Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification
Abstract
:1. Introduction
- Evaluate state-of-the-art GANs such as StyleGAN family of architectures [15,16] on fetal ultrasound images. These models are capable of generating highly realistic high resolution images of human faces and other objects, but as far as we know, this is the first time StyleGAN2 networks are used as data augmentation method for ultrasound image classification.
- Evaluate if the artificial images generated by these models can benefit deep learning supervised classifiers. We evaluated two scenarios (1) improving their accuracy by augmenting total number of training images (augmentation experiments, see Section 4.3.1) and (2) testing if similar accuracy can be achieved with fewer real examples (replacement experiments, see Section 4.3.2).
2. Related Work
3. Methods
3.1. Stylegan2 Applied to Fetal Ultrasound Images
3.1.1. GANs Training
3.1.2. GANs Evaluation
Fréchet Inception Distance
Precision and Recall
3.1.3. Artificial Image Generation
3.2. Classifiers
4. Experiments
4.1. Fetal Brain Ultrasound Images
4.2. GAN Training Results
4.3. Classification of Fetal Brain Ultrasound Images
4.3.1. Augmentation Experiments
Comparison with Classic Data Augmentation
- The regular data augmentation used in our paper (aug_transforms, from fastai library as mentioned in Section 3.2) is a very strong, state-of-the-art augmentation. It includes many different transformations such as horizontal flips, rotations, brightness and contrast transformations, etc. These transformations and the defaults set by fastai have been found after many experiments and reach strong performance in most scenarios.
- While in the case of classical data augmentation, all training samples are real images, in GAN-based augmentation many are fake. Generated samples by GANs differ in quality, some being better than others. GANs metrics reported in this work (FID and PR) don’t provide information on the quality of individual samples. A procedure for filtering poor quality images might be worth exploring and potentially give better performance and/or reduce the necessity for so large values of .
4.3.2. Replacement Experiments
5. Discussion
6. Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newnham, J.P.; Evans, S.F.; Michael, C.A.; Stanley, F.J.; Landau, L.I. Effects of frequent ultrasound during pregnancy: A randomised controlled trial. Lancet 1993, 342, 887–891. [Google Scholar] [CrossRef]
- Whitworth, M.; Bricker, L.; Neilson, J.P.; Dowswell, T. Ultrasound for fetal assessment in early pregnancy. Cochrane Database Syst. Rev. 2010, 1, CD007058. [Google Scholar] [CrossRef]
- Bricker, L.; Medley, N.; Pratt, J.J. Routine ultrasound in late pregnancy (after 24 weeks’ gestation). Cochrane Database Syst. Rev. 2015, 1. [Google Scholar] [CrossRef]
- Hadlock, F.P.; Harrist, R.B.; Sharman, R.S.; Deter, R.L.; Park, S.K. Estimation of fetal weight with the use of head, body, and femur measurements—A prospective study. Am. J. Obstet. Gynecol. 1985, 151, 333–337. [Google Scholar] [CrossRef]
- Miller, J.; Turan, S.; Baschat, A.A. Fetal growth restriction. Semin. Perinatol. 2008, 32, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, K.H.; Syngelaki, A.; Ashoor, G.; Birdir, C.; Touzet, G. Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am. J. Obstet. Gynecol. 2012, 207, 374-e1. [Google Scholar] [CrossRef] [PubMed]
- Salomon, L.J.; Alfirevic, Z.; Berghella, V.; Bilardo, C.; Hernandez-Andrade, E.; Johnsen, S.; Kalache, K.; Leung, K.Y.; Malinger, G.; Munoz, H.; et al. Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 2011, 37, 116–126. [Google Scholar] [CrossRef]
- Burgos-Artizzu, X.P.; Coronado-Gutiérrez, D.; Valenzuela-Alcaraz, B.; Bonet-Carne, E.; Eixarch, E.; Crispi, F.; Gratacós, E. Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes. Sci. Rep. 2020, 10, 10200. [Google Scholar] [CrossRef]
- Ryou, H.; Yaqub, M.; Cavallaro, A.; Roseman, F.; Papageorghiou, A.; Noble, J.A. Automated 3D Ultrasound Biometry Planes Extraction for First Trimester Fetal Assessment. In Machine Learning in Medical Imaging; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 196–204. [Google Scholar] [CrossRef]
- Baumgartner, C.F.; Kamnitsas, K.; Matthew, J.; Fletcher, T.P.; Smith, S.; Koch, L.M.; Kainz, B.; Rueckert, D. SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound. IEEE Trans. Med. Imaging 2017, 36, 2204–2215. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Khanal, B.; Hou, B.; Alansary, A.; Cerrolaza, J.J.; Sinclair, M.; Matthew, J.; Gupta, C.; Knight, C.; Kainz, B.; et al. Standard Plane Detection in 3D Fetal Ultrasound Using an Iterative Transformation Network. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI, Granada, Spain, 16–18 September 2018; pp. 392–400. [Google Scholar]
- Stephens, K. GE Healthcare UNveils AI-Enabled Ultrasound System. Available online: https://axisimagingnews.com/radiology-products/imaging-equipment/ultrasound/ge-healthcare-ai-enabled-ultrasound-system (accessed on 26 November 2021).
- Burgos-Artizzu, X.P.; Coronado-Gutierrez, D.; Valenzuela-Alcaraz, B.; Bonet-Carne, E.; Eixarch, E.; Crispi, F.; Gratacós, E. FETAL_PLANES_DB: Common Maternal-Fetal Ultrasound Images. Available online: https://zenodo.org/record/3904280#.YaQ2vLoRWUk (accessed on 26 November 2021).
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and Improving the Image Quality of StyleGAN. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 14–19 June 2020; pp. 8107–8116. [Google Scholar]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 4401–4410. [Google Scholar] [CrossRef] [Green Version]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2016, arXiv:1511.06434. [Google Scholar]
- Kitchen, A.; Seah, J. Deep Generative Adversarial Neural Networks for Realistic Prostate Lesion MRI Synthesis. arXiv 2017, arXiv:1708.00129. [Google Scholar]
- Chuquicusma, M.J.M.; Hussein, S.; Burt, J.; Bagci, U. How to fool radiologists with generative adversarial networks? A visual turing test for lung cancer diagnosis. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 240–244. [Google Scholar]
- Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med Image Anal. 2019, 58, 101552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv 2018, arXiv:abs/1710.10196. [Google Scholar]
- Baur, C.; Albarqouni, S.; Navab, N. Generating Highly Realistic Images of Skin Lesions with GANs. In OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis; Springer: Berlin/Heidelberg, Germany, 2018; pp. 260–267. [Google Scholar]
- Korkinof, D.; Rijken, T.; O’Neill, M.; Yearsley, J.; Harvey, H.; Glocker, B. High-Resolution Mammogram Synthesis using Progressive Generative Adversarial Networks. arXiv 2018, arXiv:1807.03401. [Google Scholar]
- Baur, C.; Albarqouni, S.; Navab, N. MelanoGANs: High Resolution Skin Lesion Synthesis with GANs. arXiv 2018, arXiv:1804.04338. [Google Scholar]
- Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic Data Augmentation using GAN for Improved Liver Lesion Classification. arXiv 2018, arXiv:1801.02385. [Google Scholar]
- Zhao, S.; Liu, Z.; Lin, J.; Zhu, J.Y.; Han, S. Differentiable Augmentation for Data-Efficient GAN Training. arXiv 2020, arXiv:2006.10738. [Google Scholar]
- Karras, T.; Aittala, M.; Hellsten, J.; Laine, S.; Lehtinen, J.; Aila, T. Training Generative Adversarial Networks with Limited Data. arXiv 2020, arXiv:2006.06676. [Google Scholar]
- Aksac, A.; Demetrick, D.J.; Ozyer, T.; Alhajj, R. BreCaHAD: A dataset for breast cancer histopathological annotation and diagnosis. BMC Res. Notes 2019, 12, 82. [Google Scholar] [CrossRef] [Green Version]
- Chang, A.; Suriyakumar, V.M.; Moturu, A.; Tewattanarat, N.; Doria, A.; Goldenberg, A. Using Generative Models for Pediatric wbMRI. arXiv 2020, arXiv:2006.00727. [Google Scholar]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. arXiv 2018, arXiv:cs.LG/1706.08500. [Google Scholar]
- Kynkäänniemi, T.; Karras, T.; Laine, S.; Lehtinen, J.; Aila, T. Improved Precision and Recall Metric for Assessing Generative Models. arXiv 2019, arXiv:1904.06991. [Google Scholar]
- Ravuri, S.V.; Vinyals, O. Seeing is Not Necessarily Believing: Limitations of BigGANs for Data Augmentation. In Proceedings of the 2nd Learning from Limited Labeled Data (LLD) Workshop, New Orleans, LO, USA, 6 May 2019. [Google Scholar]
- Brock, A.; Donahue, J.; Simonyan, K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. arXiv 2019, arXiv:1809.11096. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Burgos-Artizzu, X.P.; Coronado-Gutiérrez, D.; Valenzuela-Alcaraz, B.; Vellvé, K.; Eixarch, E.; Crispi, F.; Bonet-Carne, E.; Bennasar, M.; Gratacos, E. Analysis of maturation features in fetal brain ultrasound via artificial intelligence for the estimation of gestational age. Am. J. Obstet. Gynecol. MFM 2021, 3, 100462. [Google Scholar] [CrossRef] [PubMed]
- Pang, T.; Wong, J.H.D.; Ng, W.L.; Chan, C.S. Semi-supervised GAN-based radiomics model for data augmentation in breast ultrasound mass classification. Comput. Methods Programs Biomed. 2021, 203, 106018. [Google Scholar] [CrossRef] [PubMed]
Augmentation Experiments | ||||
Plane | Train | Validation | Total | |
TRV | 1656 | 1780 | 3436 | |
TTA | 2620 | 2691 | 5311 | |
total | 4276 | 4471 | 8747 | |
Replacement Experiments | ||||
Plane | Train | Validation | Total | |
GAN | Classifier | |||
TRV | 1656 | 854 | 926 | 3436 |
TTA | 2620 | 1368 | 1323 | 5311 |
total | 4276 | 2222 | 2249 | 8747 |
Plane | FID | Precision | Recall |
---|---|---|---|
TTA | 13.08 | 0.6616 | 0.3336 |
TRV | 17.4856 | 0.6609 | 0.2850 |
Model | Accuracy | AUC | F1-Score | Sec/Epoch |
---|---|---|---|---|
15 | ||||
26 | ||||
23 | ||||
66 |
Accuracy | AUC | F1-Score | |
---|---|---|---|
no DA | |||
classic DA only (baseline) | |||
GAN-based DA only | |||
classic + GAN-based DA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montero, A.; Bonet-Carne, E.; Burgos-Artizzu, X.P. Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification. Sensors 2021, 21, 7975. https://doi.org/10.3390/s21237975
Montero A, Bonet-Carne E, Burgos-Artizzu XP. Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification. Sensors. 2021; 21(23):7975. https://doi.org/10.3390/s21237975
Chicago/Turabian StyleMontero, Alberto, Elisenda Bonet-Carne, and Xavier Paolo Burgos-Artizzu. 2021. "Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification" Sensors 21, no. 23: 7975. https://doi.org/10.3390/s21237975
APA StyleMontero, A., Bonet-Carne, E., & Burgos-Artizzu, X. P. (2021). Generative Adversarial Networks to Improve Fetal Brain Fine-Grained Plane Classification. Sensors, 21(23), 7975. https://doi.org/10.3390/s21237975