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Abstract: This work explores interference coordination techniques (inter-cell interference coordina-
tion, ICIC) based on fractional frequency reuse (FFR) as a solution for a multi-cellular scenario with
user concentration varying over time. Initially, we present the problem of high user concentration
along with their consequences. Next, the use of multiple-input multiple-output (MIMO) and small
cells are discussed as classic solutions to the problem, leading to the introduction of fractional fre-
quency reuse and existing ICIC techniques that use FFR. An exploratory analysis is presented in order
to demonstrate the effectiveness of ICIC techniques in reducing co-channel interference, as well as to
compare different techniques. A statistical study was conducted using one of the techniques from
the first analysis in order to identify which of its parameters are relevant to the system performance.
Additionally, another study is presented to highlight the impact of high user concentration in the
proposed scenario. Because of the dynamic aspect of the system, this work proposes a solution based
on machine learning. It consists of changing the ICIC parameters automatically to maintain the best
possible signal-to-interference-plus-noise ratio (SINR) in a scenario with hotspots appearing over
time. All investigations are based on ns-3 simulator prototyping. The results show that the proposed
Q-Learning algorithm increases the average SINR from all users and hotspot users when compared
with a scenario without Q-Learning. The SINR from hotspot users is increased by 11.2% in the worst
case scenario and by 180% in the best case.

Keywords: ICIC; FFR; hotspot; ns-3; Q-Learning; machine learning

1. Introduction

According to a Cisco forecast [1], by 2022, traffic from wireless and mobile devices
will account for 71% of global IP traffic. Between 2017 and 2022, all data traffic in mobile
networks will be seven times bigger, as a result of the intense sharing and consumption
of data, especially video. Recent studies [2] predict that, over the next 7 years, 1.4 billion
people will start using mobile internet for the first time. Until 2025, over 60% of the
world’s population will be using mobile internet. Additionally, there is an ongoing change
of consuming habits. As more people consume video-related content, longer and more
frequently, especially via mobile devices, the use of mobile data per user will be five times
bigger by 2024.

Nonetheless, smartphones are not the only devices responsible for the increase on
traffic demand. According to the GSMA Association [2], between 2018 and 2025, the amount
of IoT devices in mobile networks will triple, reaching 25 billion connections. Furthermore,
5G will also increase the number of connected devices and use cases offered by the network.
This constant growth of traffic demand calls for higher network capacity. In fact, the
Shannon–Hartley theorem [3] demonstrates that increasing the available bandwidth is the
most effective way to increase a channel’s capacity. However, the spectrum is a limited
resource that has to be used efficiently.

In order to increase network capacity, the evolution of wireless communication tech-
nologies has introduced approaches, such as the use of multiple antennas, power control,
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management of co-channel interference by reusing the spectrum, and the implementation
of more efficient modulation schemes. For example, Long Term Evolution (LTE) originally
proposes a reuse factor of 1 in order to increase spectrum efficiency. A reuse factor of 1
means that all network cells operate in the same frequency band. A reuse factor of 3, on
the other hand, decreases the band available to each cell by 3, decreasing the channel’s
capacity. However, a reuse factor of 1 may lead to low Signal-to-interference-plus-noise
Ratio (SINR), especially to users located further away from the e-NodeB (eNB) (radio base
station on LTE), due to interference from neighboring cells.

These techniques aim at increasing channel capacity, but they also introduce new
challenges, mainly related to the compromise between coverage and quality of service.
For example, enhanced Mobile Broadband (eMBB) has been a widely discussed topic in
the literature. It represents the evolution of mobile communications and it has been the
focus in the first commercial deployments of 5G. One of its goals is to provide high data
rates and wide coverage. However, as 5G operates in high frequencies, the coverage tends
to decrease, as the signal attenuation is more severe. Consequently, the network will
likely have to deploy more base stations, increasing the need to mitigate interference from
adjacent cells.

In addition, some aspects that have strong impacts on mobile network performances,
such as the traffic demand or the amount and distribution of users, are often unpredictable
or variant through time. Big cities usually host events that can last from a few hours to
a couple of days and these can be either recurrent or a one time occasion. Events and
locations, such as school fairs, football games, music festivals, school parades, food parks,
and malls can suddenly increase the number and density of users at that location.

The planning and deployment of a mobile network is traditionally associated with
modeling the channel based on the specific demand for a location. This usually does
not take into account some parameters that can vary in an unexpected way, as the ones
mentioned above. In non-dynamic systems, the occasional appearance of areas with high
user concentration can severely degrade the channel quality and the system’s ability to
serve its users.

In this work, the term hotspot is used to describe this region with a high density of
users and it does not mean a new Access Point (AP). Besides the increase on traffic demand,
due to a high number of users, there is also a higher probability of increased interference,
especially on systems with a reuse factor of 1. In such scenarios, the users in the borders of
the coverage area are the most affected by interference.

The paper is organized as follows. Section 2 presents the problem of high user
concentration and its impact on system performance, along with some classical solutions
for this problem. Sequentially, Section 3 introduces Fractional Frequency Reuse (FFR), an
important component of the proposed solution, and Section 4 shows how 3rd Generation
Partnership Project (3GPP) has developed Inter-Cell Interference Coordination (ICIC)
techniques over the years. Section 5 presents relevant related works and Section 6 indicates
how the system is modeled for simulations. Finally, Sections 7–9 show results from
preliminary analysis and Section 10 presents our proposed solution, as well as the proof-of-
concept results and discussion.

In this paper, our key contributions are:

• Performance comparison of classic FFR-based ICIC algorithms that take into account
the number of users and their distributions along the cell (edge and center);

• Statistical analysis of the strict frequency reuse scheme that identifies which parame-
ters do not need to be dynamically controlled;

• Analysis of the strict frequency reuse algorithm’s performance in a mixed scenario
with hotspot and homogeneous user distribution;

• Q-Learning algorithm that continually operates in the network to dynamically mitigate
the performance loss (SINR) that results from the appearance of hotspots (densely
populated areas).
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2. Interference in Hotspot Scenarios

Mobile networks face many challenges that can limit channel capacity. For example,
the lack of available bandwidth is a common issue that can be addressed by increasing the
spectrum reuse, as a way to increase the capacity limit. However, that may lead to a higher
co-channel interference, which happens when more then one user is using the same radio
resource at the same time.

The solution presented in this paper can be applied on an Orthogonal Frequency-
Division Multiple Access (OFDMA)-based system (e.g., 4G LTE or 5G NR) in a Downlink
(DL) direction, whose users may experience interference from multiple neighboring cells
reusing the same frequency at the same time. This interference may be a severe limiting
factor in terms of capacity, especially with a reuse factor of 1.

In such scenarios, users from different cells can interfere with each other, and users
located in the cell edge are the most affected by co-channel interference [4]. These users
are far from the transmitting cell and closer to adjacent cells, increasing the probability
of receiving any interfering signals with higher power levels and signals from its serving
cell with lower power levels. Hence, user distribution is another aspect that can have a
negative impact on system performance.

Therefore, the existence of regions with high user concentration (hotspots), especially
if close to the cell edge, can lead to a lack of available resources and a higher probability of
users being allocated to the same frequency. Regardless of its location, the appearance of
hotspots may increase interference, leading to lower SINR. This results in higher Bit Error
Rate (BER) and, consequently, lower traffic capacity.

All of these challenges are well known and can degrade performance; however, they
are partially predictable. On the other hand, some modern, urban hotspot scenarios bear
a more dynamic aspect. For example, the number of people flowing through a big city
does not merely repeat weekly, since extraordinary situations that are hard to predict often
happen in large urban areas.

For instance, a certain neighborhood that consistently had a uniform distribution
of users may change significantly because a new food park has opened, a soccer league
changed its venue, a protest is taking place or an accident stopped the traffic. In such
situations, mobile networks that were planned and deployed statically will not be able to
serve its users well. Besides, the traffic demand per user is also likely to increase as these
situations or events induce a different behavior in users. It leads them to consume more
bandwidth by sharing photos and videos, aggravating the high traffic demand.

2.1. Classic Solutions for Interference in Hotspot Scenarios
2.1.1. MIMO Systems

Multiple-Input Multiple-Output (MIMO) is a technology that uses multiple antennas
for transmitting and receiving signals to mitigate negative aspects of the channel and/or
multiplex data transmission. The first goal, for example, can be attained by increasing
the diversity of transmitted signals [5]. The unpredictability of the wireless channel is
used as a tool to improve system performance [6] by using multiple antennas to exploit
the advantages of spatial diversity [7]. Furthermore, MIMO can also explore spatial
multiplexing, using multiple antennas to transmit data through various channels.

Given a minimum spacing between antennas, it is possible to obtain independent
or weakly correlated channels on each Tx/Rx (transmission and reception) pair. This
concurrent transmission in the same frequency band can increase data rates or improve
reliability without compromising spectral efficiency.

A scenario with hotspots is prone to have some channels suffering with less interfer-
ence than others. Thus, if an appropriate combination method is applied for the different
transmissions, it is possible to improve performance. For example, choosing the path with
better SINR [5] is a simple solution that can lead to better results. Additionally, multiple
antennas can also control the signal amplitude and phase to direct beams towards certain
users or regions and avoid users suffering from interference [8].
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Recent wireless communication systems point MIMO as an efficient approach to
increase data rates, especially when suffering from small-scale multi-path, such as systems
with hotspots. For instance, the use of multiple antennas has been widely discussed in the
literature as a core feature of 5G systems [9], through massive MIMO. The use of Millimiter
Waves (mmWaves) enables antenna arrays with a high number of elements [10]. However,
MIMO is a solution implemented in the physical layer, which requires investments in
hardware and it often demands channel estimation.

Nevertheless, this work does not intend to indicate MIMO as a technique to be
replaced. Still, it introduces FFR as an appropriate technology to address the specific
problems noted in the last section. In mobile networks, MIMO often co-exists with FFR
techniques.

2.1.2. Small Cells

Heterogeneous Network (HetNet) is an extended concept of Hierarchical cell structure
(HCS) that has been discussed even before the standardization of LTE [11]. It is usually
associated with urban scenarios, where the traffic demand and the number of users are
constantly increasing.

In HetNets, different categories of cells coexist with each other, and they usually
differ in coverage and capacity [12]. Still, they do not necessarily need to share the same
radio access technology. In such deployments, small cells are an alternative to offload the
macrocells traffic, especially on hotspots and cell-edge [13], due to severe interference.

Dense urban areas that already have limited capacity may require big investments to
deploy another conventional access point. In such cases, the use of small cells is attractive,
since they can improve coverage and transmit with lower power, given the smaller distance
between user and transmitter. These cells usually operate in the same frequency band as
the macrocells, transmitting with lower power to reduce interference.

Recent studies involving HetNets usually focus on two categories of small cells:
femtocells and picocells [14–16]. The former is typically deployed by the user, it is not
planned, and it may be private, being called a Closed Subscriber Group (CSG). The latter
has the functionality of a regular eNB, but with smaller coverage and lower transmission
power. Picocells are usually deployed to cover areas with a high density of users and they
can also be deployed indoors, if necessary.

The use of small cells is also indicated as a key technology for 5G. The densification of
the network has been indicated in the literature as an efficient solution to help satisfy the
requirements for 5G [17].

However, the use of small cells also imposes some challenges. Its deployment de-
mands investment in planning and hardware, and it may increase the amount of unneces-
sary hand-offs [18]. The large power difference between cell tiers can leave small cell users
at a disadvantage. On the other hand, CSGs can create holes in coverage for the macrocell
users, as they do not have access to the CSG.

3. Fractional Frequency Reuse

A mobile network usually offers coverage to its subscribers with cells that have a
limited frequency band for transmitting and receiving signals. In order to use the spectrum
efficiently, a reuse factor of 1 is commonly applied, which means that all of the cells use the
entire available bandwidth.

In order to mitigate inter-cell interference, some networks increase the reuse factor. For
example, a reuse factor of 3 creates a topology where adjacent cells do not share bandwidth,
as illustrated in Figure 1. However, there is a significant loss in spectral efficiency, given
that only 1/3 of the original bandwidth is available to each cell.
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Figure 1. Scenario with reuse factor of 3. In this topology, no adjacent cells share bandwidth, i.e.,
their frequency bands are disjoint.

Fractional frequency reuse splits the cell into distinct regions with different reuse
factors and transmission power. The goal is to improve the SINR, increasing the reuse
factor without compromising the spectral efficiency. Users in the cell edge are usually the
target of FFR-based techniques, since they are the most affected by co-channel interference.

The following section presents some FFR-based techniques, known in the 3GPP as
ICIC techniques. These algorithms were selected because of the following reasons. They
are standardized for LTE by 3GPP (but not limited to it, since they can be applied to other
OFDMA-based systems, such as 5G NR), they are already implemented in the simulator
used in this paper [19], and they represent a good range of ICIC strategies based on FFR
that can be found in deployed networks [20]. The algorithms are fully described in [20–22].

3.1. ICIC Techniques

In order to compare the techniques, two algorithms without fractional reuse of the
frequency are also considered: Full Frequency Reuse (NoOp) and Hard Frequency Reuse
(HFR). The former has a reuse factor of 1, the latter has a reuse factor of 3, as illustrated in
Figure 1, and both transmit with the same power for the whole bandwidth.

In scenarios with few users, the Full Frequency Reuse (NoOp) may present high data
rates given the larger available bandwidth for each cell. However, higher interference is
expected, and it may result in low SINR and high Packet Loss Ratio (PLR), especially for
edge users. The HFR algorithm is more efficient in reducing interference, as all adjacent
cells have disjoint bandwidths. However, each cell has only 1/3 of the available bandwidth,
which can severely reduce throughput, depending on the offered load [21].

3.1.1. Strict Frequency Reuse

The Strict Frequency Reuse (Strict FR) splits the bandwidth into two sub-bands, as
illustrated in Figure 2. The cell-center User Equipments (UEs) are allocated to a common
sub-band shared by all cells (reuse factor of 1) and the cell-edge UEs are allocated to
a private sub-band (reuse factor of 3). Hence, cell-center users share bandwidth with
neighboring cells, thus increasing spectral efficiency, but cell-edge users do not, thus
reducing interference. Additionally, a higher power level is used for the private sub-band.

In order to determine whether a UE is allocated to the common or private sub-band,
the ICIC algorithm uses a metric defined in 3GPP, the Reference Signal Received Quality
(RSRQ). It indicates the quality of the signal and it takes into account various metrics, such
as noise, power from interfering signals, and the number of allocated Resource Blocks (RBs).
If the RSRQ reported by a user is higher than a threshold, the UE is allocated to the common
sub-band (cell-center). Otherwise, it is allocated to the private sub-band (cell-edge). The
RSRQ threshold is a user-defined parameter.
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Figure 2. Bandwidth distribution and power allocation for the Strict frequency reuse algorithm in a
cluster of three cells.

3.1.2. Soft Frequency Reuse

The Soft Frequency Reuse (SFR) also splits the bandwidth into two sub-bands. How-
ever, the sub-band allocated to cell-edge UEs is not private, as illustrated in Figure 3.
However, cell-edge users only share bandwidth with cell-center users from adjacent cells.
Consequently, the cell-edge sub-bands are disjoint. Thus, cell-edge UEs do not use the
same frequency band as neighboring cells, and each occupies 1/3 of the available spectrum.

Figure 3. Bandwidth distribution and power allocation for the soft frequency reuse algorithm in a
cluster of three cells.

The SFR can lead to better spectral efficiency when compared to the Strict FR, given
that all cells can use the entire bandwidth. However, the SFR also increases the interference
suffered by all users.

A higher power level is used for the edge sub-band, and a UE is considered in the
cell-center if the reported RSRQ is greater than the threshold. Otherwise, it is allocated in
the cell-edge sub-band.

3.1.3. Soft Fractional Frequency Reuse

The last technique is the Soft Fractional Frequency Reuse (SFFR). It divides the
bandwidth into three distinct sub-bands: center, middle, and edge, as illustrated on
Figure 4. The middle sub-band has a reuse factor of 1 and the edge sub-band has a reuse
factor of 3. The center region reuses the frequency band from the edge of the adjacent cells.
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Figure 4. Bandwidth distribution and power allocation for the soft fractional frequency reuse
algorithm in a cluster of three cells.

Each sub-band is served with a different power level, increasing from center to edge,
and user allocation on sub-bands is also done based on the reported RSRQ.

4. ICIC in 3GPP Standards

LTE is a wireless communication standard introduced by 3GPP on Release 8. It has an
all-IP network architecture and high flexibility on spectrum allocation, since OFDMA is the
multiple access scheme on DL. Consequently, the eNB can allocate a UE to any sub-carrier
in the frequency domain. This allocation is based on Resource Blocks (RBs) and each RB
has 12 sub-carriers and 180 kHz of minimal bandwidth [23]. This flexibility is important to
enable fractional reuse of the spectrum.

The X2 interface, introduced on LTE, is also important for ICIC. It enables signaling
between eNBs, allowing for the ICIC algorithms to manage the RB and power allocation
on neighboring cells [24].

Moreover, 3GPP’s Release 8 also introduces implicit support to interference coordi-
nation [25], given that LTE has good control over time, frequency, and power resources.
Release 9 presents studies that attempt to mitigate interference between macrocell and
lower power nodes and, further on, Release 10 extends ICIC to the time domain as it
introduces Enhanced ICIC (eICIC). Additionally, Release 11 presents the Further Enhanced
ICIC (feICIC) in order to mitigate interference due to control signals.

Given this history, eICIC and feICIC are often considered as the evolution of ICIC.
However, FFR-based techniques are still relevant based on recent studies, given that New
Radio (NR), the new 3GPP standard for 5G systems, demands a flexible and efficient use
of the spectrum [26]. For example, the authors of [27] propose a FFR-based ICIC scheme
for NR. The algorithm dynamically allocates users suffering from interference to a set of
Physical Resource Blocks (PRBs) that are not accessible to interfering cells.

5. Related Works

Metropolitan areas around the world have been growing significantly, alongside the
number of users on wireless networks. This growth has encouraged the literature to widely
discuss scenarios with a high density of users. Hence, the densification of the network is
indicated as an efficient approach to better serve urban areas, including 5G networks [15].
Consequently, various works introduce ways of using small cells to boost the performance
of scenarios with hotspots.

The authors of [28] propose a scenario where macrocells are populated with picocells
centered on hotspots. The paper shows that the small coverage offered by the picocells
causes an imbalance in user allocation, overloading the macrocells. Therefore, a dense
ring of macrocell users is formed around the picocells. These users experience high
interference coming from the picocells, and they are considered as victim users. They
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propose two dynamic techniques of eICIC using two different metrics to improve the
Quality of Service (QoS) of the victim users while muting picocell users.

A realistic dense scenario was evaluated in [29]. It simulated a wide urban area with
300 active users per km2. Half of the users were uniformly distributed withon the scenario,
and the other half were uniformly distributed inside circular hotspots with a 40 m radius.
For this scenario, the simulation results show that it is possible to achieve an average of
1 Gbps per user. However, they also noted that, given the year of publishing, the solution
was not applicable due to its high cost and low energy efficiency.

The authors of [30] evaluated a scenario that deployed macrocells with three sectors
each and four picocells per sector. Moreover, a fraction of the users were allocated in
hotspots centered in the picocells. They proposed the use of time-domain ICIC, using
Almost Blank Subframes (ABS) and Cell Range Extension (CRE) to improve performance
and alleviate the macrocell load. The results show that the imbalance between cells is
effectively countered with an offset value of 10 dB for the CRE. Besides, for each CRE offset,
there was an optimum value for the ratio of protected subframes. Thus, if both parameters
are properly configured within a certain range, the performance is almost the same.

Another technique used to improve the performance of hotspot scenarios is the use
of multiple antennas. The authors of [8] proposed a HetNet scenario with small cells
operating in the same frequency as macrocells. All users were allocated in hotspots and the
small cells were located at the center of some of these hotspots, representing an intentional
deployment of small cells. The solution focuses on mitigating the interference coming from
the small cells through a beamforming scheme proposed in [7]. This scheme concentrates
the transmission energy to the hotspots while creating transmission opportunities for users
in other directions.

A scheduling algorithm that combines frequency allocation and beamforming (beams
width and direction) is proposed in [31]. A homogeneous and a hotspot scenario were
considered. The paper focused on maximizing throughput according to QoS requirements,
and it compared the results to other approaches. The results show that the hotspot scenario
is more challenging for all the algorithms. However, the proposed solution has better
performance in terms of complexity and throughput.

The authors of [32] proposed a solution that served UEs in a hotspot scenario using
virtual MIMO, i.e., user cooperation to enable spatial multiplexing. Compared to the
traditional use of MIMO, this approach can avoid the costs of new antennas or access
points dedicated to the hotspots. Furthermore, the signal processing was done in the
mobile station, avoiding any new processing units. The proposed protocol presents better
performance than traditional offloading techniques, but there is no discussion about privacy,
the impact of the added signaling, or energy consumption on the user’s side.

The literature has widely discussed solutions to the problems introduced by small cells,
but, in general, only a few objectively show the negative effects related to the appearance
of hotspots. In general, the deployment of small cells and the use of MIMO techniques
demand investments in site-planning and infrastructure, and the latter usually requires
channel estimation.

FFR is still relevant as an efficient approach to mitigate inter-cell interference in mobile
networks [33–35]. Besides, recent studies still point out that FFR can be combined with
different techniques to reduce interference, such as beamforming [34].

Hotspot scenarios are consistently studied for their importance regarding current
and future mobile networks [36,37]. Still, no work has been found in the use of FFR as
the primary solution to improve performance on hotspot scenarios without using small
cells. FFR can be a good alternative for its simplicity and efficiency, even in heterogeneous
scenarios with high user density [38]. This is one of the arguments that motivates the
scientific hypothesis of this work.
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6. System Model
6.1. Simulation Software

The network simulator 3 (ns-3) is the simulation tool used in this work [39]. It is
open-source and, therefore, publicly available for development, education, and research
activities. It is also modular, comprised of several models built primarily in C++ with
some APIs available in Python. Its development is oriented by technical specifications
from standard organizations, such as 3GPP and IEEE. Besides, it is well documented, with
an active and collaborative community. For these reasons, it has been widely adopted for
research and is the primary simulation tool for this paper.

6.2. LTE Module and ICIC on ns-3

We provide our proof-of-concept results using an LTE system model. The LTE module
on ns-3 has two main components: the LTE model and the Evolved Packet Core (EPC)
model. The former includes the E-UTRAN protocol stack, i.e., the RRC, PDCP, RLC, MAC,
and PHY layers. These entities reside within the UE and the eNB nodes. The EPC model
includes the core network functionalities, allowing end-to-end IP connectivity. All protocols
and entities reside within the MME, S-GW, and P-GW nodes and partially within the eNB
nodes. Figure 5 shows the LTE-EPC protocol stack for the data plane on ns-3 [40]. The
only relevant simplification is the combination of the S-GW and P-GW functionalities into
one node.

Figure 5. LTE-EPC data plane protocol stack (taken from the ns-3 documentation [40]).

There are currently seven ICIC algorithms implemented in the LTE module, described
in [41]. The FFR algorithms act on scheduling, commanded by the MAC layer [40]. The
algorithm is consulted and, depending on its rules for bandwidth allocation, it may allow
(or not) the scheduling of a UE to a certain Resource Block Group (RBG). These algorithms
have three main parameters that can be configured, as described below.

The power level of a sub-band is defined through a power offset between the Reference
Signal (RS) and the Physical Downlink Shared Channel (PDSCH). Each sub-band has a
variable that defines this offset in decibels. For example, the Strict FR has CenterPowerOffset
and EdgePowerOffset.

Resource allocation in LTE is done through RBGs, but its size in number of RBs
depends on the system bandwidth [25]. For example, for a system bandwidth of 100 RBs,
each RBG has four RBs [25]. Hence, each sub-band has a variable that defines the number
of available RBGs for DL and Uplink (UL), separately.

Section 3.1 introduced the RSRQ threshold, which determines user allocation on sub-
bands. On LTE, RSRQ is measured in decibels and mapped into integer values before
being reported [42]. On Release 8, these values range from 0 to 34. Hence, the variable
RsrqThreshold only assumes values within this range.
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6.3. Q-Learning on ns-3

In order to execute the proposed solution, a new class was added to ns-3. It implements
the Q-Learning (QL) algorithm, which will be described in Section 10. Its first version was
introduced by the authors of [43].

The simulation script includes both models described in Section 6.2. The EPC model
enables the installation of applications in the UEs, which allows better control over the
offered load and the appearance of hotspots during the simulation, considering the appli-
cations can be turned on and off at any given time.

All calculations related to the QL algorithm are made during runtime, while the
simulation is executed. The algorithm also operates in the system during runtime, which
guarantees that the network is able to adapt dynamically.

7. Preliminary Analysis A: Performance Comparison of ICIC Algorithms

The proposed solution of this paper is fully described in Section 10. However, before
presenting the final results, we present three preliminary analyses that were important to
guide some decisions regarding the Q-Learning algorithm. The first analysis is presented
in this section, and it is a performance comparison between the ICIC techniques presented
in Section 3.1. This study evaluates the impact of FFR on cell-edge UEs in a simple scenario.
The algorithms were executed under the same conditions and their parameters assume the
default values defined either on ns-3 or in the literature.

7.1. Evaluation Scenario

The scenario consists of 3 eNBs positioned in the vertices of an equilateral triangle
with side equal to 1000 m, as illustrated in Figure 6, and each eNB is the center of a
cell. This scenario was introduced by the authors of [19] to evaluate the ICIC techniques
implemented on ns-3.

Figure 6. Scenario for preliminary analysis a: performance comparison of ICIC algorithms. The
Radius R is set to 100 m in Scenario 1 and 500 m in Scenario 2, as described in Section 7.1.

Users are distributed uniformly inside circles controlled by a radius that can be
configured as needed. There is a circle centered on each eNB and an additional circle in the
triangle’s centroid, which is the farthest location from each eNB.

User location within the circles is randomly selected from a uniform distribution,
and all circles have the same radius. Given that a smaller radius leads to a more densely
populated region (hotspot), it is possible to control user concentration. The number of
users vary from 10 to 60 UEs on each circle and different circles always have the same
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amount of users. Namely, if there are 30 users in the cell edge area, there are also 30 users
on each cell-center, i.e., 120 in total. Therefore, the number of users range from 40 to 240.

Scheduling is made using the proportional fair algorithm and the link adaptation is
based on SINR for a BER of 5 · 10−5. The system bandwidth is 5 MHz, resulting in 25 RBs
for each Transmission Time Interval (TTI). TTIs are the parameters related to the medium
access in the radio link layer. At each TTI, the scheduling algorithm allocates RBs for all
connected users. It is a parameter strongly related to access latency on LTE systems. Table 1
presents the configuration for each ICIC algorithm, suggested in [19]. Other simulation
parameters are presented in Table 2.

The simulation was conducted in two scenarios:

• Scenario 1: UEs are concentrated in a 100 m radius, representing a classic hotspot
scenario;

• Scenario 2: UEs are less concentrated, distributed over a 500 m radius circle.

Table 1. Parameters used for the comparison of the ICIC algorithms in preliminary analysis A [19].

Hard Frequency Reuse

Bandwidth: cells 1 and 2 8 RBs

Bandwidth: cell 3 9 RBs

Strict Frequency Reuse

Bandwidth (center/edge) 6 RBs each

RsrqThreshold 32

Power offset (center) –6 dB

Power offset (edge) 3 dB

Soft Frequency Reuse

Bandwidth (center) 25 RBs

Bandwidth (edge): cells 1 and 2 9 RBs

Bandwidth (edge): cell 3 9 RBs

RsrqThreshold 32

Power offset (center) –6 dB

Power offset (edge) 3 dB

Fractional Soft Frequency Reuse

Bandwidth (center/edge) 6 RBs each

RsrqThreshold (center) 37

RsrqThreshold (edge) 32

Power offset (center) –6 dB

Power offset (middle) –1.77 dB

Power offset (edge) 3 dB
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Table 2. Simulation parameters for preliminary analysis a: performance comparison of ICIC algo-
rithms.

Parameter Value

Bandwidth (RBs) 25

UE distribution Uniform

Total UEs 40 to 240

Cell-edge UEs 10 to 60

Inter-eNBs distance 1000 m

Scheduling algorithm Proportional Fair

Channel model Friis model

Error model MIESM

UE mobility No mobility

Traffic model Non-GBR TCP-based
Video (Buffered Stream)

7.2. Results and Discussions

For Scenario 1 (concentrated users), Figures 7 and 8 present the 10th percentile through-
put and the SINR Cumulative distribution function (CDF), respectively. The curves with
dotted lines represent cell-edge users and the continuous represent cell-center users.

Regarding throughput, Figure 7 shows that the NoOp algorithm presents the best
performance for cell-center users. All cells operate on the same frequency band; thus, more
bandwidth is available, and a higher data rate is obtained. However, this is also the reason
why NoOp has the worst performance for edge users, considering these UEs are more
affected by interference.

Figure 7. Scenario 1 from preliminary analysis A: 10th percentile throughput for concentrated users
(R = 100m). Each curve represents a different ICIC algorithm.

Strict FR and SFFR have similar performance. They present the best results for cell-
edge users, but limited performance for cell-center users. These algorithms allocate the
same number of RBs for each region. Hence, cell-center users only have 25% of the
bandwidth available (Table 1). The HFR algorithm has similar performance for both center
and edge users, since it does not divide the cell into distinct regions. Users do not suffer
from inter-cell interference, but the smaller bandwidth leads to lower throughput and both
Strict FR and SFFR have better performance for all UEs.
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The SFR obtains good performance for cell-center users but poor performance for
cell-edge users. The high number or RBs reserved for cell-edge users was not enough to
balance Inter-Cell Interference (ICI), since the cell-edge bandwidth is shared with cell-center
regions from adjacent cells.

Figure 8 indicates that cell-edge users have lower SINR for all algorithms, and the
worst results for both sets of users are from SFR and NoOp. HFR has the best performance
for cell-center users, but Strict FR and SFFR have better performance for cell-edge users
while also maintaining good performance on cell-center, similar to HFR. Moreover, consid-
ering the lower spectral efficiency, as discussed before, the HFR algorithm is not able to
provide good throughput levels.

Figure 8. Scenario 1 from preliminary analysis A: SINR CDF for concentrated users (R = 100 m).
Each curve represents a different ICIC algorithm.

Figures 9 and 10 show the results for Scenario 2, with less concentrated users. Concern-
ing throughput (Figure 9), there is a significant performance loss for NoOp and SFR, mainly
because cell-center UEs can interfere with cell-edge UEs. As a result, spreading the users
can increase interference, due to higher occupation of the cell-center region. Additionally,
Strict FR and SFFR still have the best throughput levels for cell-edge users.

Figure 9. Scenario 2 from preliminary analysis A: 10th percentile throughput for less concentrated
users (R = 500 m). Each curve represents a different ICIC algorithm.

Regarding SINR results, Figure 10 shows that NoOp and SFR still have the worst
performance in all cases and the Strict FR and SFFR algorithms maintain good performance
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on cell-edge. Nevertheless, all algorithms present lower SINR on cell-edge, since, in this
case, spreading the users led to more populated cell-edge regions.

Figure 10. Scenario 2 from preliminary analysis A: SINR CDF for less concentrated users (R = 500 m).
Each curve represents a different ICIC algorithm.

Some important conclusions can be outlined:

• FFR-based ICIC techniques can improve the performance of a mobile network, given
the high interference suffered by its users. It is possible to enhance cell-edge perfor-
mance without compromising cell-center users;

• Simply changing the user density can strongly impact on system performance, espe-
cially if the bandwidth is divided into sub-bands. The concentration or spreading of
the users can result in different occupation of the sub-bands, leading to overloaded or
nearly empty sub-bands;

• There is no scheme that performs best in every situation. However, the Strict FR and
the SFFR schemes have a good performance in different scenarios, and they are both
efficient at reducing ICI, especially for cell-edge users;

• The Strict Frequency Reuse (Strict FR) algorithm has the best compromise between
performance and complexity, considering SFFR has a higher number of sub-bands,
which leads to more complexity when adjusting the parameters. Therefore, the
Strict FR is the object of the study presented in the following sections.

8. Preliminary Analysis B: Factorial Design using the Strict Frequency
Reuse Algorithm

The second step towards the proposed solution consists of selecting one of the ICIC
algorithms to evaluate the impact of its most relevant parameters on system performance.
This analysis has two further steps: a 2k factorial design and a full factorial design.

These studies will be conducted in the Strict FR algorithm for its good compromise
between complexity and performance.

8.1. Evaluation Scenario

The proposed scenario is very similar to the one described in Section 7.1, as illustrated
in Figure 11. It consists of three eNBs positioned in the vertices of an equilateral triangle
with side equal to 1000 m. A total of 80 users are randomly positioned in the entire scenario
according to a uniform distribution. They do not have mobility and each UE is served by
the closest eNB. The simulation parameters are presented in Table 3.
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Figure 11. Scenario for preliminary analysis B, which is similar to the scenario in Figure 6, but
without the radius R, since all users are randomly distributed according to a uniform distribution.

Table 3. Simulation parameters for preliminary analysis B: parametric analysis of strict
frequency reuse.

Parameter Value

Bandwidth (RBs) 25

UE distribution Uniform

Number of UEs 80

Distance between eNBs (m) 1000

Scheduling algorithm Proportional Fair

Channel model Friss model

Error model MIESM

UE mobility No mobility

Traffic model Non-GBR TCP-based
Video (Buffered Stream)

8.2. 2k Factorial Design

The 2k factorial design (2k factor) is a specific case of factorial design that identifies
which parameters of an experiment have a significant effect on the desired output [44].
It provides a better understanding of the system, and can simplify future analysis. For
example, assume that the 2k factor is conducted for an experiment with a parameter called
P. If the 2k factor determines that P is not relevant, a following full factorial design will
need fewer repetitions, since P does not need to change. A Full Factorial Design consists of
replicating an experiment for all possible combinations of parameters.

To perform the 2k factor, k factors (parameters) are chosen, and they assume only two
distinct values, preferably a low and a high value close to the upper and lower limits of the
parameter’s range. Besides, it is usually followed by an Analysis of Variance (ANOVA) that
validates the results by statistically rejecting or not the null hypothesis, which is a given
parameter does not affect the desired output. ANOVA tests this hypothesis by comparing
variances.

Consider the value F0 in Equation (1). This value is calculated for each parameter,
and it is defined as the division between two Sum of Squares (SSs), which is a non-biased
estimator of a population’s variance [44]. For example, if a simulation that has a parameter
A is repeated n times for each value of the parameter, SStreat is the SS that measures the
variation between the different values of parameter A and SSerror is the SS that measures
the variation between the n results of a single value of A. If the change of a given parameter
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has a relevant impact on the desired output, the null hypothesis is rejected, and SStreat is
bigger than SSerror [44]. Therefore, the bigger F0 is, the bigger is the parameter’s impact.

F0 =
SStreat

SSerror
(1)

However, it is recommended to define a threshold for F0 that guarantees the pa-
rameter’s relevance. Since SStreat and SSerror are both chi-square random variables by
definition [45], F0 has a Fisher–Snedecor distribution [44,46]. Defining a level of signifi-
cance α = 0.001, for the evaluated parameters, the threshold value for F0 is 10.83. Thus, F0
is calculated for each parameter. If F0 is greater than 10.83, the parameter has a significant
impact on the output.

Therefore, the 2k factorial was conducted for the Strict FR’s parameters: Center-
PowerOffset, RsrqThreshold, and BandwidthDistribution. As detailed in Section 6, they define
the power level of the common sub-band, the threshold for allocating users on sub-bands
and the number of RBs on each sub-band, respectively. In order to investigate all users and
users with the worst performance (most likely cell-edge users), the targeted output is the
average throughput and its 10th percentile.

Tables 4 and 5 present the calculated F0 for each parameter and for the interaction
between parameters. The nomenclature X * Y represents the interaction between parameters
X and Y. CenterPowerOffset is the only parameter that does not have a significant impact
on the average or 10th percentile throughput. This is due to how bandwidth is allocated in
the Strict FR. The cell center of each cell does not share bandwidth with the cell-edge of
any cell. Hence, users from different cells allocated to the same bandwidth might not be
close enough to cause significant ICI.

Table 4. F0 results for average throughput.

Parameter (Average Throughput) F0

CenterPowerOffset (A) 0.084

RsrqThreshold (B) 39040.4

BandwidthDistribution (C) 4301.4

BandwidthDistribution * CenterPowerOffset 0.0015

BandwidthDistribution * RsrqThreshold 6264.7

RsrqThreshold * CenterPowerOffset 0.0012

A * B * C 0.00032

Table 5. F0 results for the 10th percentile.

Parameter (10th Percentile) F0

CenterPowerOffset (A) 0.00059

RsrqThreshold (B) 2688.37

BandwidthDistribution (C) 6359.40

BandwidthDistribution * CenterPowerOffset 0.035

BandwidthDistribution * RsrqThreshold 695.91

RsrqThreshold * CenterPowerOffset 0.0033

A * B * C 0.00034

8.3. Full Factorial Design

After identifying which parameters are relevant, a full factorial design repeats the
simulation to vary these parameters. The purpose of this investigation is to evaluate how
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system performance is affected by the Strict FR’s parameters, in order to identify the best
configurations. Preliminary tests indicated that 100 repetitions are enough for the proposed
scenario to provide a good confidence interval. Moreover, given that CenterPowerOffset
represents a power level and does not impact on throughput, it is fixed on its minimum
possible value, lowering energy consumption. Each evaluated parameter is detailed in
Table 6.

Table 6. Full factorial design: parameter configurations.

Parameter Values

RsrqThreshold 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34

Common/Private Bandwidth Distribution 1: 6 / 18
Sub-band (RBs) Bandwidth Distribution 2: 12 / 12

Bandwidth Distribution 3: 18 / 6

Figures 12 and 13 present the results for the average and 10th percentile throughput,
respectively. Both have a 95% confidence interval. Lower values of RsrqThreshold result
in better performance if more bandwidth is allocated to cell-center users. Consequently,
bandwidth distribution 1, which allocates 6 RBs for cell-center and 18 RBs for cell-edge
users (6 RBs for each cell edge), has the worst performance. This is due to more users being
allocated to the cell center as RsrqThreshold gets lower, causing the common sub-band
to overload.

Figure 12. Full factorial design using the strict frequency reuse: results for the average throughput.
Each curve is a different bandwidth distribution.

Moreover, increasing the RsrqThreshold yields higher throughput for all distributions
(Figure 12) until each curve reaches its peak. At this point, the distribution with more
band allocated to the center still has the best performance. From that value, the private
sub-band gets overloaded, which results in performance loss. This loss is more severe for
distributions with less bandwidth allocated to the edge.

Figure 13 has similar behavior to Figure 12, since increasing the RsrqThreshold results
in higher throughput. However, each curve starts decreasing at different values. Distribu-
tions with less bandwidth to the edge sub-band have their peak at lower RsrqThreshold
values. At RsrqThreshold = 33, Figure 12 indicates that throughput is better for distribu-
tions with more bandwidth allocated to the center. Figure 13 indicates the opposite, and
bandwidth distributions 1 and 2 have similar performance on RsrqThreshold = 32.
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Figure 13. Full factorial design using the strict frequency reuse: results for the 10th percentile
throughput. Each curve is a different bandwidth distribution.

Lastly, Figure 14 presents the SINR CDF for RsrqThreshold = 3. At this value, more
bandwidth allocated for cell-edge users result in better SINR.

Figure 14. Full factorial design using the strict frequency reuse: results for the SINR CDF. Each curve
is a different bandwidth distribution.

These results show a clear compromise between the average user performance and the
performance of cell-edge users. Besides, in a scenario that hotspots appear unpredictably,
certain regions can also become overloaded. Since the RsrqThreshold has direct impact in
user allocation, its dynamic variation can efficiently mitigate the performance loss caused
by the hotspots.

9. Preliminary Analysis C: Evaluating the Hotspot Scenario

The last set of investigations before presenting the proposed solution evaluates the
impact of hotspots on system performance. The goal is to compare a scenario with hotspots
to a scenario with users distributed uniformly.
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9.1. Evaluation Scenario

The evaluation scenarios are similar to those in Sections 7.1 and 8.3, since there are
three eNBs equally distanced by 1000 meters. In this analysis, scenarios 1 and 2 have
uniformly distributed users, while scenario 3 also has 5 hotspots with 15 users each.
Figure 15 illustrates the approximate position of each hotspot, which are not random. The
differences between these scenarios are summarized in Table 7.

There are two scenarios without hotspots, but with different amounts of users. As
a result, it is possible to evaluate the impact of hotspots that increase (or not) the total
amount of users in the system. Other simulation parameters are presented in Table 8.

Figure 15. Scenario for preliminary analysis C with the approximate position for each hotspot, which
are not randomly located.

Table 7. Difference between hotspot scenarios.

Scenario 1

60 uniformly distributed users and no hotspots

Scenario 2

135 uniformly distributed users and no hotspots

Scenario 3

135 users: 60 uniformly distributed users and
5 hotspots with 15 users each

Table 8. Simulation parameters: hotspot scenarios.

Parameter Value

Bandwidth (RBs) 100

UE distribution Uniform / Hotspots

Number of UEs 60 / 135

Distance between eNBs (m) 1000

Scheduling algorithm Proportional Fair

Simulation duration 6000 subframes

Channel model Friis Model

Error model MIESM

UE mobility No mobility

Traffic model Non-GBR TCP-based
Video (Buffered Stream)
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9.2. Simulation Results

Figure 16 presents the simulation results in terms of the 10th percentile of throughput.
The dashed lines represent the scenario with hotspots (Scenario 3). The simulations
were executed using the Strict FR algorithm, with the variation of its relevant parameters,
according to Section 8 (RsrqThreshold and BandwidthDistribution). The former ranges
between 30 and 33, and the latter is evaluated in two configurations. The first allocates
52 RBs to the common sub-band and 16 RBs to the private sub-band. The second allocates
28 RBs to the common sub-band and 24 RBs to the private sub-band.

Figure 16. Simulation results in terms of the 10th percentile of throughput. The dashed lines
represent the scenario with hotspots.

The 10th percentile of throughput (Figure 16) indicates a significant performance loss
due to the hotspots. The curves with the same distribution (curves 2, 4, and 5) show that
the scenario with hotspots has lower throughput, especially if compared to curve 4, which
has fewer users.

Even though the performance loss is expected, given the increase in the number of
users, both cases discussed above are important. Section 2 discussed scenarios naturally
characterized by hotspots. In most of these scenarios, the hotspots also increase the total
number of active users in the system, such as football games or music festivals. However,
even if the change is only in user concentration, there is a relevant performance loss, as
presented in Figure 16, given that curve 2 has the worst performance than curve 5.

10. Proposed Solution: Background, Implementation, and Simulation Results

The results presented in Section 7 show that FFR-based techniques efficiently mitigate
ICI, improving throughput and SINR. It also shows that no algorithm performs best
in every situation, but the Strict FR has a good compromise between performance and
complexity. Moreover, not all of its parameters have a significant impact on throughput
and SINR, according to Section 8.

Results from Section 9 indicate that hotspots can have a significant impact on system
performance, and different states of the system may require different configurations of the
Strict FR parameters to achieve improved performance. Furthermore, Section 2 discusses
challenges related to hotspot scenarios and highly dynamic urban areas. In such scenarios,
techniques that allow the system to adapt dynamically may increase performance.

Therefore, this section presents our proposed solution for scenarios where hotspots ap-
pear unexpectedly. This solution applies Machine Learning (ML) techniques to dynamically
regulate the RsrqThreshold of the Strict FR.
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10.1. Machine Learning Techniques

Machine Learning (ML) is a subset of artificial intelligence that builds mathematical
models to find patterns in data sets. The goal is to make decisions without human assistance.
They have been widely discussed in the literature for their ability to adapt to changing
scenarios and reduce site planning. For instance, the authors of [47] present various ML
algorithms and how they have been employed to coordinate co-channel interference.

Moreover, these techniques can be classified as supervised, non-supervised, and
Reinforcement Learning (RL). Supervised learning algorithms are akin to a supervisor that
holds the desired knowledge. These algorithms adapt based on inputs previously known
by the supervisor (labeled data sets). Non-supervised algorithms do not have labeled
inputs. Hence, they aim to find hidden patterns or similarities within the data. On the other
hand, RL continuously interacts with the system, and each decision produces a reward or
punishment that serves to update the algorithm parameters. The goal is to maximize or
minimize the reward or punishment [48].

For the proposed scenario, RL is the most appropriate paradigm. Supervised learning
requires prior knowledge and dedicated time for training, which is not desirable for a
system that demands constant re-adapting. Non-supervised learning does not require prior
knowledge, but RL is a better option for this task, considering the algorithm learns from
each action taken using immediate rewards. RL is an efficient paradigm for interaction
with uncertain environments [49], enabling real-time decision making.

10.2. Reinforcement Learning

Reinforcement Learning (RL) is a ML paradigm that has a learning agent that attempts
to reach an objective through trial and error, i.e., through constant interactions with the
system. The agent is not instructed on which action should be taken, but it must be capable
of observing the state of the system and take actions that can change it.

As a consequence of the action, the system provides a numerical reward and informs
its new current state. The agent must identify which actions result in bigger rewards in any
state of the system. Hence, the algorithm estimates the reward for each action an for each
state sn. However, the estimated value is not based on the current action alone. It considers
all of the actions taken so far [49].

Among RL approaches, Q-Learning (QL) has been constantly discussed in the litera-
ture, especially because it does not require estimating the dynamics of the environment (it
is model-free) [47].

For example, the authors of [50] attempt to maximize system performance in an ultra-
dense heterogeneous scenario. They propose a dynamic resource allocation scheme using
centralized and distributed QL. The authors of [51] use QL in a HetNet scenario. Each cell
learns optimum values for the Cell Range Bias (CRB) and the DL power transmission level.
The results show a 125% improvement compared to static ICIC techniques. Additionally,
the authors of [52] evaluate a scenario where a stadium is served by 78 eNBs. They propose
an improved QL algorithm that decreases the convergence time.

Our previous works include [43,53]. They present solutions that use ABS and QL
to coordinate the shared transmission between LTE and Wi-Fi in the 5 GHz bandwidth.
Therefore, this paper applies the methodology previously tested, especially regarding the
prototyping of a dynamic solution of Radio Resource Management (RRM) using QL.

10.3. Q-Learning

Q-Learning (QL) [54] operates by creating a table of q-values using a Q(s, a) function
that estimates the rewards for each state/action pair. Q(s, a) is the q-value of action a when
the system state is s. The q-value indicates the desirability of taking action a when in state
s. The higher the q-value, the more desirable it is.

The values estimated by this function are updated with each iteration, according to
Equation (2) [49]:



Sensors 2021, 21, 7899 22 of 32

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)], (2)

where Rt+1 is the reward from action At when the state is St; α is the learning rate, which
determines the impact of new information in the update of the q-values; and γ is a discount
factor, which determines the impact of future rewards. Its value ranges from 0 to 1, and
values close to zero indicate that future rewards are not important. In this case, immediate
rewards have a greater impact in the learning process.

Therefore, the algorithm’s goal is to find the optimum Q(s, a) table, which gives an
optimum policy π∗. This policy corresponds to choosing action a, given a state s, as defined
in Equation (3):

π∗(s) = arg max
a

Q(s, a). (3)

The author of [55] demonstrates that, given enough samples, the QL algorithm con-
verges to a function directly derived from the Bellman equations, which is the classic
solution of a Markov Decision Process (MDP). The key to that convergence is a Markovian
Process named Action-Replay Process (ARP). It is possible to use the weak law of large
numbers to prove that the policy π gets closer to the optimum policy π∗ for a growing
number of samples.

10.4. The Q-Learning Implementation

As a consequence of the discussions and exploratory analysis presented, the QL-based
solution aims at maximizing the average SINR to mitigate the negative impact of ICI on
a dynamic scenario. The algorithm controls the RsrqThreshold. According to the results
shown in Section 8, the RsrqThreshold is the parameter that has the biggest impact on
average throughput. Hence, it was the first option for the QL algorithm. However, future
works include the control of both the RsrqThreshold and the BandwidthDistribution, which
is also an important parameter for the ICIC performance parameter, which dictates user
allocation in the sub-bands defined by the Strict FR.

The QL algorithm operates as a centralized solution, namely that every decision affects
all cells in a cluster. The ICIC techniques presented in Section 3.1 split the bandwidth for
clusters formed by three cells. Therefore, each change in the RsrqThreshold affects all three
cells of the cluster. If each cell had an independent QL algorithm, they would be competing,
as each action would affect the whole cluster, based only on the data from one cell.

The QL algorithm needs the following parameters:

• A set of available actions, A = a1, a2, ..., an;
• A set of possible states of the system, S = s1, s2, ..., sn;
• A Q(s, a) matrix to store the estimated rewards;
• α and γ.

The algorithm was configured with six states and six actions. The metric that defines
the state is the SINR; however, this metric may vary. For example, depending on the service
targeted, it could be throughput, PLR, delay, or a combination of those, as presented in
Equation (4) [56]:

Ma =
n

∑
i=1

wi fi(Mi), (4)

where w1, ..., wn are the weights of each metric (M1, ..., Mn) and fi is a normalization
function that maps the metrics to values between 0 and 1.

The SINR was chosen because it directly indicates the impact of interference in users.
Hence, the average SINR defines the states of the system and it is used as the reward from
each state/action pair. Through experimental analysis to characterize the scenarios, the
states are defined as follows:

• State 1: SINR < 24 dB;
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• State 2: 24 dB < SINR ≤ 27 dB;
• State 3: 27 dB < SINR ≤ 29 dB;
• State 4: 29 dB < SINR ≤ 30 dB;
• State 5: 30 dB < SINR ≤ 32 dB;
• State 6: SINR > 32 dB.

Additionally, the set of available actions corresponds to RsrqThreshold values:
A = {29, 30, 31, 32, 33, 34}. These values were selected based on the results presented in
Section 8, given that this parameter has a bigger impact on system performance when oper-
ating on that range. The matrix Q(s, a) initially has all values equal to zero and the values
for α and γ are 0.4 and 0.5, respectively. This choice is based on exploratory simulations
and related works [43] and the Q(s, a) values are calculated according to Equation (5):

Q(s, a)← (1− α)Q(s, a) + α
[
r + γ max

a
Q(s′, a)

]
(5)

Algorithm 1 presents a pseudo-code of the proposed solution. The QL algorithm is
executed each 40 ms. This interval is inspired by the study presented in [43]; however,
exploratory simulations were conducted to assure that the SINR samples collected during
this interval are sufficient to represent the average SINR of the system.

As mentioned previously, the QL seeks an optimum solution through a succession
of actions. Thus, at any given time, the algorithm may get stuck on a set of state/action
pairs without exploring other options (similar to an optimization algorithm that gets stuck
on a local minimum). To address this issue, the parameter ε may be used to control the
algorithm’s level of exploration, making the agent choose a random action eventually.

10.5. Evaluation Scenario

The scenarios are similar to that of Section 9. There are three eNBs equally distanced
by 1000 m, and the users are allocated in two manners. The first group of users is randomly
allocated in the entire scenario, using a uniform distribution. The second group is allocated
on hotspots with a 100 m radius, and there are five hotspots with fixed locations, as
illustrated in Figure 15. This positioning aims at modeling different situations: close and
far from a eNB and between multiple eNBs.

Algorithm 1: Pseudo-code of the proposed Q-learning algorithm.

1 Initialize
2 for s ∈ S, a ∈ A do
3 Initialize Q-table with all Q(s, a) equal to 0.
4 end
5 Estimate initial state s.
6 Learning:
7 Loop
8 Generate random number r ∈ U(0, 1)
9 if r < ε then

10 Randomly choose action a ∈ A ;
11 else
12 Choose action a ∈ A according to Equation 3;
13 end
14 Execute action a;
15 Receive immediate reward r, SINRmédia;
16 Observe next state s′ ∈ S;
17 Update Q-table according to Equation 5;
18 s = s′

19 end loop
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As described in Section 2, this paper uses the term hotspot to describe regions with
high user density. It does not mean a new AP. Hence, hotspot users do not have a dedicated
AP. All users are served by the closest eNB.

Table 9 presents the difference between the scenarios used to evaluate the QL algo-
rithm. Scenario 1 has 60 users distributed uniformly and 10 users on each hotspot. A total
of 52 RBs are allocated for the common sub-band, and 16 RBs are allocated to the private
sub-band. Scenario 2 has the double of users on each hotspot and 2/3 of the uniform-
distributed users when compared to Scenario 1. Hence, there are 40 users distributed
uniformly and 20 users on each hotspot, which results in a higher number of users in the
system. A total of 28 RBs are allocated for the common sub-band, and 24 RBs are allocated
to the private sub-band. Therefore, the available bandwidth for users allocated in the
common sub-band is significantly smaller. Other simulation parameters are summarized
in Table 10.

Table 9. Evaluations scenarios for proposed solution.

Scenario 1

60 users uniformly distributed

10 users on each hotspot

BandwidthDistribution: 52/16

Scenario 2

40 users uniformly distributed

20 users on each hotspot

BandwidthDistribution: 28/24

Table 10. Simulation parameters for the QL algorithm evaluation.

Parameter Value

Bandwidth (RBs) 100

UE distribution Uniform / Hotspots

Number of UEs 110 / 140

Distance between eNBs (m) 1000

Scheduling algorithm Proportional Fair

Simulation duration 60,000 subframes

Channel model Friis model

Error model MIESM

UE mobility No mobility

Traffic model Non-GBR TCP-based
Video (Buffered Stream)

A hotspot (HS) begins to transmit and receive data every 10 s to evaluate the algo-
rithm’s ability to adapt. From 0 to 10 s, only the uniformly distributed users are active.
Between 10 and 20 s, one of the hotspots is also transmitting/receiving data. From 30 s,
another hotspot becomes active, and so forth. The change on the scenario during simulation
is presented in Table 11. Before discussing the results, the following section details how
data are collected on the ns-3 simulator to enable the QL calculations.
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Table 11. Active users at each simulation interval.

Interval Scenario 1 (UEs) Scenario 2 (UEs)

0 to 10 s 60 + 0 on HS 40 + 0 on HS

10 to 20 s 60 + 10 on HS 40 + 20 on HS

20 to 30 s 60 + 20 on HS 40 + 40 on HS

30 to 40 s 60 + 30 on HS 40 + 60 on HS

40 to 50 s 60 + 40 on HS 40 + 80 on HS

50 to 60 s 60 + 50 on HS 40 + 100 on HS

10.6. Data Collection on ns-3

Researchers using ns-3 can use a mechanism called tracing to capture any data gener-
ated by simulations. With this subsystem, the user can connect a function to any trace source,
which outputs the data to the connected function when a condition is satisfied (e.g., every
time a user transmits). This paper uses the trace source ReportCurrentCellRsrpSinr. It returns
linear SINR values for all users from a specific eNB at each LTE subframe (every 1 ms). This
trace source is implemented in the PHY layer from the LTE module. For the throughput,
the trace source RxPDU notifies the amount of received Protocol Data Units (PDUs) by the
Radio Link Control (RLC) entity.

The function connected to the first trace source stores SINR values from all eNBs and,
every 40 ms, calculates the average SINR of the system on that interval (accumulated sum
divided by the number of samples). Similarly, the second trace source is connected to a
function that stores the data in text files. These files contain the number of PDUs and bytes
transmitted and received. The throughput is calculated by dividing the total amount of
received bits by the transmission interval in seconds.

10.7. Proof-of-Concept Simulation Results

The results are presented using SINR and throughput. Moreover, users are split in
three groups: all users, users in hotspots, and users outside hotspots. Figures 17 and 18
present the SINR percentage gains for all groups of users. Figures 19 and 20 present
throughput results in Mbps and Figures 21 and 22 present the throughput percentage gain.

Given the wide range that SINR is reported in linear scale, it is more practical to
calculate the gain on a logarithmic scale. Hence, it is executed using dB values, as follows:

Gain =

(
SINRQL

SINRnoQL
− 1
)
× 100% (6)

where SINRQL is the system average SINR in dB when our solution is applied, and
SINRnoQL is the system average SINR without it. Thus, the Gain measures how our
proposal improves the SINR in the dB scale.

According to Figure 17, all intervals and groups of users present relevant gain, even
when there are no active hotspots (0 to 10 s). Additionally, as the number of active hotspots
increases, the SINR degrades more severely, and the gain obtained tends to grow, since QL
operates to improve the SINR. Hence, the two intervals with more active hotspots present
over 80% gain. In addition, for most intervals, the gain is greater for hotspot users, which is
interesting, considering the algorithm was not configured to act based on the performance
of these users.
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Figure 17. Scenario 1 of the proposed solution: SINR Gain (%) for each group of users.

Figure 19 presents throughput results for the same scenario. When the QL is not
active, RsrqThreshold is fixed on 32. In this plot, three important results are combined: the
throughput of users outside the hotspots (bottom bars), the throughput of hotspot users
(top bars), and the average throughput of all users (combination of both bars). Each group
of two parallel bars corresponds to a 10 s interval during the simulation (Table 11), and
the bars on the left present the results when the QL is not active. The plot shows that the
SINR gain resulted in throughput gain for all groups of users. However, the gain for users
outside the hotspots is smaller when compared to hotspot users.

Figure 18. Scenario 2 of the proposed solution: SINR Gain (%) for each group of users.
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Furthermore, Scenario 2 investigates the algorithm’s performance with more users
allocated in the hotspots and with different configurations for the BandwidthDistribution
parameter, which also has a significant impact on the evaluated scenario (Section 8). This
scenario allocates less bandwidth for the common sub-band and more bandwidth for the
private sub-band.

Figure 18 presents the SINR gain for Scenario 2. Similar to Scenario 1, all groups of
users have significant gain, and it is approximately doubled for the last three intervals,
compared to the previous scenario. This is mainly due to the double amount of users on
each hotspot of Scenario 2, which degrades the SINR more severely. Since the SINR is the
target metric of the proposed algorithm, the gain is also doubled, showing that the QL is
efficient in improving the SINR, even if the sub-bands are configured differently.

Figure 19. Scenario 1 of the proposed solution: throughput results for each group of users, with and
without Q-Learning.

Figure 20. Scenario 2 of the proposed solution: throughput results for each group of users, with and
without Q-Learning.

Figure 20 presents throughput results for Scenario 2. There is a relevant gain for the
average throughput and for hotspot users. However, the gain is minimal to users outside



Sensors 2021, 21, 7899 28 of 32

of hotspots. On the third interval (30 to 40 s), these users suffer a small loss, but the gain
from hotspot users compensates, resulting in a gain in the system average throughput.

Summarizing, the throughput percentage gain is presented in Figures 21 and 22, for
scenarios 1 and 2, respectively. The smallest gain obtained for hotspot users was 5.4% in
scenario 1 and 1.7% in scenario 2. On the other hand, the highest gain for these users was
59.8% in scenario 1 and 12.5% in scenario 2. Users outside the hotspots presented loss in
some intervals for scenario 2. Nevertheless, all intervals presented gain for hotspot users.
These users were not present in the plots for the first interval because there were no active
hotspots users. The worst and best percentage gain for each scenario and group of users
are summarized in Table 12.

Figure 21. Scenario 1 of the proposed solution: throughput gain (%) for each group of users.

Figure 22. Scenario 2 of the proposed solution: throughput gain (%) for each group of users.
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Table 12. Best and worst results for SINR and throughput of the Q-Learning solution, for each group of users.

Best SINR Gain Worst SINR Gain Best Tput Gain Worst Tput Gain

Scenario 1

Hotspot users 94% 35.3% 59.8% 5.4%

Outside hotspots 99.1% 11.1% 6.5% 0.2%

All Users 96.7% 12.8% 10.3% 0.2%

Scenario 2

Hotspot users 180.2% 25.7% 12.5% 1.7%

Outside hotspots 140.9% 8.6% 1.9% −3.8%

All Users 167.1% 10.3% 6.7% −0.6%

11. Conclusions

In recent years, mobile networks have experienced an increase in the number of
scenarios with challenging requirements, especially due to rapid growth in traffic demand
and the arrival of new services, such as eMBB. Likewise, user behavior has changed,
creating scenarios that are hard to predict. This paper discussed the challenges related to a
dynamic hotspot scenario and how to mitigate the resulting performance loss. A solution
was presented to coordinate ICI using FFR-based techniques. The algorithm dynamically
regulates the Strict FR parameters, using Q-Learning (QL).

The results indicate that the solution effectively optimizes the SINR in the evaluated
scenarios, which also resulted in throughput gain, even though this relationship is not
always true. Depending on the scenario, the SINR gain may only result in a decrease of the
PLR, which is also important for the overall performance of the system.

In some cases, the gain was higher for hotspot users, even though the algorithm was
not configured to act based on their performance. Besides, even in these cases, the algorithm
also improved the overall system performance. The results also indicate a tendency of
greater SINR gain when the scenario suffers with more interference. The higher SINR
gain obtained was 180% for hotspot users, 167.1% for average SINR, and 140% for users
outside hotspots.

12. Future Works

The development of research usually involves various choices in order to define
the scope of the paper. As a consequence, some unexplored possibilities and possible
improvements are listed below as an encouragement to future endeavors.

• Use other metrics to define the QL states and actions, such as the BandwidthDistri-
bution. As presented in Section 10.3, these metrics can also be the combination of
different variables. As a result, the algorithm is expected to improve in flexibility and
efficiency when using two parameters, adapting to a broader set of scenarios. For
example, the throughput could be included as part of the reward;

• Expand proposed scenarios: vary number of users, add mobility, varying number and
location of hotspots (which could also appear in random locations), and test different
values for BandwidthDistribution;

• Evaluate the system using different metrics, such as the relation between convergence
speed, the amount of state/action pairs, or the Packet Loss Ratio (PLR);

• Apply the solution on a system without isotropic antennas, such that transmission is
made in sectors within a cell;

• Apply the presented solution for 5G New Radio (NR) or the LTE UL, given that the
interference in the UL has different characteristics, when compared to DL;

• Provide a similar solution, replacing the RL algorithm for, e.g., multi-armed bandit,
providing a simpler solution.
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