A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Related Work
2.2. State-of-Art Pre-Trained CNN Classification Models
2.3. Convolutional Autoencoders
2.4. Proposed Topology
2.5. Proposed Convolutional Autoencoder’s Architectural Design
3. Case Study Applications/Datasets
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Acronyms and Abbreviations
Acc | Accuracy |
AUC | Area under the curve |
CAE | Convolutional autoencoders |
CNN | Convolutional neural networks |
CAE-CNN | Convolutional autoencoder–convolutional neural network |
DL | Deep learning |
GCRF | Gaussian conditional random field |
GM | Geometric mean |
GM-MRF | Gaussian mixture Markov random field model |
GSM | Gaussian scale mixture |
ISIC | International skin imaging collaboration |
LSS | Least squares solution |
MD | Means denoising |
ML | Machine learning |
MRF | Markov random fields |
References
- Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, L.; Zhu, F.; Li, X. Transfer learning for visual categorization: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2014, 26, 1019–1034. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, K.; Li, Y. A causal view on robustness of neural networks. arXiv 2020, arXiv:2005.01095. [Google Scholar]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Wickramasinghe, C.S.; Marino, D.L.; Manic, M. ResNet Autoencoders for Unsupervised Feature Learning From High-Dimensional Data: Deep Models Resistant to Performance Degradation. IEEE Access 2021, 9, 40511–40520. [Google Scholar] [CrossRef]
- Zabalza, J.; Ren, J.; Zheng, J.; Zhao, H.; Qing, C.; Yang, Z.; Du, P.; Marshall, S. Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 2016, 185, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ilesanmi, A.E.; Ilesanmi, T.O. Methods for image denoising using convolutional neural network: A review. Complex Intell. Syst. 2021, 7, 2179–2198. [Google Scholar] [CrossRef]
- Jain, V.; Seung, S. Natural image denoising with convolutional networks. In Proceedings of the 22nd Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–10 December 2008. [Google Scholar]
- Lyu, S.; Simoncelli, E.P. Statistical modeling of images with fields of Gaussian scale mixtures. In Proceedings of the 20th Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006. [Google Scholar]
- Portilla, J.; Strela, V.; Wainwright, M.J.; Simoncelli, E.P. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 2003, 12, 1338–1351. [Google Scholar] [CrossRef] [Green Version]
- Tappen, M.F.; Liu, C.; Adelson, E.H.; Freeman, W.T. Learning gaussian conditional random fields for low-level vision. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Weiss, Y.; Freeman, W.T. What makes a good model of natural images? In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Arai, H.; Chayama, Y.; Iyatomi, H.; Oishi, K. Significant dimension reduction of 3D brain MRI using 3D convolutional autoencoders. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 5162–5165. [Google Scholar]
- Guo, X.; Liu, X.; Zhu, E.; Yin, J. Deep clustering with convolutional autoencoders. In Proceedings of the International Conference on Neural Information Processing, Guangzhou, China, 14–18 November 2017; pp. 373–382. [Google Scholar]
- Kucharski, D.; Kleczek, P.; Jaworek-Korjakowska, J.; Dyduch, G.; Gorgon, M. Semi-supervised nests of melanocytes segmentation method using convolutional autoencoders. Sensors 2020, 20, 1546. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, I.N.; Spatti, D.H.; Flauzino, R.A.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial neural network architectures and training processes. In Artificial Neural Networks; Springer: Cham, Switzerland, 2017; pp. 21–28. [Google Scholar]
- Sun, Y.; Mao, H.; Guo, Q.; Yi, Z. Learning a good representation with unsymmetrical auto-encoder. Neural Comput. Appl. 2016, 27, 1361–1367. [Google Scholar] [CrossRef]
- Mei, S.; Ji, J.; Geng, Y.; Zhang, Z.; Li, X.; Du, Q. Unsupervised spatial–spectral feature learning by 3D convolutional autoencoder for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6808–6820. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Tian, C.; Xu, Y.; Fei, L.; Yan, K. Deep learning for image denoising: A survey. In Proceedings of the International Conference on Genetic and Evolutionary Computing, Changzhou, China, 14–17 December 2018; pp. 563–572. [Google Scholar]
- Barbu, A. Learning real-time MRF inference for image denoising. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1574–1581. [Google Scholar]
- Zhang, R.; Bouman, C.A.; Thibault, J.B.; Sauer, K.D. Gaussian mixture Markov random field for image denoising and reconstruction. In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing, Austin, TX, USA, 3–5 December 2013; pp. 1089–1092. [Google Scholar]
- Chen, M.; Shi, X.; Zhang, Y.; Wu, D.; Guizani, M. Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans. Big Data 2017. [Google Scholar] [CrossRef]
- Seyfioğlu, M.S.; Özbayoğlu, A.M.; Gürbüz, S.Z. Deep convolutional autoencoder for radar-based classification of similar aided and unaided human activities. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1709–1723. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Pintelas, E.; Livieris, I.E.; Barotsis, N.; Panayiotakis, G.; Pintelas, P. An Autoencoder Convolutional Neural Network Framework for Sarcopenia Detection Based on Multi-frame Ultrasound Image Slices. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Crete, Greece, 25–27 June 2021; pp. 209–219. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Martinez, M.; Stiefelhagen, R. Taming the cross entropy loss. In Proceedings of the German Conference on Pattern Recognition, Stuttgart, Germany, 9–12 October 2018; pp. 628–637. [Google Scholar]
- Xu, L.; Ren, J.S.; Liu, C.; Jia, J. Deep convolutional neural network for image deconvolution. Adv. Neural Inf. Process. Syst. 2014, 27, 1790–1798. [Google Scholar]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Lee, T.K.; McLean, D.; Lui, H.; Atkins, M.S. Detection and analysis of irregular streaks in dermoscopic images of skin lesions. IEEE Trans. Med. Imaging 2013, 32, 849–861. [Google Scholar] [CrossRef]
- Li, L.; Bao, J.; Zhang, T.; Yang, H.; Chen, D.; Wen, F.; Guo, B. Face X-ray for more general face forgery detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 5001–5010. [Google Scholar]
- Dolhansky, B.; Bitton, J.; Pflaum, B.; Lu, J.; Howes, R.; Wang, M.; Canton Ferrer, C. The deepfake detection challenge dataset. arXiv 2020, arXiv:2006.07397. [Google Scholar]
- Rossler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Nießner, M. Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 1–11. [Google Scholar]
- Agarwal, S.; Farid, H.; Gu, Y.; He, M.; Nagano, K.; Li, H. Protecting World Leaders Against Deep Fakes. In Proceedings of the CVPR Workshops, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Durall, R.; Keuper, M.; Pfreundt, F.J.; Keuper, J. Unmasking deepfakes with simple features. arXiv 2019, arXiv:1911.00686. [Google Scholar]
- Qian, Y.; Yin, G.; Sheng, L.; Chen, Z.; Shao, J. Thinking in frequency: Face forgery detection by mining frequency-aware clues. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 86–103. [Google Scholar]
- Pan, Z.; Yu, W.; Yi, X.; Khan, A.; Yuan, F.; Zheng, Y. Recent progress on generative adversarial networks (GANs): A survey. IEEE Access 2019, 7, 36322–36333. [Google Scholar] [CrossRef]
- Powers, D. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Livieris, I.E.; Pintelas, E.; Kiriakidou, N.; Stavroyiannis, S. An advanced deep learning model for short-term forecasting US natural gas price and movement. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Neos Marmaras, Greece, 5–7 June 2020; pp. 165–176. [Google Scholar]
- Livieris, I.E.; Kiriakidou, N.; Stavroyiannis, S.; Pintelas, P. An advanced CNN-LSTM model for cryptocurrency forecasting. Electronics 2021, 10, 287. [Google Scholar] [CrossRef]
- Howard, J.; Gugger, S. Deep Learning for Coders with Fastai and PyTorch; O’Reilly Media: Newton, MA, USA, 2020. [Google Scholar]
- Buades, A.; Coll, B.; Morel, J.M. Non-local means denoising, image processing on line. Image Process. On Line 2011, 1, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Hodges, J.L.; Lehmann, E.L. Rank methods for combination of independent experiments in analysis of variance. Ann. Math. Stat. 1962, 33, 482–497. [Google Scholar] [CrossRef]
- Finner, H. On a monotonicity problem in step-down multiple test procedures. J. Am. Stat. Assoc. 1993, 88, 920–923. [Google Scholar] [CrossRef]
- Lomacenkova, A.; Arandjelovic, O. Whole Slide Pathology Image Patch Based Deep Classification: An Investigation of the Effects of the Latent Autoencoder Representation and the Loss Function Form. In Proceedings of the 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), Athens, Greece, 27–30 July 2021. [Google Scholar] [CrossRef]
- Livieris, I.E.; Iliadis, L.; Pintelas, P. On ensemble techniques of weight-constrained neural networks. Evol. Syst. 2020, 12, 155–167. [Google Scholar] [CrossRef]
- Pintelas, P.; Livieris, I.E. Special issue on ensemble learning and applications. Algorithms 2020, 13, 140. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, Y. Ensemble Machine Learning: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Polikar, R. Ensemble learning. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–34. [Google Scholar]
- Van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef] [Green Version]
- Pintelas, E.; Liaskos, M.; Livieris, I.E.; Kotsiantis, S.; Pintelas, P. Explainable machine learning framework for image classification problems: Case study on glioma cancer prediction. J. Imaging 2020, 6, 37. [Google Scholar] [CrossRef]
- Pintelas, E.; Liaskos, M.; Livieris, I.E.; Kotsiantis, S.; Pintelas, P. A novel explainable image classification framework: Case study on skin cancer and plant disease prediction. Neural Comput. Appl. 2021, 33, 15171–15189. [Google Scholar] [CrossRef]
- Pintelas, E.; Livieris, I.E.; Pintelas, P. A grey-box ensemble model exploiting black-box accuracy and white-box intrinsic interpretability. Algorithms 2020, 13, 17. [Google Scholar] [CrossRef] [Green Version]
Layers | Input Size | Kernel Size | Stride | Output Size | |
---|---|---|---|---|---|
Encoder | 2D Conv (E. Input) | ||||
ReLU | − | − | |||
2D Conv | |||||
Sigmoid (E. Output ) | − | − | |||
Decoder | 2D Deconv3 (D. Input) | ||||
ReLU | − | − | |||
2D Deconv4 | |||||
Sigmoid (D. Output) | − | − |
Approaches | CNN Model | Acc | GM | AUC |
---|---|---|---|---|
Traditional | 80.0% | 852 | 0.866 | |
MD | VGG | 83.2% | 906 | 0.896 |
CAE | 87.6% | 913 | 0.917 | |
Traditional | 90.3% | 1027 | 0.935 | |
MD | ResNet | 91.4% | 1044 | 0.946 |
CAE | 92.4% | 1066 | 0.949 | |
Traditional | 93.0% | 1187 | 0.953 | |
MD | DenseNet | 92.9% | 1188 | 0.954 |
CAE | 93.5% | 1140 | 0.956 | |
Traditional | 94.6% | 1031 | 0.963 | |
MD | MobileNet | 92.9% | 1075 | 0.957 |
CAE | 93.5% | 1087 | 0.956 |
Approaches | CNN Model | Acc | GM | AUC |
---|---|---|---|---|
Traditional | 66.3% | 38 | 0.631 | |
MD | VGG | 67.4% | 39 | 0.637 |
CAE | 70.0% | 40 | 0.750 | |
Traditional | 73.7% | 37 | 0.633 | |
MD | ResNet | 74.7% | 39 | 0.642 |
CAE | 77.9% | 42 | 0.697 | |
Traditional | 75.8% | 42 | 0.685 | |
MD | DenseNet | 75.3% | 41 | 0.681 |
CAE | 80.0% | 41 | 0.689 | |
Traditional | 75.2% | 35 | 0.603 | |
MD | MobileNet | 74.2% | 36 | 0.612 |
CAE | 72.0% | 39 | 0.638 |
Approaches | CNN Model | Acc | GM | AUC |
---|---|---|---|---|
Traditional | 73.3% | 83 | 0.732 | |
MD | VGG | 76.4% | 87 | 0.774 |
CAE | 82.0% | 93 | 0.869 | |
Traditional | 80.8% | 92 | 0.881 | |
MD | ResNet | 81.2% | 93 | 0.892 |
CAE | 82.1% | 94 | 0.897 | |
Traditional | 84.3% | 96 | 0.905 | |
MD | DenseNet | 83.4% | 95 | 0.903 |
CAE | 86.1% | 98 | 0.926 | |
Traditional | 79.0% | 90 | 0.853 | |
MD | MobileNet | 79.5% | 91 | 0.857 |
CAE | 81.0% | 92 | 0.889 |
Series | Friedman | Finner Post Hoc Test | |
---|---|---|---|
Ranking | p-Value | ||
CAE | 9.4167 | − | − |
MD | 21.6667 | 0.004399 | Rejected |
Traditional | 24.4167 | 0.000975 | Rejected |
Series | Friedman | Finner Post Hoc Test | |
---|---|---|---|
Ranking | p-Value | ||
CAE | 11.5000 | − | − |
MD | 17.8333 | 0.140894 | Not rejected |
Traditional | 26.1667 | 0.00065 | Rejected |
Series | Friedman | Finner Post Hoc Test | |
---|---|---|---|
Ranking | p-Value | ||
CAE | 7.58330 | − | − |
MD | 22.0417 | 0.000775 | Rejected |
Traditional | 25.8750 | 0.000021 | Rejected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintelas, E.; Livieris, I.E.; Pintelas, P.E. A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets. Sensors 2021, 21, 7731. https://doi.org/10.3390/s21227731
Pintelas E, Livieris IE, Pintelas PE. A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets. Sensors. 2021; 21(22):7731. https://doi.org/10.3390/s21227731
Chicago/Turabian StylePintelas, Emmanuel, Ioannis E. Livieris, and Panagiotis E. Pintelas. 2021. "A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets" Sensors 21, no. 22: 7731. https://doi.org/10.3390/s21227731
APA StylePintelas, E., Livieris, I. E., & Pintelas, P. E. (2021). A Convolutional Autoencoder Topology for Classification in High-Dimensional Noisy Image Datasets. Sensors, 21(22), 7731. https://doi.org/10.3390/s21227731