Coordinate-Descent Adaptation over Hamiltonian Multi-Agent Networks
Abstract
:1. Introduction
- (a)
- A CD-ILMS algorithm is proposed to simulate the situation where some entries in approximate gradient vectors are missing or to control the computational burden of the update estimate purposely;
- 1.
- We examine the effect of random partial gradient information on the learning performance and convergence rate of ILMS algorithm for MSE cost function;
- 2.
- A theoretical analysis of the performance of CD-ILMS algorithm is concluded under some typical simplifying assumptions and approximations, typical in adaptive systems and tend to achieve a performance level that matches well with practice;
- 3.
- Stability conditions for CD-ILMS algorithm are derived both in mean and mean-square senses under certain statistical conditions. We find the necessary condition on step-size to guarantee the stability of CD-ILMS algorithms;
- 4.
- Employing the energy conservation paradigm, we derive closed-form expressions to describe the learning curves in terms of excess mean-square-error (EMSE) and mean-square-deviation (MSD);
- 5.
- We compare the CD-ILMS algorithm and regular full-update ILMS algorithm in terms of convergence rate and computational complexity. We find that although the CD-ILMS algorithm convergence to steady-state region takes longer, the overall computational complexity, i.e., savings in computation per iteration, does remain invariant.
2. Algorithm Description
2.1. Incremental Steepest-Descent Solution
Algorithm 1. Incremental Strategy [19]. |
Initialization: start with initial condition. |
for every time do |
set |
for nodes do |
receive from node |
end for |
set |
end for |
End |
2.2. Coordinate-Descent Incremental Adaptation
3. Performance Analysis
3.1. Data Model and Assumptions
- 1.
- The regression data for all nodes k, and all observation times , are zero-mean, white overt time and space with
- 2.
- The step-sizes, , are small enough so as to ignore the quadratic term in .
Algorithm 2. Coordinate-Descent Incremental LMS (CD-ILMS) Strategy. |
Initialization: start with initial condition. |
for every time do |
set the fictitious boundary condition at . |
for nodes do |
node k receives from its preceding neighbor |
, |
node k performs:
|
end for |
set |
end for |
End |
3.2. Mean Stability Analysis
3.3. Mean-Square Performance
3.4. Learning Curves
3.5. Steady-State Behavior
4. Further Insight into the Proposed CD-ILMS
4.1. Convergence Rate
4.2. Computational Complexity
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rossi, L.A.; Krishnamachari, B.; Kuo, C.C. Distributed parameter estimation for monitoring diffusion phenomena using physical models. In Proceedings of the 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, Santa Clara, CA, USA, 4–7 October 2004; pp. 460–469. [Google Scholar]
- Li, D.; Wong, K.D.; Hu, Y.H.; Sayeed, A.M. Detection, classification, and tracking of targets. IEEE Signal Process. Mag. 2002, 19, 17–29. [Google Scholar]
- Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. A survey on sensor networks. IEEE Commun. Mag. 2002, 40, 102–114. [Google Scholar]
- Ren, W.; Beard, R.W.; Atkins, E.M. Information consensus in multivehicle cooperative control. IEEE Control Syst. Mag. 2007, 27, 71–82. [Google Scholar]
- Zhou, K.; Roumeliotis, S.I. Multirobot active target tracking with combinations of relative observations. IEEE Trans. Robot. 2011, 27, 678–695. [Google Scholar]
- Amin, S.M.; Wollenberg, B.F. Toward a smart grid: Power delivery for the 21st century. IEEE Power Energy Mag. 2005, 3, 34–41. [Google Scholar]
- Ibars, C.; Navarro, M.; Giupponi, L. Distributed demand management in smart grid with a congestion game. In Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6 October 2010; pp. 495–500. [Google Scholar]
- Kim, H.; Kim, Y.J.; Yang, K.; Thottan, M. Cloud-based demand response for smart grid: Architecture and distributed algorithms. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 17–20 October 2011; pp. 398–403. [Google Scholar]
- Giannakis, G.B.; Kekatos, V.; Gatsis, N.; Kim, S.J.; Zhu, H.; Wollenberg, B.F. Monitoring and optimization for power grids: A signal processing perspective. IEEE Signal Process. Mag. 2013, 30, 107–128. [Google Scholar]
- Duchi, J.C.; Agarwal, A.; Wainwright, M.J. Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Trans. Autom. Control 2011, 57, 592–606. [Google Scholar]
- Chen, J.; Towfic, Z.J.; Sayed, A.H. Dictionary learning over distributed models. IEEE Trans. Signal Process. 2014, 63, 1001–1016. [Google Scholar]
- Chouvardas, S.; Slavakis, K.; Kopsinis, Y.; Theodoridis, S. A sparsity promoting adaptive algorithm for distributed learning. IEEE Trans. Signal Process. 2012, 60, 5412–5425. [Google Scholar]
- Zhao, X.; Sayed, A.H. Distributed clustering and learning over networks. IEEE Trans. Signal Process. 2015, 63, 3285–3300. [Google Scholar]
- Chen, J.; Richard, C.; Sayed, A.H. Diffusion LMS over multitask networks. IEEE Trans. Signal Process. 2015, 63, 2733–2748. [Google Scholar]
- Kar, S.; Moura, J.M. Convergence rate analysis of distributed gossip (linear parameter) estimation: Fundamental limits and tradeoffs. IEEE J. Sel. Top. Signal Process. 2011, 5, 674–690. [Google Scholar]
- Barbarossa, S.; Scutari, G. Bio-inspired sensor network design. IEEE Signal Process. Mag. 2007, 24, 26–35. [Google Scholar]
- Khan, U.A.; Moura, J.M.F. Distributing the Kalman filter for large-scale systems. IEEE Trans. Signal Process. 2008, 56, 4919–4935. [Google Scholar]
- Schizas, I.D.; Mateos, G.; Giannakis, G.B. Distributed LMS for consensus-based in-network adaptive processing. IEEE Trans. Signal Process. 2009, 57, 2365–2382. [Google Scholar]
- Lopes, C.G.; Sayed, A.H. Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 2007, 55, 4064–4077. [Google Scholar]
- Rabbat, M.G.; Nowak, R.D. Quantized incremental algorithms for distributed optimization. IEEE J. Sel. Areas Commun. 2005, 23, 798–808. [Google Scholar]
- Li, L.; Chambers, J.A.; Lopes, C.G.; Sayed, A.H. Distributed estimation over an adaptive incremental network based on the affine projection algorithm. IEEE Trans. Signal Process. 2009, 58, 151–164. [Google Scholar]
- Cattivelli, F.S.; Sayed, A.H. Analysis of spatial and incremental LMS processing for distributed estimation. IEEE Trans. Signal Process. 2010, 59, 1465–1480. [Google Scholar]
- Khalili, A.; Tinati, M.A.; Rastegarnia, A. Steady-state analysis of incremental LMS adaptive networks with noisy links. IEEE Trans. Signal Process. 2011, 59, 2416–2421. [Google Scholar]
- Khalili, A.; Rastegarnia, A.; Sanei, S. Performance analysis of incremental LMS over flat fading channels. IEEE Trans. Control Netw. Syst. 2016, 4, 489–498. [Google Scholar]
- Sayed, A.H. Adaptive networks. Proc. IEEE 2014, 102, 460–497. [Google Scholar]
- Sayed, A.H. Adaptation, learning, and optimization over networks. Found. Trends Mach. Learn. 2014, 7, 311–801. [Google Scholar]
- Chen, J.; Sayed, A.H. Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans. Signal Process. 2012, 60, 4289–4305. [Google Scholar]
- Chen, J.; Sayed, A.H. On the learning behavior of adaptive networks—Part I: Transient analysis. IEEE Trans. Inf. Theory 2015, 61, 3487–3517. [Google Scholar]
- Chen, J.; Sayed, A.H. On the learning behavior of adaptive networks—Part II: Performance analysis. IEEE Trans. Inf. Theory 2015, 61, 3518–3548. [Google Scholar]
- Zhao, X.; Sayed, A.H. Asynchronous adaptation and learning over networks—Part I: Modeling and stability analysis. IEEE Trans. Signal Process. 2014, 63, 811–826. [Google Scholar]
- Zhao, X.; Sayed, A.H. Asynchronous adaptation and learning over networks—Part II: Performance analysis. IEEE Trans. Signal Process. 2014, 63, 827–842. [Google Scholar]
- Zhao, X.; Sayed, A.H. Asynchronous adaptation and learning over networks—Part III: Comparison analysis. IEEE Trans. Signal Process. 2014, 63, 843–858. [Google Scholar]
- Arablouei, R.; Dogancay, K.; Werner, S.; Huang, Y.F. Adaptive distributed estimation based on recursive least-squares and partial diffusion. IEEE Trans. Signal Process. 2014, 62, 3510–3522. [Google Scholar]
- Arablouei, R.; Werner, S.; Huang, Y.F.; Dogancay, K. Distributed least mean-square estimation with partial diffusion. IEEE Trans. Signal Process. 2014, 62, 472–484. [Google Scholar]
- Vahidpour, V.; Rastegarnia, A.; Khalili, A.; Bazzi, W.M.; Sanei, S. Analysis of partial diffusion LMS for adaptive estimation over networks with noisy links. IEEE Trans. Netw. Sci. Eng. 2018, 5, 101–112. [Google Scholar]
- Vahidpour, V.; Rastegarnia, A.; Khalili, A.; Sanei, S. Analysis of partial diffusion recursive least squares adaptation over noisy links. IET Signal Process. 2017, 11, 749–757. [Google Scholar]
- Vahidpour, V.; Rastegarnia, A.; Khalili, A.; Sanei, S. Partial Diffusion Kalman Filtering for Distributed State Estimation in Multiagent Networks. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3839–3846. [Google Scholar]
- Vahidpour, V.; Rastegarnia, A.; Latifi, M.; Khalili, A.; Sanei, S. Performance Analysis of Distributed Kalman Filtering with Partial Diffusion Over Noisy Network. IEEE Trans. Aerosp. Netw. Electron. Syst. 2019, 56, 1767–1782. [Google Scholar]
- Gholami, M.R.; Ström, E.G.; Sayed, A.H. Diffusion estimation over cooperative networks with missing data. In Proceedings of the 2013 IEEE Global Conference on Signal and Information Processing, Austin, TX, USA, 3–5 December 2013; pp. 411–414. [Google Scholar]
- Douglas, S.C. Adaptive filters employing partial updates. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 1997, 44, 209–216. [Google Scholar]
- Godavarti, M.; Hero, A.O. Partial update LMS algorithms. IEEE Trans. Signal Process. 2005, 53, 2382–2399. [Google Scholar]
- Werner, S.; Mohammed, M.; Huang, Y.F.; Koivunen, V. Decentralized set-membership adaptive estimation for clustered sensor networks. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 3573–3576. [Google Scholar]
- Werner, S.; Huang, Y.F. Time-and coefficient-selective diffusion strategies for distributed parameter estimation. In Proceedings of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 696–697. [Google Scholar]
- Chouvardas, S.; Slavakis, K.; Theodoridis, S. Trading off complexity with communication costs in distributed adaptive learning via Krylov subspaces for dimensionality reduction. IEEE J. Sel. Top. Signal Process. 2013, 7, 257–273. [Google Scholar]
- Theodoridis, S.; Slavakis, K.; Yamada, I. Adaptive learning in a world of projections. IEEE Signal Process. Mag. 2010, 28, 97–123. [Google Scholar]
- Gharehshiran, O.N.; Krishnamurthy, V.; Yin, G. Distributed energy-aware diffusion least mean squares: Game-theoretic learning. IEEE J. Sel. Top. Signal Process. 2013, 7, 821–836. [Google Scholar]
- Vahidpour, V.; Rastegarnia, A.; Khalili, A.; Bazzi, W.M.; Sanei, S. Variants of Partial Update Augmented CLMS Algorithm and Their Performance Analysis. arXiv 2019, arXiv:2001.08981. [Google Scholar]
- Wang, C.; Zhang, Y.; Ying, B.; Sayed, A.H. Coordinate-descent diffusion learning by networked agents. IEEE Trans. Signal Process. 2017, 66, 352–367. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Abadir, K.M.; Magnus, J.R. Matrix Algebra; Cambridge University Press: Cambridge, UK, 2005; Volume 1. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalili, A.; Vahidpour, V.; Rastegarnia, A.; Farzamnia, A.; Teo Tze Kin, K.; Sanei, S. Coordinate-Descent Adaptation over Hamiltonian Multi-Agent Networks. Sensors 2021, 21, 7732. https://doi.org/10.3390/s21227732
Khalili A, Vahidpour V, Rastegarnia A, Farzamnia A, Teo Tze Kin K, Sanei S. Coordinate-Descent Adaptation over Hamiltonian Multi-Agent Networks. Sensors. 2021; 21(22):7732. https://doi.org/10.3390/s21227732
Chicago/Turabian StyleKhalili, Azam, Vahid Vahidpour, Amir Rastegarnia, Ali Farzamnia, Kenneth Teo Tze Kin, and Saeid Sanei. 2021. "Coordinate-Descent Adaptation over Hamiltonian Multi-Agent Networks" Sensors 21, no. 22: 7732. https://doi.org/10.3390/s21227732
APA StyleKhalili, A., Vahidpour, V., Rastegarnia, A., Farzamnia, A., Teo Tze Kin, K., & Sanei, S. (2021). Coordinate-Descent Adaptation over Hamiltonian Multi-Agent Networks. Sensors, 21(22), 7732. https://doi.org/10.3390/s21227732