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Abstract: Road surface detection is important for safely driving autonomous vehicles. This is because
the knowledge of road surface conditions, in particular, dry, wet, and snowy surfaces, should be
considered for driving control of autonomous vehicles. With the rise of deep learning technology,
road surface detection methods using deep neural networks (DNN) have been widely used for
developing road surface detection algorithms. To apply DNN in road surface detection, the dataset
should be large and well-balanced for accurate and robust performance. However, most of the images
of road surfaces obtained through usual data collection processes are not well-balanced. Most of
the collected surface images tend to be of dry surfaces because road surface conditions are highly
correlated with weather conditions. This could be a challenge in developing road surface detection
algorithms. This paper proposes a method to balance the imbalanced dataset using CycleGAN to
improve the performance of a road surface detection algorithm. CycleGAN was used to artificially
generate images of wet and snow-covered roads. The road surface detection algorithm trained
using the CycleGAN-augmented dataset had a better IoU than the method using imbalanced basic
datasets. This result shows that CycleGAN-generated images can be used as datasets for road surface
detection to improve the performance of DNN, and this method can help make the data acquisition
process easy.

Keywords: deep neural network; CycleGAN; road surface detection; road friction detection

1. Introduction

The knowledge of road surface conditions is one of the most important factors in
safe autonomous driving. It is known that tire–road friction and road surface conditions
are highly correlated with the rate of car crashes [1–3]. Detecting road surface types has
been a popular research topic for several decades, and many corresponding projects are
actively being conducted [4–15]. In the early days, many methods were developed using
analytic approaches. For example, methods were developed by using reflected light to
detect the road surface conditions [4], focusing on co-occurrence matrices [5], using a
spatial filter [6], using polarization change, and through graininess analysis [7]. On the
other hand, recently, many data-based methods have been developed for road surface
detection with the rise of deep learning. For example, methods have been developed by
using unsupervised learning [12], using the Convolutional Neural Network (CNN) with
occupancy grid SVM [13], and applying CNN to classify an entire image as types of road
conditions [14]. Currently, image semantic segmentation using deep learning seems to be
the most popular method for road surface detection [16–21].

The deep learning-based methods show good performance when a well-balanced and
sufficiently large dataset is used. If the dataset is imbalanced, the result will be biased. If
the dataset is not sufficiently large, an overfitting problem is inevitable. However, acquiring
large, balanced datasets requires a high-cost and time-consuming process. Although there
are many datasets that are open to the public and contain road surface images, such as
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KITTI [22], Cityscapes [23], and Robocar [24], these datasets provide few wet and snowy
road surface images, whereas dry road surface images are plentiful.

Imbalanced and small datasets are challenging for training any neural network, not
only neural networks for surface detection algorithms. In research on the classification of
objects in images, many interesting and effective methods have been developed to mitigate
the problems caused by imbalanced and small datasets [25–27]. Among them, augmenting
the dataset is the most popular and promising method.

In neural network-based road surface detection studies, most methodologies reviewed
previously have been based on real data with sizes of several hundred to several thou-
sand [12–21], which are expensive in time and cost. In this research, we propose a method
that transforms dry road surface images into wet and snowy road surface images using
Cycle-Consistent Adversarial Networks (CycleGAN), which can reduce the required num-
ber of images as well as the effort and time for data acquisition. This transformation
technique can augment the dataset so that the dataset can be balanced with minimum
cost. CycleGAN is an unsupervised learning method that converts images in a domain
to images in another domain, such as a zebra to a horse, apples to oranges, and summer
mountains to winter mountains, without data of paired images [28]. These artificially
augmented data can improve the performance and robustness of neural network-based
detection algorithms. To confirm the improvement, a DNN-based road surface detection
algorithm was trained with the CycleGAN augmented dataset. This test result shows that
the performance of the detection algorithm trained with the augmented dataset was better
than that of the algorithm trained with the raw dataset. Therefore, the proposed method
contributes to reducing the time and effort of data acquisition.

The rest of the paper consists of the following. Section 2 presents the data augmenta-
tion method. The validation of the proposed method and the discussion are in Section 3.
Section 4 concludes the paper.

2. Dataset and Methods

The proposed method to develop the road surface detection algorithm consists of
three steps: the design and training of CycleGAN, data augmentation, and the design and
training of the DNN for road surface detection, as shown in Figure 1. In the design and
training of CycleGAN step, CycleGANs are trained to develop image translators (artificial
image generators) for data augmentation. In the data augmentation step, the dry images
are translated into wet and snowy images by the image translators. In the design and
training of the DNN step, the augmented images are used for training the DNN-based
road surface detection algorithm.
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2.1. Base Dataset of Road Images

We used Mapillary Vistas public dataset v1.1 [29] as a base dataset for road sur-
face detection. The dataset contains 20,000 street-level images taken in different weather
conditions, as shown in Figure 2.
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and 78 snowy images, as shown in Figure 3.
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2.2. Data Augmentation by CycleGAN

According to Figure 3, there is a huge imbalance between the number of dry, wet,
and snowy road images. If a DNN is trained using the imbalanced data, overfitting will
occur. To avoid this problem, the number of road images in each class should be large
and well-balanced. However, acquiring well-balanced images is difficult because the
weather conditions of the real environment during data acquisition are not balanced. One
cost-efficient way to mitigate this problem is data augmentation.

To augment the data, we choose unsupervised learning, specifically, a generative
network. The output of a generative network is trained to have similar stochastic char-
acteristics to a specific dataset. The Generative Adversarial Network (GAN) is a famous
generative network that has great performance [30]. GAN consists of two networks: a
generator network and a discriminator network. In the GAN framework, the two networks
have adversarial objectives. The generator produces fake data, whereas the discriminator
distinguishes the fake data from the real data. The objective of training the discriminator is
to accurately classify the fake and real data, and that of the generator is to deceive the dis-
criminator. In this framework, the discriminator guides the training of the generator. With
this process, the generator can be trained to generate data that have similar characteristics
to the real dataset. For example, if GAN is trained using images with snowy road surfaces,
the outputs of the generator would be images with snowy road surfaces.



Sensors 2021, 21, 7769 4 of 11

Although GAN has great performance, applying the data augmentation technique
to road surface detection is not simple. This is because GAN must be trained with the
target dataset. For example, to generate snowy road images, GAN should be trained with
a dataset of snowy road images. In addition, GAN should learn both images of the street
view and the surface condition; therefore, a large dataset is required.

CycleGAN is an alternative method for data augmentation that does not require a
large number of target images. CycleGAN is an image-to-image translation method based
on GAN [28]. Unlike the other image-to-image translation methods, CycleGAN does not
require paired training data. For example, general translation methods for road images
require paired images taken from the same view with different road conditions. On the
other hand, CycleGAN requires only a large number of dry road images and some snowy
road images that are unpaired. Therefore, the number of images can be imbalanced for
CycleGAN, which is a very useful feature for road surface data augmentation. To generate
wet and snowy road images, many dry road images and small numbers of wet and snowy
road images could be sufficient.

CycleGAN has two pairs of generators and discriminators. The first pair translates
an image in domain X into an image in domain Y. The second pair operates the other way
around, translating an image in domain Y into an image in domain X. The loss function
of the discriminator is the same as that of GAN. On the other hand, the loss function
of the generator has two additional terms on top of the loss function of GAN: a cycle-
consistency loss and an identity loss. The cycle-consistency loss is defined as follows. If an
image in domain X is translated into domain Y and translated into domain X again (cycled
translation), the ideal result should be that the original image and the image generated
by cycled translation should be identical. Therefore, the cycle consistency loss is defined
as the norm of the error between the original image and the image returned from cycled
translation. Identity loss is defined as follows. If an image in domain X is translated into
the same domain X, the results should be identical. Therefore, identity loss is defined as
the norm of errors between the original images and translated images. The concepts of the
losses are shown in Figure 4.
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The overall structure of CycleGAN for road surface image translation is shown in
Figure 4. In the figure, domain X is the snowy road surface, and domain Y is the dry road
surface. Figure 4a shows the training structure for the dry to snowy image translation. The
snowy image generator Gd2s generates snowy images from real dry images. The snowy
image discriminator Ds classifies the real snowy images and the generated images. The
classification loss is computed using the output of the discriminator. The cycle consistency
loss is calculated by comparing the real dry images to the dry images generated through
cycled translation. The identity loss is calculated by comparing the real snowy images
to the snowy images translated into the same domain. Gd2s is trained to maximize the
classification loss and minimize both the cycle consistency loss and the identity loss. Ds is
trained to minimize the classification loss. Figure 4b shows the training for the snowy to
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dry translation, which is required to calculate the cycle consistency loss. The same method
is applied for wet image data augmentation.

Figures 5 and 6 show the results of the data augmentation for wet surfaces and snowy
surfaces, respectively. For the augmentation, two CycleGANs (for wet surfaces and snowy
surfaces) are trained with the base dataset. In both cases of augmentation, the sky is
transformed to be cloudier than the original images, which is expected because wet or
snowy surfaces are highly correlated with cloudy skies. In the wet condition case, the road
surface images become darker than the original images, which is consistent with the usual
observation that wet surfaces look darker than dry surfaces. In the snowy condition case,
the road surface images are transformed to be covered by white snow.
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2.3. Training Datasets for Road Surface Detection

The road surface detection method classifies each pixel of road images as dry, wet,
or snowy. We can interpret the detection as an image segmentation process. Therefore, a
data-based image segmentation model was trained. To train the model, segments of road
images in the dataset were labeled, as shown in Figure 7. The pixels were classified as four
labels: dry, wet, snowy, and background. The background label means that the pixel is not
of a road surface.

To train the road surface detection algorithm, two labeled datasets were used. One
was the labeled dataset of original road images, which was called the baseline dataset, as
shown in Table 1. The other was the labeled dataset of augmented road images, which
was called the augmented dataset, as shown in Table 2. If the baseline dataset was used
in the algorithm training, the result would have been highly biased because the number
of wet and snowy images in the dataset is much smaller than that of dry surface images.
Therefore, 500 dry images were selected out of 1000 labeled dry surface images for balanced
training and testing. The number of wet surface images was 228, and that of snowy surface
images was 78, and all were existing wet and snowy surface images in the original dataset.
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On the other hand, the augmented dataset contained 1000 dry surfaces images, 1228 wet
surface images, and 1078 snowy surfaces images. Most wet and snowy surface images
were artificially generated by CycleGAN.
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Table 1. Baseline dataset.

Dry Wet Snowy Total

Training 300 137 47 484
Validation 100 46 16 162

Test 100 45 15 160
Total 500 228 78 806

Table 2. Augmented dataset.

Dry Wet Snowy Total

Training 600 737 647 1984
Validation 200 246 216 662

Test 200 245 215 660
Total 1000 1228 1078 3306

2.4. Detection Algorithm

For road surface detection, we used the DeepLabv3+ model [31] shown in Figure 8.
DeepLabv3+ is an extended model of DeepLabv3 that adds a simple and effective decoder
module. This model shows excellent segmentation performance [31,32]. It can have a
flexible area of the receptive field without increasing the number of parameters or the
amount of calculation. The DeepLabv3+ model can conduct the segmentation process
based on multi-scale context thanks to the atrous spatial pyramid pooling structure. The
atrous spatial pyramid pooling structure concatenates outputs of atrous convolution with
various rates and converts the concatenated images as an image using a 1 × 1 convolutional
layer. The DeepLabv3+ model has a decoder with an intermediate connection similar to
U-Net [33], which helps accurately predict the object boundary. The model requires a
smaller number of parameters than the general convolution network by using depth-wise
separable convolution.
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Although the augmented dataset is balanced in the sense of the numbers of dry, wet,
and snowy surface images, the dataset is still imbalanced in the sense of the numbers
of pixels across all images. For example, more than half of the pixels in the images are
classified as background. To further mitigate possible problems caused by the imbalanced
dataset, we use median frequency balancing [27]. This method adopts weighting factors
for each class when calculating the cross-entropy loss. The frequency of each class is used
to calculate the weighting factors. The frequency is defined as the number of pixels of each
class divided by the total number of pixels in the images that have pixels of that class. The
weighting factors are the multiplicative inverses of the frequency divided by the median of
the frequencies. Table 3 presents the weighting factors of each dataset. The loss function
for an image with median frequency balancing is as follows:

Loss = −∑N
i=1 wi ∑M

j=1 yij · log ŷij, (1)

where N is the number of pixels, i is the pixel index, wi is the weighting factor of the ith
pixel, M is the number of classes, j is the class index, and yij and ŷij are the label and output
of the jth class and ith pixel.

Table 3. Weighting factors for median frequency balancing.

Baseline Augmented

Background 0.2358 0.1785
Dry 0.9805 1.5894
Wet 1.0203 1.1374

Snowy 1.0818 0.8922

3. Validation and Discussion

In this chapter, the results of the road surface detection algorithm are presented.
For the purpose of comparison, two road surface detection algorithms are presented.
One is an algorithm trained using the baseline dataset, which is called the baseline algo-
rithm. The other is an algorithm trained using the augmented dataset, which is called the
augmented algorithm.

Figure 9 shows selected results of road surface detection on two images of dry road,
two images of wet road, and two images of snowy road. In the first column, both baseline
and augmented algorithms show similar performance. However, other results show that
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the performance of the augmented algorithm is higher than that of the baseline algorithm.
In the second and third columns, the baseline algorithm confuses dry surfaces and wet
surfaces. In the fourth and fifth columns, the augmented algorithm shows more accurate
road boundaries. The sixth column shows that both algorithms failed to detect the surface
in some pixels; however, the augmented algorithm showed fewer failures. Qualitatively,
the augmented algorithm showed superior performance to the baseline algorithm.
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Figure 9. Road surface detection results.

Table 4 shows the quantitative performance of each algorithm. The performance is
measured using the precision, recall, accuracy, F1 score, and the mean of the intersection
of union (IoU). As expected from the qualitative comparison in Figure 9, the quantitative
comparison also confirmed that the augmented algorithm has a higher performance than
the baseline algorithm.

Table 4. Metrics of the test set trained with the baseline and augmented dataset.

Baseline Augmented

Precision Recall Accuracy F1 IoU Precision Recall Accuracy F1 IoU

Background 0.84 0.95 0.77 0.89 0.93 0.95 0.94 0.89 0.94 0.93
Dry 0.93 0.91 0.84 0.92 0.79 0.91 0.96 0.87 0.94 0.80
Wet 0.89 0.87 0.76 0.88 0.66 0.90 0.91 0.81 0.90 0.73

Snowy 0.94 0.86 0.82 0.90 0.58 0.96 0.91 0.88 0.94 0.62
Total 0.90 0.90 0.80 0.90 0.74 0.93 0.93 0.86 0.93 0.77

To strengthen the superiority of the augmented algorithm, the two algorithms were
evaluated using a new test dataset. The new dataset consisted of only real road images
taken in environments different from those in which the Mapillary Vistas dataset images
were collected. We gathered 30 new road images. Ten of them contained dry surfaces, the
other ten images contained wet surfaces, and others contained snowy surfaces. Figure 10
shows the selected results. Similar to the results in Figure 9, the performance of the
augmented algorithm was higher than that of the baseline algorithm.
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Table 5 shows the quantitative performance with the new images. Overall, the aug-
mented algorithm showed superior performance to the baseline algorithm.

Table 5. Metrics of the new real images trained with the baseline and augmented dataset.

Baseline Augmented

Precision Recall Accuracy F1 IoU Precision Recall Accuracy F1 IoU

Background 0.81 0.94 0.72 0.87 0.90 0.89 0.92 0.81 0.90 0.90
Dry 0.97 0.91 0.89 0.94 0.81 0.96 0.99 0.96 0.98 0.84
Wet 0.88 0.86 0.75 0.87 0.71 0.97 0.85 0.82 0.91 0.77

Snowy 0.90 0.82 0.74 0.86 0.70 0.87 0.92 0.79 0.90 0.72
Total 0.89 0.89 0.77 0.89 0.78 0.92 0.92 0.84 0.92 0.81

An interesting observation from Tables 4 and 5 is that the IoU on the new real images
was higher than that of the test set. This result was unexpected because, in general,
additional data that did not affect training should have shown lower performance than the
existing data. There could be two possible causes. The first one is that the number of new
real images was too small. The significantly small number of the new real images could not
generalize the performance evaluation. The second possibility is a human effect. When we
gathered the new real images, we judged the class of each road image. In this procedure,
ambiguous images were rejected; therefore, the results may be clearer than those of the
test set.

4. Conclusions

For safe driving, drivers and vehicle control algorithms should consider the road sur-
face conditions. DNNs can be a solution for this problem by being trained for road surface
detection. However, the dataset is highly biased in general. Therefore, we introduced
road surface detection trained with a CycleGAN-generated dataset. The suggested method
showed better results compared with the baseline. In conclusion, road surface detection
using the CycleGAN-generated dataset showed better results. The proposed approach can
be applied to developing a classification algorithm with a small number of images and
imbalanced datasets because of the cost and technical difficulties of artificially augmenting
true-like data. The codes and data of the proposed method have been uploaded on Github
(github.com/cws8262/Road_Surface_Detection_CycleGAN, accessed on 12 November
2021).

github.com/cws8262/Road_Surface_Detection_CycleGAN
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