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Abstract: The chaotic squeak and rattle (S&R) vibrations in mechanical systems were classified by
deep learning. The rattle, single-mode, and multi-mode squeak models were constructed to generate
chaotic S&R signals. The repetition of nonlinear signals generated by them was visualized using
an unthresholded recurrence plot and learned using a convolutional neural network (CNN). The
results showed that even if the signal of the S&R model is chaos, it could be classified. The accuracy
of the classification was verified by calculating the Lyapunov exponent of the vibration signal. The
numerical experiment confirmed that the CNN classification using nonlinear vibration images as the
proposed procedure has more than 90% accuracy. The chaotic status and each model can be classified
into six classes.

Keywords: squeak; rattle; convolutional neural network; Lyapunov exponent; chaos; recurrence pat-
terns

1. Introduction

Chaotic squeak and rattle (S&R) vibrations are a significant factor for evaluating the
quality of automotive parts. Early S&R was detected with a find-and-fix approach by
a subjective evaluation from engineers. Therefore, highly skilled experts are needed to
detect S&R. In addition, the evaluation was made subjectively because of the differences
in training and expertise and the use of different measurement tools. For this reason, an
objective tool is needed for quantitative measurements. On the other hand, the S&R indices
developed for such an evaluation must define the threshold value of the index, and the
threshold value must be based on a subjective evaluation [1–4]. In addition, S&R problems
occurring in mechanical systems are challenging to analyze because they include extreme
nonlinearities, such as impact and friction [5–9].

Squeak is a self-excited vibration caused by friction that frequently occurs in automo-
bile brakes, artificial hip joints, and gear systems [8,10,11]. Many studies have examined
the vibration instability caused by friction based on an analysis of brake squill noise. The
method to solve these problems was studied mainly by analyzing the instability using
vibration equations, including nonlinearity of friction and linear stability through the
linearization of nonlinear terms. On the other hand, the linearized approach can only be in-
vestigated near equilibrium. Kang [8] described complex models, such as instability caused
by friction curves, modal coupling instability, gyroscopic, and friction damping occurring in
automobile disc brake systems. They also analyzed the influence of squeal. Nam et al. [10]
investigated the vibration instability in the lead screw system experimentally and analyzed
the instability mechanism using the finite element method (FEM). Ouenzerfi et al. [11]
examined the frictional instability occurring in an artificial hip joint and investigated the
instability through a detailed FEM. In addition, the friction force is expressed as a function
of the velocity in the dynamic instability of the friction-induced model. Higher-order
nonlinear problems, such as chaos, were described because the model includes extreme
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nonlinearity in the creep section [12–16]. Kang [15] used a two-degree-of-freedom friction
model to show that the chaotic phenomenon is generated by self-excited vibrations and
investigated the parameters that create chaos.

Rattle can cause chaos due to extreme discontinuity caused by the impact force,
including vibrations due to the impact vibrations induced by the excitation. For this
reason, the dynamics of impact motion have been studied extensively for a study of chaos.
Serweta et al. [17,18] examined the chaotic characteristics by calculating the Lyapunov
exponent of an impact oscillator with symmetrical soft stops and rigid stop. Kang [19]
analyzed the chaotic factors by calculating the Lyapunov exponent for the truncated
number of modes of the impact beam under a distributed contact using the continuum
beam model.

In addition to the theoretical approach, the analysis of such a nonlinear vibration signal
has been performed using a visualization method and a quantified index. A general signal
analysis method takes an FFT in the time series and analyzes the dynamic characteristics
in the frequency domain. Furthermore, dynamical characteristics were examined through
the trajectory of the attractor in the phase space. As many studies on signal analysis
have been carried out, signal visualization methods, such as Gauss wavelets [20,21] and
a recurrence plot (RP), have been developed. Marwan et al. [22] introduced various RP
methods to visualize the dynamic characteristics in a complex system. RP is a power
tool that visualizes and analyzes the recurrence characteristics of dynamic systems. In
addition, recurrence can be visualized efficiently and developed formally using a matrix.
The reciprocal of the longest diagonal of an RP is proportional to the largest Lyapunov
exponent. This shows that RP can express both the recurrence and chaos characteristics
well. An RP is represented on the reconstructed phase space that is determined using the
time delay method [23–26]. Recurrence quantification analysis (RQA) can quantify the
repetition characteristics through indices expressed as found in the recurrence rate (RR),
the determinism (DET), and the average diagonal line length based on the RP. RQA is a
good technique for quantifying recurrence properties, but the results are presented only in
indices [22]. In addition, higher-order spectrum analysis (HOSA) and clustering techniques
are used to analyze various methods, including high-dimensional nonlinearity [27].

Dynamics problems involving extreme nonlinearities, such as S&R, can be accom-
panied by chaos. The most accurate way to determine chaos is the Lyapunov exponent.
Wolf et al. described a method called the spectrum of the largest Lyapunov exponent. A
calculation algorithm was also developed [28], and chaos could be determined by parame-
ter analysis. On the other hand, this algorithm cannot be applied in nonlinear dynamical
systems, including discontinuities, and can only be used in smooth dynamical systems. In
contrast, Muller’s algorithm can be applied to a non-smooth dynamical system through
an indicator function and transition condition [16]. Determining the chaos through the
Lyapunov exponents is advantageous if the governing equation for the system is known or
the available observations are very long [29].

Recently, with the rapid development of artificial intelligence, many algorithms us-
ing machine learning have been developed. In particular, for image classification, nu-
merous CNN models based on a convolutional neural network (CNN) have been estab-
lished, and ResNet, which was released in 2015, transcends human cognitive ability [30].
Hsueh et al. [31] showed that the fault signal of a motor through the experiment could be
classified in binary by a CNN. Nam et al. [32] reported that, even if the vibration signal
includes discontinuous nonlinearities, such as impact, the chaotic signal can be classified
by a CNN using the image visualized with an unthresholded RP. On the other hand, it only
performed a dichotomous classification for chaos and non-chaos. Therefore, the binary
classification study was extended to perform a multi-class classification of chaotic S&R
vibration signals.

This study examined whether the rattle and squeak signals can be classified through a
CNN, even if they are chaotic, by applying a signal visualization technique. Because CNN
is an image-based classification technique, an RP-based dataset was constructed to express
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the repetition of a dynamic system quantitatively. A single-mode squeak, multi-mode
squeak, and rattle model were built. A methodology that classifies six classes for the chaotic
S&R model with high accuracy through a CNN is proposed.

2. Methods

In this study, a theoretical model of S&R vibration, a representative nonlinear vibration
that can occur in a mechanical system, is used. Figure 1 presents the rattle model consid-
ering the mass, linear spring, nonlinear elastic contact, and damping. k is a linear spring
coefficient. This system is excited with amplitude f0 and excitation frequency ωex. As
shown in Figure 1a, the distance from the impact surface at the static equilibrium position
of the system is L. In addition, the nonlinear elastic model of the impact force was defined
as Hertz’s contact model [17,18]. The coordinate xr describes the vibration motion of the
rattle model at the static equilibrium position. Figure 1b shows the impact force of Hertz’s
contact model for a relative displacement. All systems consider a mass m attached to a
spring with a stiffness coefficient k and coefficient of viscous damping c.
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Figure 1. Rattle model: (a) 1-D model; (b) impact force.

The single-mode squeak model is excited with the same amplitude f0 and excitation
frequency ωex as the rattle model shown in Figure 2a. On the contact surface, a frictional
force is generated by the normal force and the relative velocity. The friction force includes
the creep region and negative slope for the sliding speed from Coulomb’s law of friction, as
shown in Figure 2b. The multi-mode squeak model has an added mass m1, spring stiffness
k1, and coefficient of viscous damping c1, and the frictional force generated by each mass is
the same as that of the single-mode squeak model, as shown in Figure 3.
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For the rattle model shown in Figure 1a

m
..
xr + c

.
xr + kxr = F0 cos ωext + Fc (1)

where the contact model is the impact force by Hertz’s nonlinear elastic model as follows

Fc = 0 if xr < L
Fc = kcol(xr − L)3/2 if xr ≥ L

(2)

Using the dimensionless time τ = t
√

k/m and the coordinate transformation
xr(t) = Xr(τ), the dimensionless equation of motion can be written as

X′′ r + βX′r + Xr = f0 cos ητ + Fc
1
k

(3)

where prime is differentiation for τ(≥ 0) and the dimensionless parameter is defined
as Ω =

√
k/m, η = ωex/Ω, f0 = F0/k, β =

√
c2/mk, kc = kcol

√
f0/k and u = Xr/ f0.

Therefore, the dimensionless equation of motion for the rattle model can be written as

u′′ + βu′ + u = cos ητ + H fc (4)

and the dimensionless form of the impact force is rewritten as follows

fc = 0 if u < r
fc = kc(u− r)3/2 if u ≥ r

(5)

Equation of motion for the rattle model is expressed in vector form as follows

u =
[

u u′
]T (6)

u
′
= fr(u), u(0) = u0 (7)

f(u) =

 u2
−βu2 − u1 + cos(u3) + H fc

η

 (8)

where H is the Heaviside function and u0 is the initial condition of the rattle model.
Equation (7) is a dynamic system with discontinuities involving the discontinuous

impact effects in the rattle model. Therefore, it can be rewritten as follows from Muller’s
method that includes the instantaneous discontinuity of impact. Here, τ = τi is a discontin-
uous moment. Let z be a state variable u of the rattle model.

τi−1 < τ < τi: z
′
= fi(z), z(τi−1) = z(τ+

i−1) (9)

τ = τi: 0 = h(z(τ−i )) (10)
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z(τ+
i ) = g(z(τ−i )) (11)

τi < τ < τi+1: z
′
= fi+1(z), z(τi) = z(τ+

i ) (12)

where τ− and τ+ denote before and after the discontinuously condition. The perturbed
trajectory is given by

~
z(τ) = z(τ) + δz(τ) (13)

τ̃i = τi + δτi (14)

and the perturbed trajectory satisfies the following equation

τ̃i−1 < τ < τ̃i:
~
z
′
= fi(

~
z),

~
z(τ̃i−1) =

~
z(τ̃+

i−1) (15)

τ = τ̃i: 0 = h(
~
z(τ̃−i )) (16)

~
z(τ̃+

i ) = g(
~
z(τ̃−i )) (17)

τ̃i < τ < τ̃i+1:
~
z
′
= fi+1(

~
z),

~
z(τ̃i) =

~
z(τ̃+

i ) (18)

where each interval of discontinuities is smooth. h(z) and g(z) are the indicator function
and the transition condition, respectively. The plus and minus signs denote the right- and
left-sided limits, and

δτi = τ̃i − τi = −
Dh(z−i )δz−i

Dh(z−i )fi(z−i )
(19)

δz+i = Dg(z−i )δz−i + [Dg(z−i )fi(z−i )− fi+1(z+i )]δτi (20)

in which

Dh(z−i ) =
∂h(z)

∂z

∣∣∣∣
z=z−i

, Dg(z−i ) =
∂g(z)

∂z

∣∣∣∣
z=z−i

(21)

are the Jacobian matrix of indicator function and transition condition at point z−i , respec-
tively, where z−i = z(τ−i ) and z+i = z(τ+

i ). For an impact oscillator with Hertz’s model of
contact, the Jacobian matrix of the transition condition and indicator function becomes the
following matrix [17]

Dh(z−i ) =
[

1 0 0
]T, Dg(z−i ) = I (22)

Therefore, the deviated trajectory can be written as

δz
′
=

∂f
∂z

∣∣∣∣
z=zi

· δz + O(2), δz(τ0) = δz0 (23)

By letting δz = [Φτ(z0)]δz0 substitute into the perturbation Equation (23), δz+i at
the discontinuous region is estimated using Equation (20). The variation equation is also
calculated at the same time as[

Φ
′
τ(z0)

]
= [Dzf][Φτ(z0)], [Φτ0(z0)] = [I] (24)

where [Dzf], [I], and [Φτ(z0)] denote the Jacobian matrix, identity matrix, and solution of
the variational equation, respectively.

For the single-mode squeak model shown in Figure 2a

m
..
xs + c

.
xs + kxs = f0 cos ωext + Fxs

µ (25)

where Fxs
µ is the friction force. The friction force of the single-mode squeak model is

expressed as α, and h are the control parameters that determine the negative slope. µs and
µk are the static and dynamic friction coefficients, respectively.
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Fxs
µ = tanh(α(Vb −

.
xs))

{
µk + (µs − µk) exp

(
−h
∣∣Vb −

.
xs
∣∣)}N (26)

Using the dimensionless time τ = t
√

k/m and the coordinate transformation
xs(t) = Xs(τ), the dimensionless equation of motion can be written as

X′′s + βX′s + Xs = f0 cos ητ +
1
k

Fxs
µ (27)

where prime is the differentiation for τ(≥ 0), and the dimensionless parameters are
defined as Ω =

√
k/m, η = ωex/Ω, f0 = F0/k, β =

√
c2/mk, and u = Xr/ f0. Therefore,

the dimensionless friction force of the single-mode squeak model can be expressed as

f v
µ = tanh

(
α
(
Vb − v′

)){
µk + (µs − µk) exp

(
−h
∣∣Vb − v′

∣∣)}n0 (28)

where αΩ f0 → α , Vb/Ω f0 → Vb , hΩ f0 → h , and N/k f0 = n0 are dimensionless parame-
ters. Therefore, the dimensionless equation of motion for the single-mode squeak model
can be written as

v′′ + βv′ + v = cos ητ + f v
µ (29)

The equation of motion for the single-mode squeak model is expressed in vector form

v =
[

v v′
]T (30)

v
′
= fs(v), v(0) = v0 (31)

fs(v) =

 v2
−βv2 − v1 + cos(v3) + f v

µ

η

 (32)

where v0 is the initial condition of the single-mode squeak model.
For the multi-mode squeak model shown in Figure 3

m
..
xms1 + (c + c1)

.
xms1 − c1

.
xms2 + (k + k1)xms1 − k1xms2 = Fxms1

µ

m1
..
xms2 − c1

.
xms1 + c1

.
xms2 − k1xms1 + k1xms2 = Fxms2

µ
(33)

where Fms1
µ and Fms2

µ are the friction forces acting on each mass. The friction force of the
multi-mode squeak model is expressed as

Fxms1
µ = tanh(α(Vb −

.
xms1))

{
µk + (µs − µk) exp

(
−h
∣∣Vb −

.
xms1

∣∣)}N (34)

Fms2
µ = tanh(α(Vb −

.
xms2))

{
µk + (µs − µk) exp

(
−h
∣∣Vb −

.
xms2

∣∣)}N (35)

Using the dimensionless time τ = t
√

k/m and the coordinate transformation xms1(t) =
Xms1(τ) and xms2(t) = Xms2(τ), the dimensionless equation of motion can be expressed as

X′′ms1 + (β + β1)X′ms1 − β1X′ms2 + (1 + γ)Xms1 − γXms2 = 1
k Fxms1

µ

X′′ms2 − σβ1X′ms1 + σβ1X′ms2 − σγXms1 + σγXms2 = σ 1
k Fxms2

µ
(36)

where prime is the differentiation with respect to τ(≥ 0), and the dimensionless parameter

is defined as Ω =
√

k/m, η = ωex/Ω, f0 = F0/k, β =
√

c2/mk, β1 =
√

c2
1/mk, γ = k1/k,

σ = m/m1, w = Xms1/ f0, and s = Xms2/ f0. Therefore, the dimensionless friction force of
the multi-mode squeak model can be rewritten as

f w
µ = tanh

(
α
(
Vb − w′

)){
µk + (µs − µk) exp

(
−h
∣∣Vb − w′

∣∣)}n0 (37)

f s
µ = tanh

(
α
(
Vb − s′

)){
µk + (µs − µk) exp

(
−h
∣∣Vb − s′

∣∣)}n0 (38)
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where αΩ f0 → α , Vb/Ω f0 → Vb , hΩ f0 → h , and N/k f0 = n0 are dimensionless param-
eters. Therefore, the dimensionless equation of motion for the simple model can be
expressed as

w′′ + (β + β1)w′ − β1s′ + (1 + γ)w− γs = f w
µ

s′′ − σβ1w′ + σβ1s′ − σγw + σγs = f s
µ

(39)

The equation of motion for the multi-mode squeak model is expressed in vector form
as follows

w =
[

w w′ s s′
]T (40)

w
′
= fms(w), w(0) = w0 (41)

fms(w) =


w2

−(β + β1)w2 + β1s2 − (1 + γ)w1 + γs1 + f w
µ

s2

σ
(

β1w2 − β1s2 + γw1 − γs1 + f s
µ

)
 (42)

where w0 is the initial condition of the multi-mode squeak model.
Because the squeak models are a dynamic system without discontinuities, Equations

(9)–(22) are unnecessary. Therefore, the Lyapunov exponent of the squeak model can be
obtained directly from the eigenvalue of the variation Equation (24).

The Lyapunov exponents can be defined as

λi = lim
τ→∞

1
τ

ln|mi(τ)| (43)

where mi(t) are the eigenvalues of Equation (24). On the other hand, the definition cannot
be used directly in the numerical calculation. If there is a considerable time, the variation
equations tend to be the ill-condition [17]. Therefore, the spectrum of the Lyapunov
exponent for the linearized equation was estimated using Wolf’s algorithm via the QR-
factorization orthonormalization [33].

As mentioned earlier, in this study, an image of a dynamic signal was constructed
based on the RP that visualized the dynamic characteristics most effectively. The recurrence
is a fundamental property in a dynamic systems, and RP is a tool that visualizes the iteration
of the state of the system. The corresponding RP is based on the following recurrence
matrix as follows

RPi,j = H
(
ε− ‖zi − zj‖

)
, i, j = 1, . . . , N (44)

where RPi,j is called the RP or threshold RP. ‖ · ‖ is an L-2 norm; N is the measured points,

and {zi}N
i=1 is trajectories of a system in its phase space. ε is the threshold. The threshold is

a critical parameter that can be obtained differently depending on the system, but it was
quantified probabilistically (ε > 5σ) by Thiel et al. [34]. Therefore, an unthresholded RP
without the influence of the threshold can be expressed as

RPun
i,j = ‖zi − zj‖, i, j = 1, . . . , N (45)

Here the element of phase space indicates the possible state of the system for the time
evolution law. In such a case, the phase space needs to be reconstructed. The method for
reconstruction is generally conducted using the time delay method. Thus, the reconstructed
state variable can be expressed as

zi →
^
zi =

m

∑
j=1

qi+(j−1)νej (46)

where qi = q(i∆τ), ∆τ, m, ν, and ej are the discrete time series, sampling rate, embedding
dimension, time delay, and unit vectors, respectively. The reconstruction does not change
the dynamic properties, and the reconstructed phase space can be expressed through an
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appropriately selected embedding dimension and time delay. In general, the time delay
can be selected appropriately using the mutual information method.

During time delay reconstruction, all self-crossing trajectories in the dimension DA of
the attractor can disappear when the embedding dimension D > 2DA is set. On the other
hand, it is imperative to determine the minimum embedding dimension to minimize the
Lyapunov exponents and computational calculations from a physical perspective. From
Equation (46), in dimension d, zr is the rth nearest neighbor of z, and the square of the
Euclidean distance between the two vectors is

R2
d(i, r) =

ν−1

∑
e=0

[
q(i+eν) − qr,(i+eν)

]2

(47)

Here, as the time delay embedding extends from dimension d to dimension d + 1, the
Euclidean distance between the rth neighbors for dimension rth can be written as follows

R2
d+1(i, r) = R2

d(i, r) +
[
q(i+eν) − qr,(i+eν)

]2
(48)

where the error for the minimum embedding dimension can be determined from the rate
of change in the Euclidean distance.√√√√R2

d+1(i, r)− R2
d(i, r)

R2
d+1(i, r)

> Rtol (49)

where Rtol is the threshold. Kennel et al. [24] reported that false neighbors could be
identified clearly in Rtol ≥ 10. Another condition for determining false neighbors defined
based on the actual value of Rd(i) ≡ Rd(i, r = 1) is similar to the standard variation RA
of the attractor using finite data of the noisy signal. Thus, the Euclidean distance for the
dimension d + 1 becomes Rd+1(i) ≈ 2RA, and the second criterion for determining false
neighbors can be written as

Rd+1(i)
RA

> Atol (50)

Therefore, the minimum embedding dimension can be obtained by discriminating as
false nearest neighbors (FNN) under the conditions in Equations (49) and (50).

Furthermore, the classified features were visualized through Class Activation Map-
ping (CAM) [35]. The procedure for CAM is as follows

Fk = ∑
x,y

fk(x, y) (51)

where fk(x, y) represents the activation of the kth unit of the last convolutional layer at the
spatial location (x, y). Therefore, the value obtained by Global Average Pooling (GAP) on
the kth unit becomes Fk. Accordingly, the input softmax for c classes is as follows

Sc = ∑
k

wc
k∑

x,y
fk(x, y) = ∑

k
∑
x,y

wc
k fk(x, y) (52)

where wc
k is the weight corresponding to class c for kth units, the learned weight represents

an optimized model for class c. The output probability of softmax for class c is as follows

Pc =
eSc

∑
c

eSc
(53)

Therefore, CAM for the class is defined, and the elements on each space are given
as follows
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Mc(x, y) = ∑
k

wc
k fk(x, y) (54)

Finally, the features of the learning result using CNN can be visualized as a heat map
using Equation (54).

3. Results

For preliminary analysis, the Rossler model, a representative chaotic system, was
used [36]. The Rossler model has already been studied extensively. It is a simple chaotic
vibration system because it can produce a section that always vibrates in response to a
parameter change. c is selected as the control parameter. The other parameters are a = 0.2
and b = 0.2, and the initial condition is q(0) =

[
1 1 1

]T.

.
s = f(

.
s) =

 −s2 − s3
s1 + as2

b + s3(s1 − c)

 (55)

Figure 4 presents the signal s1 for the control parameters of the Rossler model. Figure 4a
is a time series analysis for c = 3.5 (dash line) and c = 10 (solid line). Figure 4b shows the
corresponding phase space. c = 3.5 shows a clear period-2 in phase space; c = 10 shows
the trajectory in the phase space and the aperiodic infinite trajectory in a finite boundary.
On the other hand, the chaos cannot be identified clearly as a phase plot. To determine
chaos, the Lyapunov exponents need to be calculated. Figure 5 presents the flow chart of
the proposed methodology for applying signal classification using deep learning.
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portrait.

As shown in the flow diagram, the proposed method classifies the characteristics of
the nonlinear vibration signals not included in learning after learning a dataset of nonlinear
vibration signals composed of images using the CNN architecture. In other words, the
focus of this study was to learn the vibrating signal visualized based on RP by machine
learning and to distinguish between the causes of vibration, such as friction or impact
and chaotic characteristics. Details of the proposed method are as follows. First, the
nonlinear time series data of the parametric deterministic dynamic system was obtained by
numerical analysis using the Runge–Kutta method. The Lyapunov exponent was calculated
for the time series data and chaos was determined. The image visualization method of
the vibration signal used the FNN algorithm to determine the embedding dimension and
reconstruct the phase space. The reconstructed signal was expressed as an unthresholded
RP to visualize the dynamic characteristics. Finally, the dataset composed of the visualized
signals was trained by the CNN model and verified using the Lyapunov exponent.
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The architecture is structured relatively simply. However, GAP was used instead of
Fully Connected (FC) to activate the CAM in the last layer. GAP is relatively less accurate
than FC [35]. On the other hand, the purpose of this paper was to show that even if the S&R
model is chaotic, it is possible to classify it through deep learning using imaged vibration
signals. Hence, the architecture was constructed simply with the aim of approximately
90% accuracy. For preliminary analysis, Table 1 lists the layer type of the CNN model, filter
size, and shape of each layer. Figure 6 presents a flow diagram of the Rossler system’s
CNN model.

Table 1. CNN model summary.

Layer (Type) Output Shape Param #

Conv2d (None, 200, 200, 32) 896
Batch normalization (None, 200, 200, 32) 128

Max pooling 2d (None, 100, 100, 32) 0
Conv2d_1 (None, 100, 100, 64) 18,496

Batch normalization_1 (None, 100, 100, 64) 256
Max pooling 2d_1 (None, 50, 50, 64) 0

Conv2d_2 (None, 50, 50, 128) 73,856
Batch normalization_2 (None, 50, 50, 128) 512

Max pooling 2d_2 (None, 25, 25, 128) 0
Conv2d_3 (None, 25, 25, 256) 295,168

Batch normalization_3 (None, 25, 25, 256) 1024
Max pooling 2d_3 (None, 12, 12, 256) 0

Conv2d_4 (None, 12, 12, 512) 1,180,160
Global Average Pooling 2d (None, 512) 0

Dense (None, 2) 1026
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Figure 6. Flow diagram of CNN model.

Figure 7 presents the chaos analysis of the Rossler model. Figure 7a is a bifurca-
tion diagram of the Rossler’s model for parameter c change, and Figure 6b shows the
corresponding Lyapunov exponents. The explanation of the critical c for the Lyapunov
exponents of the Rossler model has been studied extensively. Briefly, to summarize this
system, the first bifurcation appears near c ≈ 2.866, and becomes period 2. The bifurca-
tion appears again near c ≈ 3.86 and becomes period 4. In other words, chaos occurs as
period-doubling occurs at each point. As shown in Figure 4, if the time analysis result is
c = 3.5, chaos is expressed as period 2, and c = 10. This agrees well with the time analysis
results. In 3D phase space, the Lyapunov exponent has four types of attractors: stable fixed
points (λi < 0, i = 1, 2, 3), stable limit cycles (λ1 < 0, λi < 0, i = 2, 3), stable two-torus
(λ1 = λ2 = 0, λi < 0, i = 3), and strange attractors (λ1 > 0). In the calculated system,
however, only the classification of the S&R model and the existence of chaos were classified
(Rossler system only distinguished between chaos and non-chaos). In other words, the
strange attractor (λ1 > 0) and dynamic characteristics of the deterministic dynamic system
can be obtained from the flow of the proposed method, and an unthresholded recurrence
plot was learned using CNN. Subsequently, an attempt was made to classify the signals
and chaos generated by the S&R model that were not used for training. Figure 8 shows the
visualized chaos and non-chaos signals for the randomly extracted Rossler model.
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Image classification using CNN has developed many sophisticated models that tran-
scend the human cognitive abilities, but the design of a sophisticated architecture was
not the goal of the present study. Therefore, the architecture is composed of a simple five-
level structure, as shown in Table 1. Each step includes the convolution layer, activation
function, and pooling layer. The proposed model comprises five convolution layers with
a 32-3 × 3 filter, 64-3 × 3 filter, 128-3 × 3 filter, 256-3 × 3 filter, and 512-3 × 3 filter in
each step. As mentioned earlier, RP is a tool to visualize the recurrence characteristics of
a dynamic system. The filter size was set as small as possible because the chaos system
can occur within a very short interval. In addition, three max pooling layers were used.
Through five convolution layers, the feature map classifies the features of the image into six
classes. To use CAM, GAP was used instead of the FC layer as the last layer. Softmax was
used as the activation function of the output value. One of the gradient-based optimization
methods was used. The Adam optimizer is an optimization function based on the gradient
descent algorithm and was used to achieve faster convergence [37]. The weight initializa-
tion is one of the fundamental problems. Incorrect weight setting causes many problems,
such as convergence problems and local minima. LeCun initialization follows a Gaussian
distribution and uniform distribution of weight initialization for effective backpropaga-
tion [38]. Xavier initialization sets the initial weight depending on the number of previous
and next nodes [39]. This is the most generalized method, but the output value shows
inefficient results when used in the ReLU function. The He initialization was developed to
compensate for this [25]. For the weight initialization in the proposed CNN model, the He
initialization method following a Gaussian distribution was used.
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The Rossler model consisted of 3200 datasets and 200× 200-pixel images. The intervals
of the time step for the ODE and orthonormalization for the Lyapunov exponent were 0.05
and 0.1, respectively. The dataset is usually divided into three parts. The 3200 datasets
were divided into 70% for the training dataset and 30% of the test dataset. The validation
dataset consisted of 30% of the training dataset. Table 2 lists the dataset samples used
for training. The errors due to sequential datasets were removed by shuffling the dataset
because the images are generated sequentially for parameter analysis. Deep learning
requires a high-performance computer. The hardware used was a GPU machine (NFEC-
2021-01-267120, Future Automotive Intelligent Electronics Core Technology Center) with
NVIDIA GPU V100.

Table 2. Dataset split ratio for the Rossler model.

Data Percentage Number of Samples

Training 56% 2240
Validation 14% 560

Testing 30% 1200

Figure 9 shows the results of a numerical experiment for the proposed procedure.
Chaos characteristics were found in the training dataset for 2240. At the same time,
it was verified through 560 validation data in each epoch. After that, the tests were
performed on 1200 testing datasets on the trained CNN model. The batch size was set to
10, and the learning rate of the optimization function was 0.0001. Figure 9a,b shows the
accuracy and loss function of the training data and validation data for each epoch. As
shown in the learning result, the accuracy showed a logarithmic function and converged to
approximately 100, and the loss also showed a negative exponential function and converged
close to zero. The accuracy and loss of validation data and the training data almost coincide,
suggesting that the training proceeded well without overfitting. This suggests that the
proposed procedure detects the chaos characteristics of the Rossler model well. In addition,
1200 testing datasets that were not used for training were also classified with 99% accuracy.
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Figure 9. Results of the numerical experiment for the Rossler model: (a) accuracy; (b) and loss curves
over 100 epochs.

Figure 10 shows the heat map using CAM. The heat map shows the spatial importance
for each class, and red is the most important part. As shown in the heat map, when the
iteration of the Rossler model is non-chaos, the characteristics of the image tend to be
uniform and symmetrical, and the chaos is irregular.
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Figure 10. Class activation mapping for the Rossler model.

In the Rossler model, the cycle is long and clearly expressed for the set control param-
eters. Therefore, the visualized repetition was distinguished easily. On the other hand, the
S&R model, which includes the friction force and impact force, contains extreme nonlineari-
ties so that the repeatability can be very complex. Here, because the rattle problem contains
discontinuities, the Lyapunov exponent was calculated by considering Muller’s method.
The squeak problem has a continuity, including creep, so the Lyapunov was calculated as a
continuous dynamic problem.

Figure 11 shows the results of chaotic analysis for the model control parameters cor-
responding to each model. Figure 11a is the calculation result of the largest Lyapunov
exponent of the rattle model, and Figure 11b shows the corresponding bifurcation dia-
gram. The other parameters and initial conditions are r = 2, ξ = 0.05, kh = 100, and
u0 =

[
0.4 −1.1 0

]T. Figure 11c,d shows the Lyapunov exponent calculation result for
the control parameter of the single-mode squeak model and the corresponding bifurcation
diagram. The other parameters and initial conditions are V = 2, n0 = 2.5, β = 0.002,
µs = 0.5, µk = 0.1, h = 1, α = 65, and v0 =

[
0.1 1.2 0

]T. Figure 11e,f presents the Lya-
punov exponent calculation result and bifurcation diagram for the control parameter of the
multi-modes squeak model. Other parameters and initial conditions were V = 1, n0 = 2.5,
β = β1 = 0, µs = 0.5, µk = 0.3, h = 1, α = 65, γ = 0.1, and w0 =

[
0.1 0.1 0.1 1.1

]T.
In this study, only each model and chaotic characteristics were distinguished, so other
detailed types of attractors were not considered. The analysis results show that the S&R
model changes with extreme nonlinearity in the largest Lyapunov exponent for the change
in the control parameter.
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Figure 11. Chaotic analysis for the S&R model: (a) bifurcation diagram of displacements; (b) largest
Lyapunov exponent, for rattle model with respect to η; (c) bifurcation diagram of displacements;
(d) largest Lyapunov exponent, for single-mode squeak model with respect to η; (e) bifurcation
diagram of displacements; (f) largest Lyapunov exponent, for multi-modes squeak model with
respect to σ.

As mentioned earlier, Figures 12–14 presents the representative attractors of each
system divided into chaos and non-chaos, and show the rattle, single-mode squeak, and
multi-mode squeak models, respectively. Figure 12a,b shows the time series plot and phase
portrait of displacement for the rattle model in η = 0.7202 and η = 0.6801. The dotted
line oscillates constantly, and the solid line vibrates with an irregular amplitude. In phase
space at η = 0.6801, it produces one stable limit cycle without impact and oscillates stably.
On the other hand, in η = 0.7202, the system includes impact, and the trajectory appears
without a specific period. In other words, it expresses chaos.
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Figure 12. Dynamic solutions for the rattle model for various η: (a) time analysis; (b) phase portrait
corresponding to (a).
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Figure 13. Dynamic solutions for single-mode squeak model for various η: (a) time analysis; (b) phase
portrait corresponding to (a).

Figure 13a,b shows the time series plot and phase portrait of displacement for the
single-mode squeak model in η = 0.8007 and η = 0.6903. The dotted line oscillates
constantly, and the solid line vibrates with an irregular amplitude. In the phase plot, the
flat phase means the stick phase in the stick-slip. When η = 0.8007 produces an unstable
limit cycle in phase space, it vibrates unstably for 1 period within the limit cycle. On the
other hand, in η = 0.6903, the system produces an unstable limit cycle and generates chaos
without a constant cycle.
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Figure 14a,b shows the time series plot and phase portrait of displacement for the
multi-mode squeak model in σ = 15.14 and σ = 5.558. The dotted line constantly oscillates
with two amplitudes, and the solid line oscillates with an irregular amplitude. In phase
space at σ = 15.14, it vibrates unstably for two periods within the limit cycle. On the other
hand, at σ = 5.558, the system generates an unstable limit cycle and generates chaos.

The S&R model was classified into six classes to distinguish between chaos and non-
chaos, and an unthresholded RP was shown. Here, the six classes were divided into the
rattle, single-mode squeak and multi-modes squeak, and chaos and non-chaos for each
model. Table 3 lists the dataset sample, and Figure 15 presents a part of the training dataset.

Table 3. Dataset split ratio for the S&R model.

Data Percentage Number of Samples

Training 56% 4160
Validation 14% 1040

Testing 30% 1800
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As shown in Figure 15, images by chaos and images by non-chaos are always vibrating,
so repetition appears in a complex form. Six thousand data were used in the total dataset
and consisted of 200 × 200-pixel images. To escape the local minima and converge to a
lower loss, and prevent overfitting, the learning rate was adjusted for each specific step
using a callback function. Each step consisted of five convolution layers with 32-2 × 2 filter,
64-2 × 2 filter, 128-2 × 2 filter, 256-2 × 2 filter, and 512-2 × 2 filter.

Figure 16 shows the results of the numerical experiment. The validation loss and
accuracy do not decrease until 20 epochs but escape from the local minima by adjusting
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the learning rate. This shows that the learning rate is adjusted again at 70 epochs and
converges with a certain accuracy and loss. In the final test, the model of each system and
the chaos problem were classified with approximately 90% accuracy. Figure 17 shows the
characteristics of the nonlinear vibration signal of each system for data extracted randomly
by CAM. The most important characteristic of the recurrence plot is on the main diagonal
line, meaning RPun

i,j = RPun
j,i . If zi 6= zj, an aperiodic pattern representing chaos may

appear. As shown in Figure 17, macroscopically, the pattern is almost similar, but if the
measurement length is long or the period is fast, a very small aperiodic pattern can be
indicated. In other words, the CAM results in the first row and second column appear
macroscopically similar, but physically show completely different characteristics.
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The areas of difference for the recurrence characteristics for each model were detected
successfully using deep learning. The proposed procedure can classify the nonlinear
vibration characteristics generated in the mechanical system with high accuracy. In other
words, the causes of complex signals can be classified due to nonlinear vibrations generated
in mechanical systems with high accuracy. This shows that the characteristics of the
complex signals, such as BSR noise, that humans cannot recognize can be classified with
high accuracy by a CNN.

4. Discussion and Future Work

Visualization was performed with the proposed method for the vibration signals
with extreme nonlinearity occurring in different models. The CNN was used to classify
the S&R model and its chaotic characteristics. This result was verified by calculating the
Lyapunov exponent for each model. The chaotic characteristics can distinguish the signals
generated in a deterministic system by calculating the Lyapunov exponent, but calculating
this is very complex. The signal visualization method analyzes the dynamic signals, but
signals containing nonlinearity are complicated for engineers to analyze. In other words,
complex signals are difficult to classify by human cognitive ability. Therefore, a procedure
for classifying S&R models, including chaos and non-chaos, was proposed and verified
with approximately 91% accuracy using a simple CNN model. In future work, we will
study more complex models to analyze signals with added noise. It will also conduct
detailed experimental studies.
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