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Abstract: The incremental least-mean-square (ILMS) algorithm is a useful method to perform dis-
tributed adaptation and learning in Hamiltonian networks. To implement the ILMS algorithm, each
node needs to receive the local estimate of the previous node on the cycle path to update its own local
estimate. However, in some practical situations, perfect data exchange may not be possible among
the nodes. In this paper, we develop a new version of ILMS algorithm, wherein in its adaptation step,
only a random subset of the coordinates of update vector is available. We draw a comparison between
the proposed coordinate-descent incremental LMS (CD-ILMS) algorithm and the ILMS algorithm
in terms of convergence rate and computational complexity. Employing the energy conservation
relation approach, we derive closed-form expressions to describe the learning curves in terms of
excess mean-square-error (EMSE) and mean-square deviation (MSD). We show that, the CD-ILMS
algorithm has the same steady-state error performance compared with the ILMS algorithm. However,
the CD-ILMS algorithm has a faster convergence rate. Numerical examples are given to verify the
efficiency of the CD-ILMS algorithm and the accuracy of theoretical analysis.

Keywords: adaptive estimation; coordinate-descent; distributed networks; incremental algorithm

1. Introduction

Distributed processing over networks refers to the information extraction from stream-
ing data collected at a group of spatially-dispersed and interconnected nodes. Distributed
optimization problems of this kind appear in many applications, such as wireless sensor
networks [1–3], multi-robot systems [4,5], smart grid programs [6–9], statistical learning
over netwoks [10–12], and clustering [13,14]. Several classes of distributed optimiza-
tion and estimation algorithms over multi-agent networks have been introduced in the
literature. The consensus methods [15–18], incremental adaptive strategies [19–24], and
diffusion networks [25–29] are among the most notable approaches.

In typical consensus strategies, each individual node collects noisy measurements
over a period of time and performs a local processing task (e.g., calculates a local estimate).
Then, the nodes collaborate through several iterations and share their information to
achieve agreement. In the incremental strategies, a Hamilton cycle is established through
the nodes where each node receives data from previous node on cycle path and sends
the updated data to the next node. Such a mode of cooperation decreases the inter-node
communication across the network and modifies the network independence. In diffusion
strategies, information is spread through the network simultaneously and locally at all
nodes and the task of distributed processing is performed. As in this mode of cooperation
each node collaborates with its connected neighbors, the communication burden is higher
than that of an incremental based strategy.
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In this paper, we propose an incremental-based algorithm for solving the distributed
estimation problem over a Hamilton network. One of the primary methods for solving this
problem is the incremental least-mean-square (ILMS) algorithm reported in [19]. In this
algorithm, the local calculated estimates are updated at each node by employing the LMS
adaptation rule, without requiring any prior information about the data statistics. In order
to implement the ILMS algorithm, it is assumed that at each time instant, the adaptation
step has access to all entries of the approximate gradient vector—see expression (3) further
ahead. In some practical situations (e.g., limited communication resources or missing data
due to imperfect communication links) only a fraction of the approximate gradient vector
is available for adaption. Thus, developing a new version of ILMS algorithm for networks
with mentioned scenarios is of practical importance.

So far, different algorithms have been reported in the literature which solve the
problem of distributed learning with partial information. In [30–32], a Bernoulli variable is
used to model the step-size parameter, so that when the step-size is zero, not all entries of
intermediate estimates are updated and the adaptation step is skipped for some. In [33–38],
a different notion of partial diffusion of information is employed which relies on the
exchange of a subset of entries of the weight estimate vectors themselves. In other words, it
is assumed that each node shares only a fraction of its local information with its neighbors.
Likewise, in [39], a situation is assumed in which some entries in the regression vector are
missing at random due to incomplete information or censoring. In order to undo these
changes, authors in [39] proposed an estimation scheme to estimate the underlying model
parameters when the data are missing. Some other criteria have been proposed in the
literature to motivate partial updating scheme. For instance, in [40], the periodic and
sequential partial LMS updates are proposed, where the former scheme updates all filter
coefficients every P-th iteration, with P > 1, instead of every iteration. The later updates
only a portion of coefficients, which are predetermined, at each iteration. In [41], the
stochastic partial LMS algorithm is proposed that is a randomized version of sequential
scheme where the coefficient subsets are selected in random instead of deterministic fashion.
The works [42,43] utilize the concept of set-membership filtering to partially update the
weight vector, where the updates occur only when the innovation obtained from the data
exceeds a predetermined threshold. The works [12,44,45] employ Krylov subspace concept
to partially update the weight vector that is based on dimensionality reduction policies.
Some other techniques based on energy considerations limit the updates, e.g., [46]. In [47],
a reduced complexity augmented complex least-mean-square algorithm is proposed by
employing partial-update for improper complex signals. The algorithm involves selection
of a fraction of coefficients at every iteration. In [48], the authors focus on diffusion learning
mechanisms and study its mean-square error performance under a generalized coordinate-
descent scheme where the adaptation step by each node involves only a random subset of
the coordinate-descent gradient vector. None of the aforementioned works; however, rely
on the adaptive incremental strategy. To address this issue, we combine two techniques
(incremental mode of cooperation and coordinate-descent updates) to consolidate a new
method, termed coordinate-descent ILMS (CD-ILMS), for distributed estimation problem.

The main contributions of this manuscript can be stated as follows:

(a) A CD-ILMS algorithm is proposed to simulate the situation where some entries in
approximate gradient vectors are missing or to control the computational burden of
the update estimate purposely;

1. We examine the effect of random partial gradient information on the learning
performance and convergence rate of ILMS algorithm for MSE cost function;

2. A theoretical analysis of the performance of CD-ILMS algorithm is concluded
under some typical simplifying assumptions and approximations, typical in
adaptive systems and tend to achieve a performance level that matches well
with practice;
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3. Stability conditions for CD-ILMS algorithm are derived both in mean and mean-
square senses under certain statistical conditions. We find the necessary condition
on step-size µ to guarantee the stability of CD-ILMS algorithms;

4. Employing the energy conservation paradigm, we derive closed-form expres-
sions to describe the learning curves in terms of excess mean-square-error (EMSE)
and mean-square-deviation (MSD);

5. We compare the CD-ILMS algorithm and regular full-update ILMS algorithm in
terms of convergence rate and computational complexity. We find that although
the CD-ILMS algorithm convergence to steady-state region takes longer, the
overall computational complexity, i.e., savings in computation per iteration, does
remain invariant.

The paper layout is organized as follows: In Section 2, we briefly explain the ILMS
algorithm and formulate the CD-ILMS algorithm. In Section 3.1, we describe the system
model and assumptions. The stability and performance analysis of CD-ILMS algorithm
are analyzed both in mean and mean-square sense in Sections 3.2 and 3.3, respectively.
Sections 3.4 and 3.5 investigate the transient and steady-state performance of CD-ILMS
algorithm, respectively. In Section 4, we draw a comparison between ILMS and CD-ILMS
algorithms on the basis of convergence rate and computational complexity. Performance
evaluations are illustrated in Section 5. The paper is finally concluded in Section 6.

Notation: Throughout the paper, we adopt normal lowercase letters for scalars, bold
lowercase letters for column vectors and bold uppercase letters for matrices, while I denotes
an identity matrix of appropriate size. Superscript (.)T denotes transposition for real-valued
vectors and matrices. The symbol E[.] is the expectation operator, tr{.} represents the trace
of its matrix argument, vec{.} vectorizes a matrix by stacking its columns on top of each
other, and ⊗ is the standard Kronecker product.

2. Algorithm Description

We consider a network with K nodes with incremental cooperation topology, as shown
in Figure 1. The network is used to estimate the parameter wo ∈ RL×1, that minimize the
following aggregate global cost function:

min
w

f g(w) ,
K

∑
k=1

fk(w) (1)

where it is assumed that each individual cost function, fk(w) : RL×1 → R is ν-strongly
convex and its gradients satisfy the δ-Lipschitz condition [25]. These conditions are equiv-
alent to requiring fk(w) to be twice-differentiable and Hessian matrices of the individual
costs, ∇2

w fk(w) ∈ RL×L, to be bounded as follows

0 < νIL ≤ ∇2
w fk(w) ≤ δIL (2)

for some positive parameters {ν, δ}, where ν < δ. Some cases of interest, e.g., Log-Loss
regression or MSE [25,26], automatically satisfy the condition in (2).
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Figure 1. Data processing in an incremental network.

2.1. Incremental Steepest-Descent Solution

By applying the steepest-descent method in conjunction with the incremental strategy
to (1) gives the Incremental Steepest-Descent Solution as lists in Algorithm 1. Observe that
in this implementation, each node k needs to receive the calculated estimate of wo at node
k− 1 (which is denoted by ψψψ

(t)
k−1). In (3), wt denotes a global estimation of wo at time instant

t. Moreover, since the true gradient vectors, {∇wT fk(·)}, are not available beforehand in
many practical applications, they have been replaced by approximates, {∇̂wT fk(·)}.

Algorithm 1. Incremental Strategy [19].

Initialization: start with w0 = initial condition.
for every time t ≥ 1 do

set ψψψ
(t)
0 = wt−1

for nodes k = 1, . . . , K do
receive ψψψ

(t)
k−1 from node k− 1

ψψψ
(t)
k = ψψψ

(t)
k−1 − µk∇̂wT fk(ψψψ

(t)
k−1)

end for
set wt = ψψψ

(t)
K

end for
End
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2.2. Coordinate-Descent Incremental Adaptation

Consider a case in which, due to some practical issues (e.g., missing data or limited
computational and communication burden) only a subset of the approximate gradient
vector can be updated as follows:

ψψψ
(t)
k = ψψψ

(t)
k−1 − µk∇̂wT fk(ψψψ

(t)
k−1) (3)

In order to handle such a situation, first a suitable model should be adopted. To
this end, we follow a similar approach to [48] and define a diagonal random matrix
Πk,t ∈ RL×L of node k at iteration t as

Πk,t , diag
{

πk,t(1), πk,t(2), . . . , πk,t(L)
}

(4)

where
{

πk,t(l)
}

are some Bernoulli random variables, that the randomness in the update
varies across space, k, and over time, t. We have πk,t(l) = 0 or πk,t(l) = 1 with the following
probability

Prob(πk,t(l) = 0) = πk; 0 ≤ πk < 1 (5)

where πk,t(l) = 0 means that l-th entry of ∇̂wT fk(ψψψ
(t)
k−1) is missing and l-th entry of ψψψk,t

in (3) is not updated. Multiplying the approximate gradient vector by Πk,t, we replace

∇̂wT fk

(
ψψψ
(t)
k−1

)
by ∇̂wT fk

miss(
ψψψ
(t)
k−1

)
as

∇̂wT fk
miss(

ψψψ
(t)
k−1

)
= Πk,t × ∇̂wT fk

(
ψψψ
(t)
k−1

)
(6)

3. Performance Analysis
3.1. Data Model and Assumptions

Consider MSE networks where at each time instant t, each node k is assumed to
observe a scalar measurement dk(t) ∈ R and a 1× L row regression vector uk,t ∈ R1×L.
A linear regression model is used to describe the collected data at each individual node
as follows:

dk(t) = uk,tw
o + vk(t) (7)

where vk(t) is the noise process. The individual cost function, fk(w), that is associated with
each node k is the MSE (quadratic) cost

fk(w) = E
[∣∣dk(t)− uk,tw

∣∣2] (8)

To proceed with analysis, we introduce some notation and assumptions. In our
analysis, we assume that:

Assumption 1. (i) For all nodes k, and t ≥ 1, the measurement noises {vk(t)} are all zero-
mean, white, and independent from the input and desired signals, with variances σ2

v,k;
1. The regression data uk,t for all nodes k, and all observation times t ≥ 1, are zero-mean, white

overt time and space with

E
[
uT

k,tu`,t

]
, Ru,kδk`δst

where 0 < Ru,k ∈ RL×L, and δk` denotes the Kronecker delta, i.e., it is equal to one when
k = ` and zero otherwise;

2. The step-sizes, µk, are small enough so as to ignore the quadratic term in µk.
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Let the notation Kt−1 represent the available information about the random processes
ψψψ
(τ)
k and Πk,τ at all agents k = 1, 2, . . . , K for τ ≤ t− 1:

Kt−1 , filtration
{

ψψψ
(τ)
k , Πk,τ

}
(9)

Assumption 2. For all k, `, m, n, the indicator variables πk,t(m) and πk,t(n) are assumed to be
independent of each other. Moreover, the random variables πk,t(m) and Kt−1 are independent of
each other, for any iteration w ∈ Kt−1 and for all nodes k.

Based on the adaptive implementation of incremental strategy [19], the adaptive
distributed coordinate-descent incremental algorithm or distributed coordinate-descent in-
cremental LMS (CD-ILMS) algorithm can be summarized in Algorithm 2. In this algorithm,
each node updates the local estimate as

ψψψ
(t)
k = ψψψ

(t)
k−1 + µkΠk,tu

T
k,t

(
dk(t)− uk,tψψψ

(t)
k−1

)
(10)

Algorithm 2. Coordinate-Descent Incremental LMS (CD-ILMS) Strategy.

Initialization: start with w−1 = initial condition.
for every time t ≥ 0 do

set the fictitious boundary condition at ψψψ
(t)
0 ← wt−1.

for nodes k = 1, . . . , K do
node k receives ψψψ

(t)
k−1 from its preceding neighbor

k− 1,
node k performs:

ψψψ
(t)
k = ψψψ

(t)
k−1 + µkΠk,tu

T
k,t

(
dk(t)− uk,tψψψ

(t)
k−1

)
end for
set wt ← ψψψ

(t)
K

end for
End

3.2. Mean Stability Analysis

Now, the mean behavior of the proposed algorithm is analyzed. More specifically,
we seek conditions that for sufficiently large t and for all k, the proposed algorithm is
asymptotically unbiased. To proceed, the following local error signals are defined:

ψ̃ψψ
(t)
k , wo −ψψψ

(t)
k , w̃t , wo −wt

By replacing dk from (7) into (10) and subtracting wo from both sides, gives

ψ̃ψψ
(t)
k =

(
IL − µkΠk,tu

T
k,tuk,t

)
ψ̃ψψ
(t)
k−1 − µkΠk,tu

T
k,tvk(t) (11)

Taking statistical expectations of both sides of (11) together with using the items on
Assumption 1, we obtain

E
[
ψ̃ψψ
(t)
k

]
= (IL − µk(1− πk)Ru,k)E

[
ψ̃ψψ
(t)
k−1

]
(12)
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Through iterating recursion (12) over t and setting k = K, we deduce that E
[
ψ̃ψψ
(t)
k

]
evolves according to

E[w̃t] =

[
K

∏
k=1

(IL − µk(1− πk)Ru,k)

]
E[w̃t−1]

=

[
K

∏
k=1

Qk

]
E[w̃t−1] = QE[w̃t−1] (13)

where Qk , (IL − µk(1− πk)Ru,k). Clearly, the mean weight-error vector for the CD-ILMS
depends on the spectral radius of Q. The following proposition summarizes the required
mean stability condition for the proposed algorithm.

Proposition 1 (Mean Stability). Assume the data model (7) and Assumption 1 hold. Then, the
CD-ILMS algorithm is asymptotically unbiased if, and only if, the step-size parameters {µk} satisfy
the following condition:

0 < µk <
2

(1− πk)λmax
{

Ru,k
} (14)

where λmax denotes the largest eigenvalue of its argument.

Proof. The asymptotic unbiasedness of the CD-ILMS algorithm is guaranteed if, and only
if, the matrix Q be stable, or equivalently, all its eigenvalues lie inside the unit disc, namely,

ρ(Q) < 1 (15)

As the spectral radius of a matrix is always smaller than any induced norm of the same
matrix [49] we have

ρ(Q) ≤ ‖Q‖ ≤ ‖Q1‖‖Q2‖ . . . ‖QK‖
∗
= ρ(Q1)ρ(Q2) . . . ρ(QK) (16)

where step (∗) is because every Qk is a symmetric matrix. This means that its spectral
radius agrees with its 2-induced norm, so that (∗) is justified. Accordingly, to guarantee
the constraint (15) for all k, it is enough to have ρ(Qk) ≤ 1, which is equivalent to∣∣1− µk(1− πk)λmax

{
Ru,k

}∣∣ < 1 ∀ k. (17)

Thus, the conclusion in (14) is verified.

3.3. Mean-Square Performance

In this section, the mean-square performance of the error recursion (11) is examined.
We start by equating the squared-weighted Euclidean norms of both sides of (11) and
taking the expectations together with employing Assumption 1. After a straightforward
calculation, we find the following weighted-variance relation:

E

[∥∥∥ψ̃ψψ
(t)
k

∥∥∥2

Σ

]
= E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

Σ′

]

+ µ2
kσ2

v,kE
[
uk,tΠk,tΣΠk,tu

T
k,t

]
(18)

Σ′ =
(

IL − µkuT
k,tuk,tΠk,t

)
Σ
(

IL − µkΠk,tu
T
k,tuk,t

)
(19)
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for any arbitrary positive-definite weighting matrix Σ. Due to the assumption on vk(t),
the expectations of the cross-terms involving vk(t) evaluate to zero. Note that items in
Assumption 1 guarantee that ψ̃ψψ

(t)
k−1 is independent of Σ′ and uk,t. Thus, the expectation

E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

Σ′

]
can be rewritten as

E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

Σ′

]
= E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

E[Σ′]

]
(20)

By defining

σσσ , vec{Σ} (21)

σσσ′ , vec
{
E
[
Σ′
]}

(22)

and employing (20)–(22), we can modify (18) to

E

[∥∥∥ψ̃ψψ
(t)
k

∥∥∥2

σσσ

]
= E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

σσσ′

]
+ µ2

kσ2
v,kE
[
uk,tΠk,tΣΠk,tu

T
k,t

]
(23)

where E

[∥∥∥ψ̃ψψ
(t)
k

∥∥∥2

σσσ

]
and E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

σσσ′

]
refer to the same quantities as E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

Σ

]
and

E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

Σ′

]
, respectively.

Taking the vectorization operator of both sides of (19), and using (21), (22), Assump-
tions 1 and 2, together with employing the relationship between the Kronecker product
and the vectorization operator (For any matrices {A, Σ, B} of compatible dimensions we
have vec{AΣB} = (BT ⊗A)vec{Σ}) we find that the weighting vectors {σσσ, σσσ′} satisfy the
following relation

σσσ′ = Fkσσσ (24)

where Fk ∈ RL2×L2
and given by

Fk , E
[(

IL − µkuT
k,tuk,tΠk,t

)
⊗
(

IL − µkΠk,tu
T
k,tuk,t

)]
(25)

Note that the vectorization commutes through expectation. Considering Assumption 1,
we can approximate Fk as follows

Fk ≈
[
(IL − µk(1− πk)Ru,k)⊗

(
IL − µk(1− πk)R

T
u,k

)]
(26)

To evaluate E
[
uk,tΠk,tΣΠk,tuT

k,t

]
we employ a useful property from matrix algebra (which

relates the vectorization operator matrix to trace operator (For real matrices {A, B}, the
trace of a product can be written as tr{ATB} = vecT{B}vec{A}) [50]) together with the
fact that Σ is symmetric and deterministic, to obtain

E
[
uk,tΠk,tΣΠk,tu

T
k,t

]
= E
[
tr
{

ΣΠk,tu
T
k,tuk,tΠk,t

}]
= vecT

{
E
[
Πk,tu

T
k,tuk,tΠk,t

]}
σσσ

= vecT{Hk}σσσ (27)
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where

Hk , E
[
Πk,tu

T
k,tuk,tΠk,t

]
(28)

which, in the light of Assumptions 1 and 2, can be evaluated as

Hk = E[Πk,tRu,kΠk,t] (29)

It follows by direct inspection that the entries of Hk are given by

Hk(p, q) =

{
(1− πk)

2Ru,k(p, q), p 6= q
(1− πk)Ru,k(p, p), p = q

(30)

where

E[Πk,tΠ`,t] =

{
(1− πk)(1− π`), k 6= `

(1− πk), k = `

Substitution of (24) and (27) into (23) gives

E

[∥∥∥ψ̃ψψ
(t)
k

∥∥∥2

σσσ

]
= E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

Fkσσσ

]
+ µ2

kσ2
v,kvec

T{Hk}σσσ (31)

In the following proposition, we summarize the required conditions that guarantee
the mean-square convergence for the DC-ILMS algorithm.

Proposition 2 (Mean-square Stability). Assume the data
{

dk(t), uk,t
}

satisfy the model (7).
Under Assumptions 1 and 2, the recursion of type (31) is stable and convergent if, and only if, Fk
given by (25) is stable. On the other hand, the stability of Fk is achieved when {µk} are chosen,
such that they satisfy (14).

Proof. Let A and B be two arbitrary matrices of compatible dimensions. Then, any eigen-
value of A⊗ B is a product λi(A)× λj(B), where λi(A) is an eigenvalue of A and λj(B)
is an eigenvalue of B [50]. Moreover, the sets of eigenvalues of A and AT are equal. Ac-
cordingly, using the expression (26), we have that ρ(Fk) = [ρ(IL − µk(1− πl)Ru,k)]

2. It
follows that Fk is stable if, and only if, (IL − µk(1− πl)Ru,k) is stable. Therefore, {µk} that
guarantee the mean stability, ensure mean-square stability as well. Thus, the result (14)
follows.

3.4. Learning Curves

In this section, the variance relation (31) is employed to obtain a recursive equation that
explains the transient behavior of the CD-ILMS algorithm. Since the weighting matrices,{

Σ, Σ′
}

, can be node-dependent, we can replace {σσσ, σσσ′} by
{

σσσk, σσσ′k
}

, so that (31) can be
rewritten in the following form

E

[∥∥∥ψ̃ψψ
(t)
k

∥∥∥2

σσσk

]
= E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

Fkσσσk

]
+ gkσσσk (32)

with gk , µ2
kσ2

v,kvec
T{Hk}. Observe that the expression (32) relates ψ̃ψψ

(t)
k to ψ̃ψψ

(t)
k−1 (not ψ̃ψψ

(t−1)
k ).

To resolve this issue, the incremental topology along with the weighting matrices should be
employed [19] as follows: first, by iterating (32) a set of K coupled equalities are obtained
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E

[∥∥∥ψ̃ψψ
(t)
1

∥∥∥2

σσσ1

]
= E

[∥∥∥ψ̃ψψ
(t−1)
K

∥∥∥2

F1σσσ1

]
+ g1σσσ1

E

[∥∥∥ψ̃ψψ
(t)
k

∥∥∥2

σσσ2

]
= E

[∥∥∥ψ̃ψψ
(t)
1

∥∥∥2

F2σσσ2

]
+ g2σσσ2

...

E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

σσσk−1

]
= E

[∥∥∥ψ̃ψψ
(t)
k−2

∥∥∥2

Fk−1σσσk−1

]
+ gk−1σσσk−1 (33)

[+2ex]E
[∥∥∥ψ̃ψψ

(t)
k

∥∥∥2

σσσk

]
= E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

Fkσσσk

]
+ gkσσσk (34)

...

E

[∥∥∥ψ̃ψψ
(t)
K

∥∥∥2

σσσK

]
= E

[∥∥∥ψ̃ψψ
(t)
K−1

∥∥∥2

FKσσσK

]
+ gKσσσK

In order to explain the flow of energy through the agents it is required to make
connection between the free parameters σσσ and σσσ′. If we choose the weighting vector
σσσk−1 = Fkσσσk and combine (33) and (34) we get

E

[∥∥∥ψ̃ψψ
(t)
k

∥∥∥2

σσσk

]
= E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

Fkσσσ′k

]
+ gkσσσk

= E

[∥∥∥ψ̃ψψ
(t)
k−2

∥∥∥2

Fk−1Fkσσσk

]
+ gk−1Fkσσσk + gkσσσk (35)

Iterating in this manner, a recursive expression is obtained which relates ψ̃ψψ
(t)
k−1 to

ψ̃ψψ
(t−1)
k−1 , namely

E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

σσσk−1

]
= E

[∥∥∥ψ̃ψψ
(t−1)
k−1

∥∥∥2

Fk ...FKF1 ...Fk−1σσσk

]
+ gkFk+1 . . . FKF1 . . . Fk−1σσσk−1

+ gk+1Fk+2 . . . FKF1 . . . Fk−1σσσk−1.

. . . + gk−2Fk−1σσσk−1 + gk−1σσσk−1 (36)

By choosing σσσ = q = vec{IL2} and substituting it in (36), gives the following expres-
sion that explains how MSD of node k evolves over time:

E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

σσσk−1

]
= E

[∥∥∥ψ̃ψψ
(−1)
k−1

∥∥∥2

(Γk−1,1)
t
q

]

+ ak−1

(
IL2 + . . . + (Γk−1,1)

t−1
)

q (37)

where Γk−1,` ∈ RL2×L2
, the product of Fk matrices for each node, and ak−1 ∈ R1×L2

are
defined by

Γk−1,` , Fk+`−1Fk+1 . . . FLF1 . . . Fk−1, ` = 1, 2, . . . , L (38)

and

ak−1 , gkΓk−1,2 + gk+1Γk−1,3 . . . + gk−2Γk−1,K + gk−1 (39)
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Therefore, the theoretical expression for MSD of node k is given by the compact form

E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

q

]
= E

[∥∥∥ψ̃ψψ
(−1)
k−1

∥∥∥2

γt−1

]
+ ak−1bt−1 (40)

where the vectors γt−1 and bt−1 are formulated by

γt−1 = Γk−1,1γt−2, γ−1 = q

bt−1 = bt−2 + γt−1, b−1 = null vector of size L2 × 1

Accordingly, the selection of σσσk−1 = rk = vec
{

Ru,k
}

leads to a an expression that
explains how EMSE of node k evolves over time:

E

[∥∥∥ψ̃ψψ
(t)
k−1

∥∥∥2

rk

]
= E

[∥∥∥ψ̃ψψ
(−1)
k−1

∥∥∥2

γ′t−1

]
+ ak−1b′t−1 (41)

where the vectors γ′t−1 and b′t−1 are given, respectively, by

γ′t−1 = Γk−1,1γ′t−2, γ′−1 = rk

b′t−1 = b′t−2 + γ′t−1, b′−1 = null vector of size L2 × 1

3.5. Steady-State Behavior

The variance relation (32) can also be used to evaluate the steady-state performance of
CD-ILMS algorithm. Let pk , ψ̃ψψ

(∞)
k . At steady-state, i.e., when t→ ∞, the variance relation

(32) can be written as

E
[
‖pk‖2

σσσk

]
= E
[
‖pk−1‖2

Fkσσσk

]
+ gkσσσk (42)

Iterating the Equation (42) for an incremental network topology and selecting appro-
priate weighting vectors σσσk for k = 1, 2, . . . , K, we obtain an equality only involving pk−1,
given by

E
[
‖pk−1‖2

σσσk−1

]
= E
[
‖pk−1‖2

Fk ...FKF1 ...Fk−1σσσk

]
+ gkFk+1 . . . FKF1 . . . Fk−1σσσk−1

+ gk+1Fk+2 . . . FKF1 . . . Fk−1σσσk−1.

. . . + gk−2Fk−1σσσk−1 + gk−1σσσk−1 (43)

Using (38) and (39) to simplify the expression (43), we obtain

E
[
‖pk‖2

(IL2−Γk−1,1)σσσk−1

]
= ak−1σσσk−1 (44)

Equation (44) can be employed to evaluate the performance measures at node k,
defined as follows:

ηk , E
[
‖pk−1‖2

q

]
, q = vec{IL2} (MSD) (45)

ζk , E
[
‖pk−1‖2

rk

]
, rk = vec

{
Ru,k

}
(EMSE) (46)

Proper selection of the weighting vector σσσk−1 in (44) gives the required mean-square
values. Selecting the weighting vector σσσk as the solution of the linear equation
(IL2 − Γk−1,1)σσσk−1 = q or (IL2 − Γk−1,1)σσσk−1 = rk, the desired MSD and EMSE at node
k can be obtained as follows:
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ηk = ak−1(IL2 − Γk−1,1)
−1q, (MSD) (47)

ζk = ak−1(IL2 − Γk−1,1)
−1rk, (EMSE) (48)

The vector ak−1 can be regarded as the effect of aggregating the transformed noise
and the local data statistics from all the nodes in the incremental network topology and the
matrix Γk−1,` can be interpreted as the transition matrix for the weighting vector σσσk−1.

Remark 1. It should be noted that (47) and (48) are exactly the theoretical MSD and EMSE for
full-update ILMS algorithm, which means that the CD-ILMS algorithm has the same steady-state
error performance compared with the incremental LMS algorithm.

4. Further Insight into the Proposed CD-ILMS

In order to gain more insight into the performance of CD-ILMS algorithm, in this
section we compare the convergence rate and computational complexity of CD-ILMS
algorithm with the regular full-update ILMS algorithm [19].

4.1. Convergence Rate

To make the analysis more tractable, we consider the following assumption.

Assumption 3. The missing probabilities {πk}, the covariance matrices
{

Ru,k
}

, and the step-size
{µk} are identical, i.e.,

πk = π, µk = µ, Ru,k = Ru ∀k

It can be seen from (13) that the evolution of weight-error vector for both CD-ILMS
and ILMS algorithms are controlled by the modes of the following matrices

Qcoor = (IL − µk(1− πk)Ru,k), ∀k (49)

Qfull = (IL − µkRu,k), ∀k (50)

where the subscript ‘coor’ and ‘full’ denote, respectively, the stochastic coordinate-descent
and full-update incremental implementation. Thus, under Assumption 3, we have

Qcoor = (IL − µ(1− π)Ru)
K (51)

Qfull = (IL − µRu)
K (52)

From (51) and (52), we find that the modes of convergence are given by

κcoor,l =
{
(1− µ(1− π)λl)

K
}

l=1,...,L
(53)

κfull,l =
{
(1− µλl)

K
}

l=1,...,L
(54)

where λl denotes the eigenvalues of Ru. Letting τcoor and τfull represent the largest number
of time iterations that are required for the mean error vector, E

[
ψ̃ψψ
(t)
k

]
, to converge to zero.

Then, it holds that
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τcoor

τfull
=

ln(κfull,l)

ln(κcoor,l)

=
ln
(
(1− µλl)

K
)

ln
(
(1− µ(1− π)λl)

K
)

∗≈ −µλl
−µ(1− π)λl

=
1

1− π
(55)

where in step (∗) we considered ln(1− z) ≈ −z as z→ 0.

Remark 2. Expression (55) illustrates the increase in the convergence time in the CD-ILMS
algorithm. Since the convergence time is longer, the CD-ILMS algorithm may need more quantities
to be exchanged through the network compared to the ILMS algorithm.

4.2. Computational Complexity

We now provide a discussion on computational complexity of full-update ILMS
and its coordinate-descent implementations. Let θadd ≥ 0 and θmul ≥ 0 represent the
number of real additions and multiplications, respectively, that are required for every entry
of the gradient vector. In CD-ILMS algorithm, every node requires (1− π)(θmulL + L)
real multiplication and (1− π)(θaddL + L) real additions per iteration in adaptation step
(10), while in the full implementation, every node requires θmulL + L multiplications and
θaddL + L additions per iteration. Moreover, Let βcoor and βfull denote the number of
multiplications needed by the adaptation steps per iteration at each agent k in the CD-ILMS
and full-update cases. Then,

βfull,k = (θmul + 1)L (56)

βcoor,k = βfull,k − (θmul + 1)Lπ (57)

If these algorithms require τcoor and τfull iterations to attain their steady-state values,
then the total number of real multiplications at node k, represented by αcoor,k and αfull,k,
are obtained by

αcoor,k = βcoor,k × τcoor (58)

αfull,k = βfull,k × τfull (59)

so that employing (55) results in

αcoor,k

αfull,k
=

βcoor,k

βfull,k
× 1

1− π
(60)

Substituting (56) and (57) into the first item in (60), we obtain

βcoor,k

βfull,k
= 1− π (61)

Thus, from (60) and (61)

αcoor,k

αfull,k
= 1 (62)

Remark 3. It is obvious that, αcoor,k and αfull,k are essentially identical. This means that although
the convergence of CD-ILMS algorithm to steady-state region takes longer, the overall computational
complexity, i.e., savings in computation per iteration, does remain invariant. Generally speaking, in
situations where the computational complexity per iteration require to be minimal, the coordinate-
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descent scheme is recommended. Moreover, the coordinate-descent scheme requires more iterations
to achieve the same steady-state performance.

Remark 4 (Communication Costs). In coordinate-descent incremental and regular incremental
schemes, each node k receives weight estimate, ψψψk,t, from its predecessor node k− 1 in the cycle. In
this manner the overall number of communications needed at each node per iteration is L. Moreover,
the nodes also need to send their global estimate, wt−1, thus the communications requirement per
iteration per node is 2L.

5. Simulation Results

This section provides some computer simulations to evaluate the performance of
CD-ILMS algorithm and verify the theoretical analysis. We assume a distributed network
composed of K = 20 agents with ring topology (see Figure 2). The L = 8 vector wo is
generated randomly with ‖wo‖2 = 1 and step-sizes are µk = 0.02. To obtain more accurate
results, we conducted 100 independent simulations. Although the analysis depends on
the independence assumptions, all simulations are accomplished by regressors with shift
structure to deal with realistic scenarios. To this end, the regressors are generated by the
following first-order auto-regressive model

uk,t(l) = zkuk,t(l − 1) +
√

1− z2
khk,t(l), 1 ≤ l < L

where the parameters zk ∈ (−1, 1) and hk,t denotes a are zero-mean, unit-variance Gaus-
sian sequences. For each node, the measurement noise vk(t) is a zero mean white Gaussian
sequence with σ2

v ∈ (0.001, 0.1). Figure 3 illustrates the network statistical settings.

Figure 2. Network topology consisting of K = 20 agents with ring topology.

5 10 15 20
9

10

11

12

13

5 10 15 20
-25

-20

-15

Figure 3. The network statistical settings: regressor power profile (Left) and observation noise power
profile (Right).

In Figure 4, we plot the experimental and theoretical MSD and EMSE learning curves
using both full and partial updates for different values of πk ∈ {0.4, 0.6, 0.9}. It can be
observed that the CDILS algorithm has the same steady-state error performance compared
with the ILMS algorithm. Moreover, as we expected, as πk → 0 the performance of the
coordinate-descent approaches to that of the full-gradient incremental algorithm. Generally
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speaking, the speed of convergence reduces proportionally for coordinate-descent schemes
as the missing probability is decreased.
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Figure 4. Simulated network MSD and EMSE curves and their theoretical results.

In Figure 5, we demonstrate the experimental and theoretical steady-state MSDs and
EMSEs for πk = 0.6. It can be seen that, the calculated steady-state MSD and EMSE values
using the theoretical expressions in (47) and (48) have a good agreement between with
those obtained by the simulation results.
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Figure 5. Theoretical and experimental steady-state MSD and EMSE at each node.

Figure 6 shows the modes of convergence for the case Ru = IL and K = 10, for
πk ∈ {0.5, 0.8}, as a function of µ̄ = µλ, both for ILMS and CD-ILMS algorithms. From
Figure 6, it can be observed that, regardless of the values of step-size parameter, the
full-update ILMS algorithm is always faster than the CD-ILMS algorithm.
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Figure 6. Modes of mean-convergence, for ILMS and CD-ILMS algorithms using K = 10, π = 0.8
(top) and π = 0.5 (bottom).

6. Conclusions

In this paper, we have derived the CD-ILMS algorithm for adaptive estimation over
incremental networks. Moreover, its detailed performance analysis based on the weighted
energy-conservation approach under some assumptions and approximations has been
discussed. More specifically, we have derived mean and mean-square stability conditions
and theoretical expressions for steady-state and learning curves of MSD and EMSE. To gain
further insight into the performance of CD-ILMS algorithm, its convergence and computa-
tional complexity have been compared with those of the full-update ILMS algorithm. It
has been shown that the full-update ILMS algorithm and CD-ILMS algorithm provide the
same steady-state performance, while full-update ILMS is always faster than the CD-ILMS
algorithm. Finally, some numerical examples have been provided to support the theoretical
derivations.
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