.
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The activation and operation commands were sent through a computer to the PPU via
a USB connection. The same connection was used to collect the MCU parameters in real-
time. There is an additional safety mechanism that allows the immediate disconnection of
the power supply of the prototype using a switch. The electrical power supply is noticeable
on stage 2, where a high-density LiPo battery (7.4 V, 5300 mAh, Current Rating 30 C) is
connected to the buck-boost conversion system.

The integration of the functional elements and their operability is successfully tested,
as motion transfer is performed from the servo-driven joint to the exoskeleton system in
both loaded and unloaded scenarios. The maximum motion range in the servo-driven joint
is found from 0◦ (maximum extension) to 300◦ (maximum flexion). This range must be
algorithmically limited as it exceeds the mechanical properties of the exoskeleton prototype.
The overall amplitude is set from 0◦ to 145◦ at maximum.

4.2. Angular Velocity

For the experimental measurement of the maximum servo-driven joint angular veloc-
ity, a 24 VDC nominal voltage is set on the boost converter. Theoretically, the maximum
velocity with this configuration is 120 ◦/s using the gearbox gear ratio (560:1) as the cal-
culation basis. The implemented controller in the MCU has a throttle curve defined by a
sigmoid function for both flexion and extension, which smoothes the motor starting and
stopping procedures, thus avoiding current surges. The throttle function is defined as
shown in Equation (1).

f (x) = 1 ·
(

1 + e−c1∗(x−c2)
)−1

(1)
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The DC motor is activated when the control signal is sent from the host computer to
the PPU and transmitted to the MCU, where the throttle function is applied. For this test,
a step signal is sent, which sets the set point at 120◦. Therefore, the trajectory starts at 0◦

(maximum extension) until it reaches 120◦ (flexion). The resulting experimental response
curve is shown in Figure 5, which is used to analytically determine the actuator velocity as
a function of system response time.
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Figure 5. Characteristic response curves over a 0◦ to 120◦ movement using a 24 VDC nominal voltage at the input of the
actuation system. The figure shows the test without and with load, respectively.

During non-load activation, the servo-driven joint travels 120◦ in 1.20 s. This leads to a
maximum experimental angular velocity of 100◦/s (1.74 rad/s, 16.67 RPM), corresponding
to 83.3% of the previously calculated theoretical velocity. Concerning the motion with load,
the servo-driven joint travels 120◦ in 1.24 s. This leads to a maximum experimental angular
velocity of 97◦/s (1.69 rad/s, 16.17 RPM), equivalent to 80.6% of the theoretical velocity
calculated above.

4.3. Torque

For the analytical torque calculation, the current draw is measured during the above
test protocol. This information is graphically represented in Figure 6.
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Since the current is not a constant value over time and fluctuates according to load
conditions and acceleration, among others, a summary of the average torque values is
presented in Table 4 below.
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Table 4. Current draw measurement during the previous test protocol.

Measurement Registered Value without Load Registered Value with Load

Peak Current (absolute) 1780 mA @ 16.67 RPM 3061 mA @ 16.17 RPM
On-duty Current (avg.) 1425 mA @ 16.67 RPM 2962 mA @ 16.17 RPM
Standby Current (avg.) 392 mA 430 mA

As long as the servo-driven joint reference does not change (standby), there is a slight
current draw due to continuous end-position adjustments by the controller, producing soft
movements in the DC motor. Regarding the current sensor used for these measurements, it
has an operating measurement range of ±5 A with a typical sensitivity of 185 mV/A, a
typical impulse response time of 5 µs, and a bandwidth of 80 kHz.

The torque is determined analytically according to Equation (2), where V is the motor
voltage, I is the measured current in Amperes, N is the measured RPM, and E is the
efficiency of the gearbox.

T = E · (V · I) ·
(

2 · π · N
60

)−1

[Nm] (2)

Taking this into account, Table 5 presents the result of the analytically found torque
according to the current measurements.

Table 5. Torque calculation based on the recorded current consumption.

Measurement Analytical Value without Load Registered Value with Load

Peak Torque (absolute) 19.3 Nm 34.3 Nm
On-duty Torque (avg.) 15.5 Nm 33.2 Nm

The analytically found torque is lower than the theoretical torque determined with
the conversion ratio, possibly due to the efficiency of the gearbox during mechanical con-
version. However, the values obtained theoretically are consistent with the measurements
performed, establishing a suitable confidence range.

4.4. Positioning

The positioning of the servo-driven joint is performed by the integrated electronics.
While the system automatically follows a control reference, control signals (PWM) are
automatically generated using closed-loop feedback information. The error is calculated
using Equation (3): Fm is the flexion position measured at the encoder, Em is the extension
position measured at the encoder, and Fr and Er are the reference flexion and extension
positions as set by the control signal.

Eabs = (Em − Er) + (Fr − Fm) [
◦] (3)

The absolute error for the servo-driven joint motion was 1.06◦ (without load) and
1.17◦ (with load). This error is low and is intended to be compensated by the control
system. However, it is necessary to calculate the RMSE over the joint motion over a pattern,
giving a more realistic insight into the system’s behavior when used in real-life applications.
Tracking of a sinusoidal reference pattern is satisfactory, resulting in an RMSE of 1.46◦. It
is observed that the motion is accurate at a high angular velocity, reaching 96◦/s, which
coincides with the results obtained with the step stimulus. The response curve obtained is
presented in Figure 7.
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4.5. Stability

An additional test aimed at determining the stability of the joint actuator was per-
formed using the positioning test protocol as a basis. For the system stability test, the
routine was performed concurrently in five cycles with the parameters described above
(joint amplitude 120◦, nominal input voltage 24 VDC, and expected angular velocity 96◦/s).
The test results are graphically shown in Figure 8 below.
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the actuation system. The figure shows the tests under load conditions.

Following a qualitative analysis of the obtained results, the system presents expected
behavior with minor variations between executions. As for the angular velocity, the system
presents minimum lags or leadings that are compensated by the proposed controller within
the expected response limits. These variations in angular velocity may be due to changes
in the voltage flow through the controllers or to the system dynamics itself.

Regarding the positioning behavior, a pitfall occurs via signal flattening, failing to
reach the maximum value of the peak of the reference sine wave. This problem is concurrent
across all tests, presenting a similar flattening in magnitude each time. In the same way,
smaller deviations occur, reaching the valley of the sinusoidal reference signal, whereas
the position of the joint actuator seems to exceed the established limit in some cases.
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Considering this behavior, it is believed possible to adjust the controller in a future revision
to compensate for the offset of the actuator response.

In the last repetition of the stability test (Exoskeleton Actuator Test 5), an anomaly
occurs in the controller response, leading to a partial loss of reference signal tracking, which
constitutes a special case. Although this anomaly is subsequently compensated by the
controller, the settling time of this correction was greater than 300 ms, which is considered
a slower response time than the average in other position correction scenarios. However,
it should be noted that the tracking of the reference waveform was satisfactory after the
required recovery time.

Table 6 shows a summary of the RMSE obtained for each of the tests performed in this
protocol.

Table 6. Summary of the RMSE obtained for each of the tests performed in the stability test protocol.

Test RMSE

Exoskeleton Actuator Test 1 1.46◦

Exoskeleton Actuator Test 2 1.58◦

Exoskeleton Actuator Test 3 1.13◦

Exoskeleton Actuator Test 4 1.35◦

Exoskeleton Actuator Test 5 2.32◦

5. Discussion

The proposed system has some remarkable features compared to other reviewed
studies. Regarding the effective joint amplitude range, the proposed system achieves a
maximum flexion of 140◦, which is 5◦ larger when compared to previous works such
as [22]. Additionally, the total amplitude of this proposal is 96◦ wider compared to [23].
Considering that the natural range of elbow extension is 2◦ ± 9◦, and elbow flexion
is 142◦ ± 12◦ [33], the proposed device covers the typical upper limb working ranges
in various applications such as human limb enhancement or rehabilitation using active
devices.

As for the angular velocities achieved with the proposed servo-driven joint, the joint is
found to have a satisfactory velocity range that meets the above tasks, effectively reaching
97◦/s when tested under load. It has been shown that the proposed servo-driven joint has
a longer settling time, reducing its maximum and average speed. Some of the previously
reviewed works are capable of higher final velocities, which can be improved in this
proposal. In this section, some results stand out, such as those in [18] (110◦/s peak),
in [19] (180◦/s peak), and in [22], although in the latter, the final angular velocity reached
(expressed as linear velocity around 0.3 m/s peak) is not certain.

In terms of the nominal torque under loaded tests, the proposed servo-driven joint can
develop a maximum torque of 34 Nm, exceeding the nominal torque of other previously
reviewed works, such as [19] (30 Nm limited due to thermal control under the actuator)
and [23] (reaching 5 Nm, although this is sufficient for the application of the system).

Regarding the trajectory executed by the joint, it can be observed that the acceleration
curve allows softening the movement in the exoskeleton. The curve facilitates the reduction
of the load on the voltage converters and creates a smooth movement according to the arm
biomechanics. This can be considered an advantage when performing precise tasks. This
result is better in terms of smoothness and noise reduction compared to other works such
as [23,28,29].

It is noted that the simple controller proposed for this servo-driven joint has a char-
acteristic response time in the order of milliseconds, comparable to the results obtained
in [27,29,31]. The obtained results in this proposal surpass those evidenced in [25] (with
a settling time close to 20 s maximum) and in [26] (with a settling time close to 12 s
maximum).

As for the absolute accuracy of actuator movements, controllers using sliding modes
and other techniques evidenced in the review allow a significant error reduction. This
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proposal yields an absolute error of 1.17◦, which is a larger error value when it is compared
to the results shown in [25] (0.4◦ absolute error), and compared with the results shown
in [26] (0.2◦ average error). However, this proposal is better compared to [28,31], since the
latter has a higher RMSE error (in some cases exceeding 20◦). Despite this, this proposal
can be improved in terms of the absolute accuracy of the servo-driven joints and achieve
better reference values, as shown in [30].

Finally, some tests show that the proposed controller for this servo-driven joint per-
forms faster and without overshooting when it comes to tracking a static or dynamic
reference, compared to works such as [22,29], where the tracking of the proposed trajec-
tories is slightly better. These works do not offer a standardized measure of error, so
quantification of the improvement is not possible in arithmetic terms. Similar comparisons
were made in [31], where although adequate trajectory tracking is performed, flattening
occurs, which impacts the final accuracy of the system.

Figure 9 shows a graphical summary of the results obtained in this proposal compared
to some of the works shown in the state of the art, specifically contrasting the best and
worst documented results for each comparison item. For reading unification, regardless
of the measurement unit, the results are expressed as a percentage. Those results that are
better than those obtained in this proposal are above 100%, while results that are worse
than those obtained in this proposal are below 100%.
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6. Conclusions and Future Work

This paper described the integration and testing of a high-torque, servo-driven joint
and its embedded electronic controller with application in a prototype upper limb exoskele-
ton. By designing the servo-driven joint with a high-ratio transmission gearbox, a high
torque output with a peak of 34.3 Nm under load is achieved, which enables the movement
of the mechanical structure and the human arm in different tasks that can range from
industrial, human augmentation, and rehabilitation.

The angular velocity of the proposed servo-driven joint reaches a peak value of 97◦/s
under load. Although this speed is an average value and is limited by the control system
to avoid current surges in the boost converter, it is adequate for the applications mentioned
above.

Lastly, low absolute error (1.17◦) and root-mean-square error (1.46◦) values are ob-
tained, which implies that the developed direct control strategy has suitable characteristics
for the precise motion of the joint. Additional features include the low weight of the joint
(approx. 590 g while quantifying the electronic system), allowing the application of this
system in wearable prototypes. Additionally, noteworthy is the functional integration of
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all elements, with an embedded control system that is capable of performing the tasks
without further bulk within the actuator design itself.

As future work, the use of better control algorithms (such as those presented in [24–26])
is proposed to decrease the positioning error. The use of other throttling functions can be
explored, aimed at avoiding current surges in the power converters but improving the
speed response of the servo-driven joint. Additionally, decreasing the weight and size of
the proposed joint and its electronic controller is important to gain versatility in the use of
the system, thus enabling possible applications in robots integrated with the human body.

It should be noted that beyond the design of the actuation system and its electronic
controller, future work also includes the improvement of the specific application described
in this work (robotic exoskeleton prototype). It is necessary to consider critical aspects such
as cooperation with the movement of human limbs and their protection against fatigue or
overload. This requires the use of a larger number of sensors and new control strategies
that use the principles shown in this work and that allow the refinement of a more concrete
application based on this type of integrated actuator.
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