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Abstract: Sparse arrays have grating lobes in the far field pattern due to the large spacing of elements
residing in a rectangular or triangular grid. Random element spacing removes the grating lobes
but produces large variations in element density across the aperture. In fact, some areas are so
dense that the elements overlap. This paper introduces a low discrepancy sequence (LDS) for
generating the element locations in sparse planar arrays without grating lobes. This nonrandom
alternative finds an element layout that reduces the grating lobes while keeping the elements far
enough apart for practical construction. Our studies consider uniform sparse LDS arrays with 86%
less elements than a fully populated array, and numerical results are presented that show these
sampling techniques are capable of completely removing the grating lobes of sparse arrays. We
present the mathematical formulation for implementing an LDS generated element lattice for sparse
planar arrays, and present numerical results on their performance. Multiple array configurations
are studied, and we show that these LDS techniques are not impacted by the type/shape of the
planar array. Moreover, in comparison between the LDS techniques, we show that the Poisson disk
sampling technique outperforms all other approaches and is the recommended LDS technique for
sparse arrays.

Keywords: phased array; sensor array; sparse array; nonuniform array; planar array; random array;
low discrepancy sequence

1. Introduction

Sensing applications, such as radio telescopes, satellite communications, sonars, and
defense radars, require large antenna arrays. Physically large arrays offer high resolution
as well as high directivity (as long as the element spacing, or sampling remains small).
Since the array cost is proportional to the number of elements in the array, designers try
to minimize the number of elements in the aperture. However, if the array has a uniform
grid of elements that undersamples the aperture (large element spacing), then grating
lobes (extra main beams) result due to aliasing and are predictable from theory [1]. Most
arrays are designed with an element spacing of A/ (14 sin6max) or less, where A is the
wavelength and Omax is the maximum scan angle from broadside.

Thinned and aperiodic arrays have fewer elements than dense periodic arrays [2—4].
For a dense array, thinning (removing elements from a regular grid [5]) and aperiodic
spacing (spacing between elements are not constant [6]) mimic low sidelobe amplitude
distributions through an amplitude density across the aperture. These arrays have far field
patterns with low sidelobes near the main beam and increased sidelobe levels farther from
the main beam.

Sparse arrays fill an antenna aperture with elements that are widely separated from
each other in order to reduce the cost but maintain a narrow beamwidth. The definition of a

Sensors 2021, 21, 7816. https:/ /doi.org/10.3390/s21237816

https://www.mdpi.com/journal/sensors


https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5970-5679
https://orcid.org/0000-0001-5411-0713
https://orcid.org/0000-0003-4522-6903
https://doi.org/10.3390/s21237816
https://doi.org/10.3390/s21237816
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21237816
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21237816?type=check_update&version=1

Sensors 2021, 21, 7816

2 of 20

sparse array in both the antenna and signal processing literature is vague. For instance, the
IEEE standard defines a sparse antenna array as [7]: “An array antenna that contains sub-
stantially fewer driven radiating elements than a conventional uniformly spaced array with
the same beamwidth having identical elements. Interelement spacings in the sparse array
can be chosen such that no large grating lobes are formed and sidelobes are reduced.” On
the other hand, mathematics has a different definition: a sparse matrix has most elements
equal to zero [8]. Sparsity of a matrix equals the number of zero valued elements divided
by the total number of elements. The words “fewer” and “most” do not specify a sharp
dividing line between dense and sparsity. It is important to note here that while these two
definitions of sparsity are different, both have been used in designing sparse arrays. For
the latter, compressive sensing (CS) approaches aim at solving a system of linear equations,
forcing the solution to be maximally sparse, namely, to have the minimum number of
nonzero coefficients, with respect to an expansion basis [9]. Accordingly, CS-based methods
have been applied to the synthesis of sparse arrays by properly reformulating the design
problem as a pattern matching one [10]. The problem unknowns are the set of complex (am-
plitude and phase) excitation coefficients of the “candidate” array elements, the positions
of these latter obtained through a dense sampling of the array aperture. The CS solution is
the sparse complex-valued vector of the excitations, and the positions of the array elements
are obtained as a byproduct and correspond to the candidate locations having non-null
coefficient [10]. CS has been applied to the design of both linear [11,12] and planar [13,14]
sparse arrays, considering symmetric [11,13] as well as asymmetric [12,14] pattern shapes.
The obtained results have shown achieving up to 40% elements reduction with respect to
regular/uniform array arrangements. It is important to note that CS approaches do not
change the definition of sparse arrays; but deal with minimizing the number of nonzero
coefficients in the system of equations in designing the array.

The authors of this paper propose the following definition of sparsity, based on the
IEEE definition [7], but we add that: a sparse array has an average element spacing greater
than A. If the array has a uniform square grid of isotropic elements, then grating lobes exist
when the main beam points at broadside. Periodic sparse arrays have grating lobes with
the same gain as the main beam. A random distribution of elements in the sparse array
lowers the grating lobes to a level of the surrounding sidelobes. Low sidelobes are not an
option for sparse arrays.

Figure 1 distinguishes between dense and sparse arrays. Given this definition, our
literature review of sparse arrays emphasizes papers that present arrays with an average
element spacing of at least one wavelength. Sparse arrays (by our definition) in the
literature generally have random element spacing [15-17].

Antenna Array
Element Grids

Dense Sparse
Aws

d, <A dpe = A
Periodic Aperiodic  Periodic Random
Thinned LDS

Figure 1. Categories of antenna array grids.

Sparse arrays are widely used in radio telescopes and MIMO systems, as well as other
sensing systems. The Long Wavelength Array Station 1 (LWAL1) is an aperture synthesis
imaging array (20-80 MHz) for radio astronomy [18]. It contains 512 antenna elements
inside an ellipse that has a 110 m major axis and a 100 m minor axis. To reduce grating
lobes in this sparse array at 80 MHz, the elements are pseudorandomly distributed with a
5 m minimum spacing constraint that results in an average element spacing of about 5.4 m
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or 1.44A at 80 MHz. The LOw Frequency ARray (LOFAR) Low Band Antenna (LBA) in the
Square Kilometer Array (SKA) consists of 96 dual polarized crossed dipole active antennas
operating from 30 to 80 MHz [19]. An inner array of 46 randomly spaced dual-polarized
elements have average element spacings between 0.4A and 0.8A within a 30 m radius, while
the outer array of 48 randomly spaced dual-polarized elements have average element
spacings between 0.8A and 1.7A within an annulus having an inner diameter of 30 m and
outer diameter of 85 m [20].

Some examples of very sparse radio telescopes include the Very Long Baseline Array
(VLBA) that has 10 parabolic reflectors that are 25 m in diameter forming a total collecting
area of 19,635 m? [21], The Atacama Large Millimeter/submillimeter Array (ALMA) that
has 10 parabolic reflectors that are 12 m in diameter forming a total collecting area of
6600 m? [22], and the Very Large Array (VLA) that has 27 parabolic reflectors that are 25 m
that extend in a “Y” shape with each arm over 15 km long [23].

Microwave imaging experiments were performed using an array aperture of
320 x 320 mm operating over 17-20 GHz [24]. The first model was a fully populated
planar array of 64 x 64 elements on a square grid. The second model was a sparse array of
randomly placed elements. An x-y positioner moved a single antenna to the designated
element positions in the aperture to form the dense and sparse arrays. A compressive
sensing algorithm (average sampling rate that is less than the Nyquist rate) outperformed
other reconstruction algorithms for sparse arrays having 1024, 400, and 160 antennas which
correspond to 25%, 10%, and 4% of the elements in the fully populated array.

Sparse antenna arrays with random element spacing significantly improve the sum
rate capacity (maximum aggregation of all the users” data rates) of a MIMO base station
antenna system [25]. The sparse array aperiodicity spreads the grating lobe (GL) energy
over all the lower sidelobes [26].

The difference between the uniform element grid and the randomized element grid
is mathematically known as the discrepancy. Using a low discrepancy sequence (LDS) to
place elements in an array aperture ensures that elements do not overlap while keeping
a uniform sampling of the aperture. An LDS produces a random-like equidistribution
of elements using a deterministic generating formula. Equidistributed means that if the
aperture is divided into equal subareas, then the number of elements in all subareas is the
same. The aperture discrepancy approaches zero as the number of elements approaches
infinity. Random element spacing has the highest discrepancy, because large areas of
empty space as well as high densities of elements exist within the aperture. In contrast,
elements on a regular grid have the lowest possible discrepancy. A low discrepancy element
distribution appears random, but the elements also appear to be evenly distributed across
the aperture.

Discrepancy theory has its origin in a paper by H. Weyl on the uniform distribution
of sequences [27]. Different LDSs have been introduced from the early 1960s, including
the Hammersley point set [28], the Sobol sequence [29], the Faure sequence [30], and the
Niederreiter sequence [31]. LDSs found their first applications in the 1990s for numerical
analysis and integration for numerical simulation, in the fields of computer graphics [25],
computational physics [32], and finance engineering [33]. The application of LDS to
the generation of sample points for Monte Carlo sampling (i.e., the quasi-Monte Carlo
approach) is theoretically superior to a standard Monte Carlo technique.

To our knowledge, the first paper to apply an LDS (Hammersley sequence) to element
spacing explored sparse aperiodic spacing on a spherical array [34]. The advantages
of LDS for sparse phased array design demonstrated that the Hammersley sequence
maintains the large separation between the elements, while reducing the grating lobes
compared to element spacings derived from random, pseudo-random, and uniform plus
jitter sequences [35].

In this paper we use low discrepancy sequences to distribute elements in a sparse
planar array aperture while maintaining the following properties:
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Sufficient elements to achieve a desired gain.

Aperture size is large enough to achieve the desired beamwidth.

Elements have a minimum separation distance, so they can physically fit into the
aperture and mutual coupling is not a problem.

No GLs present at maximum scan ang]les.

The average element spacing is greater than A.

We study sparse LDS arrays with 86% less elements than a fully populated array,
and present numerical results that demonstrate these sampling techniques are capable of
completely removing the grating lobes of sparse arrays. We recall that that a fully populated
array has a uniform spacing of half-wavelength between its elements. The mathematical
formulation for implementing LDS generated element lattice for sparse planar arrays is
presented. Multiple array configurations are also studied, and we show that these LDS
techniques are not impacted by the type/shape of the array aperture. Finally, we show that
in comparison between the LDS techniques, Poisson disk sampling technique outperforms
all other approaches and is the recommended LDS technique for sparse arrays.

This paper is organized as follows. In Section 2, we describe the mathematical formu-
lation of the LDS sampling techniques. In Section 3 we implement these techniques on a
large square planar array with an aperture size of 32A x 32A. We then extend this study
to other array types in Section 4. Beam scanning performance of the arrays is studied in
Section 5, followed by conclusions in Section 6.

2. Sampling Points on a Planar Aperture

Assume a uniformly weighted N-element planar array lies in the x-y plane bounded
by 0 < x < Xmax and 0 < y < ymax. The array factor is given by

N .
AF(u,0) = Y ¢ Klxnutyuc] 0

n=1

where k = 271/ A, A is the wavelength, (x,,, y,) is the location of element 1, 6 and ¢ are the
elevation and azimuth angle, respectively, and u = sin 6 cos ¢, v = sin 8 sin ¢. We note that
for a planar array, regular sampling takes the form of a rectangular lattice, triangular lattice,
or concentric ring array. In this paper the rectangular lattice serves as the reference, where
the grating lobes for a rectangular lattice appear at [1]

Uy = Us +mA/dy form =0,£1,£2,..., @)
op = vs +nA/dyforn=0,+1,%2,...,

where 15 and vs are the main beam location in the sine space.

2.1. Random Sampling Approaches
2.1.1. Random Sampling

The element locations on a random lattice are defined by

(xn/ ]/n) = (anxmax/ ,Bn]/max) 3

where &, and f,, are uniformly distributed random variables between 0 and 1, and xmax
and Ymayx are the maximum lattice size in x and y. Random element sampling is hierar-
chical, because adding an additional element does not require recalculating the previous
element locations.

2.1.2. Random Sampling with Jitter

Jitter adds a small random variation to the element location given by

(Xn,¥n) = (X' + dnTmax cOS(271Bn), ¥, + &nTmax SIN(27By,)) 4)
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where (x/,,, v/ ,) are the rectangular lattice coordinates and 7may is the maximum distance
that the new sample point moves from the regular lattice.

2.1.3. Random Hyperuniform Spatial Arrangements

Another important category of random distributions is random hyperuniform spatial
arrangements which have been observed in different physical systems ranging from disor-
dered ground state to jammed particle packing [36-38]. Hyperuniform systems are exotic
states of matter which exploit designed disorder laying between a crystal and a liquid. A
statistically homogeneous hyperuniform points configuration in d-dimensions is one in
which the number variance of N points within a spherical observation window of radius R
grows more slowly than R ie.,

oR(R) ~ R ()

This is equivalent to having a structure factor that tends to zero as the wavenumber
tends to zero, implying that single scattering of incident radiation at infinite wavelengths is
completely suppressed, i.e., they do not have Bragg peaks. From an array sampling point
perspective, these types of distributions can eliminate grating lobes. Due to the random
nature of these distributions, we would limit our discussions on these hyperuniform
arrangements and focus on LDS techniques and refer the interested reader to [36—40].

2.2. Low Discrepancy Sampling Approaches

A low discrepancy sequence (LDS) is a set of points positioned on a surface that
fills the aperture more uniformly than an equal set of uncorrelated random points [41].
Figure 2 shows the points on the x-y plane of a unit square for the case of uniform, random,
and LDS Poisson disk distributions.

050 g% o stes .1 >05

(a)

O |(eeeeeeeeoceceococoooe

X

(b) (c)

Figure 2. A generic representation of the position of points on a unit-square with different distributions: (a) uniform,

(b) random, (c) LDS Poisson disk. The total number of elements is equal in all three cases but note that the LDS method fills

the space more uniformly while avoiding too close spacings.

2.2.1. Hammersley Sampling
Any positive integer can be represented by a prime base as
L(n)

n=Y agub* (6)
k=0

where, b is the prime base in which number 7 is represented, a; (1) is an integer in [0, b — 1],
and L(n) is the lowest integer value that allows expressing the integer 1 in base b as the



Sensors 2021, 21, 7816 6 of 20

summation of L(n) + 1 terms. The van der Corput sequence [42,43], is a one-dimensional
low-discrepancy sequence over the unit-interval and is given by

L(n)
¥y(n) = Y ag(b ! 7)
k=0

For a binary representation, i.e., base 2, the van der Corput sequence can be written as

a
Yoy =248 4 L

2 22 2L(n)+1 ®)

Hammersley sampling utilizes the van der Corput sequence that results in a two-
dimensional LDS sampling in the rectangular grid defined by

(an, ) = (1 ¥u(m)),n =0,1,2,...,N =1, )

Hamersley sampling is not hierarchical due to the #/N term in (8), because adding an
additional element, does require recalculating the previous element locations.

2.2.2. Halton Sampling

Halton sampling replaces the n/N term in Hamersley sampling by another Van der
Corput sequence,

(an, Bn) = (¥p,(n),¥p,(n)),n=0,1,2,...,N—1, (10)
where by and b, are two different prime bases. Note that Halton sampling is hierarchical.

2.2.3. Sobol Sampling
The jth coordinate of the ith point, p(i, j), in a Sobol sequence [44-47], is given by

0, i=1
{ Yi(Doi(1) & 1(@)o(2) & ..., i>1. (1)

Here & is the bitwise exclusive or operator, y;(n) are the binary digits of the integer
i — 1, and v;(n) are direction numbers that are generated from primitive polynomials in
Zy. The direction numbers depend on the coordinate j and are obtained from primitive
polynomials according to the ith dimension. The detailed process to determine these
direction numbers can be found in [48]. Sobol sampling is hierarchical, since it does not
depend on the total number of elements and adding additional elements does not require
recalculation of element locations. For two-dimensional sampling with Sobol sequence,
one option is to use the i points for one axis, and the j points for the orthogonal axis. This is
similar to Hammersley sampling. Alternatively, one can use two Sobol sequences for the
axes, similar to Halton sampling, which will improve the equidistribution.

2.2.4. Poisson Disk Sampling

Poisson disk sampling produces points, X = {x;}, from a given domain, D, in N-
dimensional space, that are tightly packed, but no closer than a specified minimum distance
r. Here N is the number of elements in the array. The samples are at least a minimum
distance apart, satisfying an empty disk criterion, i.e.,

Vxi, xj € X, x; # xj:||xi — xjl| > 7. (12)

The maximal condition requires that the disks are simultaneously closely packed
together, in the sense that the sample disks cover the whole domain. Mathematically this is
given by

VxeD,3x; € X:|x—xi| <. (13)
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The Poisson distribution also possesses bias-free property which means that the
expected number of sample points inside any subdomain, (), is proportional to the area
of the subdomain. This is achieved by ensuring that the probability of selecting a point
for the next sample is equal to the probability of selecting any other point, provided these
points are not already inside some prior sample’s disk, i.e.,

_ _ Area(Q))
Vx; € X, VQ C D;: P(x; € Q) = Area(D;)’ (14)
Multiple algorithms have been developed to implement this technique, and the reader
is referred to [49,50] for detailed surveys of implementing Poisson sampling methods.
Finally, we note that since this approach requires one to specify the total number of
elements, it is not hierarchical.

3. Sparse Planar Phased Array Antennas

In this section, our example is a planar 32A x 32A aperture with 576 elements. Note
that a fully populated array with A /2 element spacing with this aperture size would require
4096 elements, so this sparse array removes 86% of the elements. With a uniform grid, the
average element spacing of this sparse array is 41 /3.

3.1. Element Distributions on the Aperture

Examples of element distributions for uniform, random, and multiple LDS methods
appear in Figure 3.

The LDS element placements in Figure 3d—o do not correspond to a periodic grid.
Neither are they random. In comparison of the techniques, higher order Hammersley
methods, Figure 3f,g with prime bases of 5 and 7 have shades of a periodic placement that
potentially raise the peak sidelobe levels. This will be discussed further in the next section.
Other LDS methods however appear more random and are suitable candidates for sparse
arrays. Here we provide some metrics on the element distributions.

As discussed earlier, from a practical fabrication perspective, we need elements dis-
tributed on the aperture in a manner that the physical antenna elements do not touch. Bar
plots in Figure 4 show the number of elements that fall within a minimum range of element
spacing for the different distributions. As expected, for the uniform case, Figure 4a, all
elements have the same minimum separation between them. The random distribution,
Figure 4b, on the other hand almost produces a Gaussian-like distribution of elements but
has several elements that are placed too close to each other. Random distribution with
jitter, Figure 4c, has a similar Gaussian-like distribution, but provides a slightly larger
minimum element spacing. The distribution however looks too regular. Hammersley
distributions, Figure 4d—g, place many of the elements at a certain minimum spacing,
which avoids the issue with minimum element spacing, but the distributions appear more
periodic. This is primarily due to the hierarchical problem with this sampling method.
Halton samplings, Figure 4h-m, avoid both issues, i.e., too close placement of elements
and a periodic distribution, although it appears that the performance improves as the base
prime numbers are picked further away from each other, e.g., 2 and 7. Sobol and Poission
samplings also show a Gaussian distribution of elements and avoid small element spacings.
Notably, the Poisson distribution here was set to half the element spacing of the uniform
array, i.e., 4A/6, and it can be seen that the minimum element spacing is exactly 4A/6 as
designed. Note that Halton, Sobol, and Poisson distributions provide a non-uniform and
well distributed placement of the elements, while avoiding small element distances.
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Figure 3. Position of elements on the aperture with different distributions: (a) uniform, (b) random,
(c) random with jitter, (d) Hammersley (base 2), (e) Hammersley (base 3), (f) Hammersley (base
5), (g) Hammersley (base 7), (h) Halton (bases 2, 3), (i) Halton (bases 2, 5), (j) Halton (bases 2, 7),
(k) Halton (bases 3, 5), (1) Halton (bases 3, 7), (m) Halton (bases 5, 7), (n) Sobol, (o) Poisson disk.
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Figure 4. Bar plot of minimum element spacings with different distributions: (a) uniform, (b) random, (c) random with jitter,
(d) Hammersley (base 2), (e) Hammersley (base 3), (f) Hammersley (base 5), (g) Hammersley (base 7), (h) Halton (bases 2, 3),
(i) Halton (bases 2, 5), (j) Halton (bases 2, 7), (k) Halton (bases 3, 5), (1) Halton (bases 3, 7), (m) Halton (bases 5, 7), (n) Sobol,

(o) Poisson disk.
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3.2. Radiation Patterns of the Sparse Phased Array Antennas

The complete far-field radiation pattern of an antenna array with identical elements is
given by

N
F(u,0) = E(u,0) Y aye /Kxut+vmo] (15)
n=1

where E(u, v) is the element pattern in u-v space, the summation represents the array factor,
and F(u, v) is the far-field radiation pattern of the antenna array. In this expression, a, is
the element weight, and the other terms are as defined in (1). Here we consider elements
that have unity amplitude and zero phase, so a, = 1. The elements are also isotropic, so
E(u,v) =1.

The radiation patterns of the arrays in the u-v space are computed using (15) and
are given in Figure 5. We note that in these graphs the visible region is a circle with
Vu? + 0% < 1. It can be seen that the uniform case has the worst performance and four
grating lobes with sidelobe level of 0 dB appear in the visible space. Random sampling
completely removes the grating lobes, however as we saw in Section 2, it places many
elements too close to each other. Random sampling with jitter reduces the grating lobes but
cannot break the grating lobes completely because its element spacing is too regular. On
the other hand, all LDS methods are effective in reducing the SLLs while maintaining low
discrepancy. In comparison between these methods, Hammersley sampling has the poorest
performance due to its hierarchical problem. For Hammersley sampling, performance
degrades as the prime base number is increased. Halton sampling on the other hand
shows a much better performance, and all 6 cases studied here show that they can break
the grating lobes. Due to its binary implementation, Sobol sampling shows a similar
performance to Hammersley sampling with a prime base of 2. Poisson sampling appears to
outperform all other LDS methods as well as the random distribution. The 2D u-v graphs
in Figure 5, allow one to visually compare the radiation performance of all the sampling
techniques, however, for better comparison, a quantitative analysis is also provided in the
next section.

3.3. Quantitative Analysis of Sparse Array Performances

As discussed earlier in this work, for sparse arrays we are interested in removing the
grating lobes, while at the same time having sampling that avoids too sparse or too dense
element distributions. In order to quantitatively analyze these arrays, here we look at some
metrics for element distributions and radiation pattern performances.

For element distributions, we look at an important statistical parameter, i.e., average
minimum element spacing. This average value is obtained by computing the minimum
element spacing for each element of the array, and then averaging the sum of those numbers
over the total number of elements. These results are given in Table 1 for all 15 cases studied
here. All LDS techniques provide a larger value of average minimum element spacing
compared to the random technique, with Hammersley technique yielding the largest in
comparison. From an element distribution perspective, it can be seen that LDS methods are
very effective in providing a physically realizable distribution and outperform the random
approach. For a quantitative study of radiation performance, we look at peak sidelobe level
(SLL), as well as directivity and aperture efficiency. Peak SLL is the ratio of the pattern of
the sidelobe peak (Fsr 1), to the pattern value of the main lobe (Fax). We note that for a
boresight beam Fiax is the value of the far-field radiation pattern at F(0, 0). The directivity
is defined as

D— 47T Fmax
Vid407 <1 Vi +02<1
| F(u,0)dudv
0 0

(16)
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Figure 5. Normalized power patterns of the antenna arrays with different element distribu-
tions in the u-v space: (a) uniform, (b) random, (c¢) random with jitter, (d) Hammersley (base 2),
(e) Hammersley (base 3), (f) Hammersley (base 5), (g) Hammersley (base 7), (h) Halton (bases 2, 3),
(i) Halton (bases 2, 5), (j) Halton (bases 2, 7), (k) Halton (bases 3, 5), (1) Halton (bases 3, 7), (m) Halton
(bases 5, 7), (n) Sobol, (o) Poisson disk.
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Table 1. Performance metrics for sparse arrays with different element distributions.

Average Minimum Peak SLL . . . Aperture Efficienc

Method Elemer%t Spacing (\) (dB) Directivity (dB) P (%) y
Uniform 1.3333 0 31.5478 11.168
Random 0.6667 —10.90 31.9619 12.209
Random with Jitter 0.9325 —9.36 32.5775 14.068
Hammersley (base 2) 1.0037 -7.0 32.7075 14.166
Hammersley (base 3) 1.1688 —2.69 32.6226 14.215
Hammersley (base 5) 1.2624 —0.55 31.6892 11.466
Hammersley (base 7) 0.7538 —0.25 33.8949 19.054
Halton (bases 2, 3) 0.8436 —10.10 32.4609 13.696
Halton (bases 2, 5) 0.8115 —4.33 32.3534 13.361
Halton (bases 2, 7) 0.9172 —12.35 32.8188 14.872
Halton (bases 3, 5) 0.8430 —8.10 32.8611 15.018
Halton (bases 3, 7) 0.7663 —5.90 32.2561 13.065
Halton (bases 5, 7) 0.8633 —5.60 329511 15.332
Sobol 0.9307 —6.58 32.7127 14.513
Poisson Disk 0.9031 —12.28 32.8212 14.880

Aperture efficiency is defined as directivity divided by maximum aperture directivity,
where the maximum aperture directivity is given by

4TA
Duperture = 7 (17)

Here, A is the size of the array aperture, which in our study in this section is
32X x 32A, and A is the wavelength.

These results are also given in Table 1 for all 15 cases. It can be seen that the uniform
case has the poorest performance in terms of SLL as well as directivity and efficiency.
Random distribution can notably improve these, but as discussed earlier, the element
distribution is undesirable. Random distribution with jitter improves directivity and
efficiency but degrades SLL. In comparison between the LDS methods, Hammersley
sampling has the poorest SLL performance, which degrades as the prime base number
is increased. Halton sampling shows a better performance in comparison. The prime
bases of 2 and 7 yield the best performance for this technique. Sobol sampling shows
a similar performance to Hammersley with a prime base of 2. Poisson disk sampling
shows the best performance of all LDS techniques, with a SLL of —12.28 dB and close
to 15% aperture efficiency. While all these LDS techniques outperform the uniform case,
the best performances come from Halton and Poisson disk methods that outperform the
random technique.

4. Aperture Shape Effects on the Performance of Sparse Phased Array Antennas

To see the impact of aperture shape on the performance of these LDS arrays, in this
section we study three different types of arrays with rectangular, circular, and elliptical
apertures. All apertures are designed with the same surface area of 102412 as the square
aperture studied in Section 3. The rectangular aperture has an aspect ratio of 9/4, i.e., the
ratio of its longer side to its shorter side, corresponding to longer and shorter side lengths
of 48\ and 64A/3, respectively. The circular aperture has a radius of 18A. To maintain
the same aspect ratio as the rectangle and the same aperture size as the other arrays, the
elliptical array major and minor axis are 27 and 12A, respectively. Here we compare the
performance of two LDS sparse arrays that showed the best performance, namely Halton
(with bases of 2 and 7) and Poisson distributions, with uniform distribution. The element
distributions for these arrays are given in Figure 6.
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Figure 6. Position of elements on rectangular, circular, and elliptical apertures with different distributions: (a) uniform
(rectangular), (b) Halton (rectangular), (c) Poisson disk (rectangular), (d) uniform (circular), (e) Halton (circular), (f) Poisson
disk (circular), (g) uniform (elliptical), (h) Halton (elliptical), (i) Poisson disk (elliptical).

Bar plots in Figure 7 show the number of elements that fall within a minimum range
of element spacing for the different distributions. Similar to Figure 4, for the uniform
case, all elements have the same minimum separation between them. Halton sampling
avoids too close placement of elements and distributes them in the range around A/2 to 2A,
while Poisson sampling provides a Gaussian distribution of elements with and minimum
element spacing of 4\ /6. We note that these observations are similar to the square aperture
studies given in Section 3. The radiation patterns of these arrays in the u-v space are given
in Figure 8, where it can be seen that similar to the square aperture array, the uniform
case has the worst performance and four grating lobes with sidelobe level of 0 dB appear
in the visible space. Both LDS techniques remove the grating lobes; however, it can be
seen that the Poisson technique outperforms Hammersley. Nonetheless, these studies
show that the performance of LDS sampling techniques are not impacted by the shape of
the array aperture, and in general these sampling approaches can be used for arbitrary
shaped arrays.
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Figure 7. Bar plot of minimum element spacings on rectangular, circular, and elliptical apertures with different distributions:
(a) uniform (rectangular), (b) Halton (rectangular), (c) Poisson disk (rectangular), (d) uniform (circular), (e) Halton (circular),
(f) Poisson disk (circular), (g) uniform (elliptical), (h) Halton (elliptical), (i) Poisson disk (elliptical).

Table 2 summarizes the performance factors for these three types of arrays. As
expected, the uniform case has the poorest performance in terms of SLL as well as directivity
and efficiency. Both LDS techniques are effective in removing the grating lobes, but it
can be seen that the Poisson technique provides the best results. It should be noted
that in comparison between array aperture types, the circular aperture provides the best
performance in terms of peak SLL, directivity, and efficiency.

Table 2. Performance metrics for sparse antenna arrays with rectangular, circular, and elliptical apertures and different

element distributions.

Method/Aperture Type E?::::rg: SI\;)I l;clil::;al) Pe?(l;BS)LL Directivity (dB) E ff?c Ii):;tcl;rf%)
Uniform/Rectangular 1.3333 0 31.5778 11.175
Uniform/Circular 1.3333 0 31.5848 11.261
Uniform/Elliptical 1.3333 0 31.5181 11.228
Halton/Rectangular 0.8481 —6.74 32.4857 13.774
Halton/Circular 0.8967 —9.27 32.6474 14.383
Halton/Elliptical 0.7724 —8.94 32.5883 14.365
Poisson Disc/Rectangular 0.9094 —-12.18 32.8062 14.829
Poisson Disc/Circular 0.9016 —15.30 32.8643 15.119
Poisson Disc/Elliptical 0.9245 —14.34 32.6634 14.616
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Figure 8. Normalized power patterns of sparse antenna arrays with rectangular, circular, and elliptical
apertures and different element distributions in the u-v space: (a) uniform (rectangular), (b) Halton
(rectangular), (c) Poisson disk (rectangular), (d) uniform (circular), (e) Halton (circular), (f) Poisson
disk (circular), (g) uniform (elliptical), (h) Halton (elliptical), (i) Poisson disk (elliptical).

5. Beam-Scanning Performance of Sparse Phased Array Antennas

In this section, we study the beam-scanning performance of sparse phased array
antennas. The studies conducted in Sections 3 and 4 showed that the performance of LDS
distributions are not impacted by the type/shape of the array aperture, so for brevity we
only consider the square aperture configuration in Section 3. By adding a progressive phase
shift to the elements on the aperture, the sparse arrays can provide 2D beam scanning.
Mathematically, the phase shift needed to scan the beam is given by

@(xn, Yn) = k(xp, sin 05 cos ¢ps + y,, sin O sin ¢s) (18)

where, k = 27t/ A, A is the wavelength, (x,,, y,) is the location of element 7, 65 and ¢ are
the elevation and azimuth angle of the desired scanned beam direction, respectively.
Here we investigate 1-D and 2-D scanning performance of the arrays by studying
scanning in the elevation plane at ¢ = 0° and ¢ = 45° directions, but similar results are
observed for other scan directions. We note that scanning is essentially shifting the obser-



Sensors 2021, 21, 7816

16 of 20

vation window. With sparse arrays this means that if grating lobes are created, scanning
may result in more grating lobes appearing in the visible space.

Here we compare the scan performance of two LDS sparse arrays that showed the
best performance, namely Halton (with bases of 2 and 7), and Poisson distributions, along
with uniform and random distributions. Scanned patterns of each of these arrays are given
in Figure 9 (¢ = 0° direction) and 10 (¢ = 45° direction), for 20°, 40°, and 60° elevation
scans. We note that the array elements are isotropic point sources. For the uniform array;,
four grating lobes are observed when the array beam is at boresight, Figure 5a. When the
array is scanned in 1-D, Figure 9a—c, the number of grating lobes increases to five at 20°
and to seven when pointing at 40° and 60°. When the array is scanned in 2-D, Figure 10a—c,
the number of grating lobes first reduces to three at 20° and 40°, and then increases to five
when pointing at 60°. This change in the number of grating lobes degrades directivity,
and in general the uniform array is not suitable for beam-scanning. The other three arrays
however, i.e., random, Halton, and Poisson, show a good beam-scanning performance.
These arrays do not have grating lobes, and scanning does not change that. In particular, we
note that Poisson distribution, Figures 9 and 10j-1, shows a performance better than random
distribution, i.e., Figures 9 and 10d—f, with the added advantage of having a physically
realizable element distribution. It is important to note that while Halton sampling does
have a higher SLL in the visible space, it does not have grating lobe issues, and again
provides a notably better element distribution compared to the random case. Nonetheless,
these studies also confirm that the Poisson disk sampling provides the best performance.
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Figure 10. Normalized power patterns of the antenna arrays in the u-v space scanned along the el-
evation plane in ¢ = 45° direction with different element distributions: (a) uniform (20° scan),
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(f) random (60° scan), (g) Halton (20° scan), (h) Halton (40° scan), (i) Halton (60° scan), (j) Poisson
disk (20° scan), (k) Poisson disk (40° scan), (1) Poisson disk (60° scan). The Halton sampling uses
prime bases of 2 and 7.

6. Conclusions

Sparse arrays have a significantly smaller number of elements compared to traditional
dense arrays (with A/2 element spacing) which minimizes their cost and complexity. A
comprehensive study of sparse phased arrays using low-discrepancy sequence (LDS)
element distribution is presented. We show that these LDS element distributions remove
the grating lobes associated with large element spacing in sparse arrays, while at the
same time avoid undesirable and impractical element distributions in random arrays. The
mathematical formulation for implementing LDS for sparse planar arrays is presented,
along with numerical studies on their performance. Our studies considered sparse arrays
with 86% less elements than a fully populated array. The performance factors compared
equidistribution on the aperture of the array by looking at average minimum element
spacing, as well as array pattern peak SLL, directivity, and aperture efficiency. Different
array aperture configurations were also studied, and we show that the performance of LDS
distributions is not impacted by the type/shape of the array. Our studies concluded that in
comparison between the LDS techniques, the Poisson disk sampling technique outperforms
all other approaches and is the recommended LDS technique for sparse arrays.
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