Rapid Estimation of Potato Quality Parameters by a Portable Near-Infrared Spectroscopy Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potato Samples
2.2. Destructive Measurements of the Reference Quality Parameters
2.2.1. Dry Matter Content
2.2.2. Reducing Sugars Content
2.3. Near-Infrared Spectroscopy: Instrumentation and Spectral Data Acquisition
2.4. Chemometric Analysis
3. Results
3.1. Quantified Reference Data on Tubers: Dry Matter and Reducing Sugars
3.2. Spectral Information and NIR Calibration Equation
3.3. External Validation and Prediction Capacity of the Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burlingame, B.; Mouillé, B.; Charrondiere, R. Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. J. Food Comp. Anal. 2009, 22, 494–502. [Google Scholar] [CrossRef]
- Birch, P.R.J.; Bryan, G.; Fenton, B.; Gilroy, E.M.; Hein, I.; Jones, J.T.; Prashar, A.; Taylor, M.A.; Torrance, L.; Toth, I.K. Crops that feed the world 8: Potato: Are the trends of increased global production sustainable? Food Sec. 2012, 4, 477–508. [Google Scholar] [CrossRef]
- Bianchi, G.; Scalzo, R.L.; Testoni, A.; Maestrelli, A. Nondestructive analysis to monitor potato quality during cold storage. J. Food Qual. 2014, 37, 9–17. [Google Scholar] [CrossRef]
- Meno, L.; Escuredo, O.; Rodriguez-Flores, M.S.; Seijo, M.C. Prevalence of airborne fungal spores in two potato warehouses with different storage conditions. Aerobiologia 2021, 37, 309–320. [Google Scholar] [CrossRef]
- Xunta de Galicia. Resolución de 9 de Junio de 2016, de la Dirección General de Ganadería, Agricultura e Industrias Agroalimentarias, por la que se da publicidad a la solicitud de modificación del pliego de condiciones de la indicación geográfica protegida Pataca de Galicia/Patata de Galicia. Diario Off. Galicia 2016, 120, 27028. [Google Scholar]
- Rady, A.M.; Guyer, D.E. Evaluation of sugar content in potatoes using NIR reflectance and wavelength selection techniques. Postharvest Biol. Tec. 2015, 103, 17–26. [Google Scholar] [CrossRef]
- Kasampalis, D.S.; Tsouvaltzis, P.; Ntouros, K.; Gertsis, A.; Moshou, D.; Siomos, A.S. Rapid nondestructive postharvest potato freshness and cultivar discrimination assessment. Appl. Sci. 2021, 11, 2630. [Google Scholar] [CrossRef]
- Broćić, Z.; Dolijanović, Ž.; Poštić, D.; Milošević, D.; Savić, J. Yield, tuber quality and weight losses during storage of ten potato cultivars grown at three sites in Serbia. Potato Res. 2016, 59, 21–34. [Google Scholar] [CrossRef]
- Seijo-Rodríguez, A.; Escuredo, O.; Rodríguez-Flores, M.S.; Seijo, M.C. Assessment of antioxidant potential of potato varieties and the relationship to chemical and colorimetric measurements. Am. J. Pot. Res. 2018, 95, 71–78. [Google Scholar] [CrossRef]
- Hertog, M.L.A.T.M.; Tijskens, L.M.M.; Hak, P.S. The effects of temperature and senescence on the accumulation of reducing sugars during storage of potato (Solanum tuberosum L.) tubers: A mathematical model. Postharvest Biol. Technol. 1997, 10, 67–79. [Google Scholar] [CrossRef]
- Abbasi, K.S.; Masud, T.; Qayyum, A.; Khan, S.U.; Ahmad, A.; Mehmood, A.; Farid, A.; Jenks, M.A. Transition in tuber quality attributes of potato (Solanum tuberosum L.) under different packaging systems during storage. J. Appl. Bot. Food Qual. 2016, 89, 142–149. [Google Scholar]
- Helgerud, T.; Segtnan, V.H.; Wold, J.P.; Ballance, S.; Knutsen, S.H.; Rukke, E.O.; Afseth, N.K. Near-infrared spectroscopy for rapid estimation of dry matter content in whole unpeeled potato tubers. J. Food Res. 2012, 1, 55. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zhu, K.; Liu, J. Nondestructive detection of reducing sugar of potato flours by near infrared spectroscopy and kernel partial least square algorithm. J. Food Meas. Charact. 2019, 13, 231–237. [Google Scholar] [CrossRef]
- Rady, A.M.; Guyer, D.E.; Kirk, W.; Donis-González, I.R. The potential use of visible/near infrared spectroscopy and hyperspectral imaging to predict processing-related constituents of potatoes. J. Food Eng. 2014, 135, 11–25. [Google Scholar] [CrossRef]
- Alamar, M.C.; Tosetti, R.; Landahl, S.; Bermejo, A.; Terry, L.A. Assuring potato tuber quality during storage: A future perspective. Front. Plant Sci. 2017, 8, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, J.A.C. Using NIRS spectroscopy to predict postharvest quality. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2012, 7, 1–14. [Google Scholar]
- Escuredo, O.; Seijo-Rodríguez, A.; González-Martín, M.I.; Rodríguez-Flores, M.S.; Seijo, M.C. Potential of near infrared spectroscopy for predicting the physicochemical properties on potato flesh. Microchem. J. 2018, 141, 451–457. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Escuredo, O.; González-Martín, M.I.; Wells-Moncada, G.; Fischer, S.; Hernández-Hierro, J.M. Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. J. Cereal Sci. 2014, 60, 67–74. [Google Scholar] [CrossRef]
- González-Martín, M.I.; Wells-Moncada, G.; Fischer, S.; Escuredo, O. Chemical characteristics and mineral composition of quinoa by near-infrared spectroscopy. J. Sci. Food Agric. 2014, 94, 876–881. [Google Scholar] [CrossRef]
- Mehrübeoglu, M.; Coté, G.L. Determination of total reducing sugars in potato samples using near-infrared spectroscopy. Cereal Foods World 1997, 42, 409–413. [Google Scholar]
- Van Dijk, C.; Fischer, M.; Holm, J.; Beekhuizen, J.G.; Stolle-Smits, T.; Boeriu, C. Texture of cooked potatoes (Solanum tuberosum). 1. Relationships between dry matter content, sensory-perceived texture, and near-infrared spectroscopy. J. Agric. Food Chem. 2002, 50, 5082–5088. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Y.; Miao, Y.; Zhang, H.; Matsunaga, R. Non-destructive determination of carbohydrate content in potatoes using near infrared spectroscopy. J. Near Infrared Spectrosc. 2004, 12, 311–314. [Google Scholar] [CrossRef]
- Haase, N.U. Prediction of potato processing quality by near infrared reflectance spectroscopy of ground raw tubers. J. Near Infrared Spec. 2011, 19, 37–45. [Google Scholar] [CrossRef]
- Camps, C.; Camps, Z.N. Optimized prediction of reducing sugars and dry matter of potato frying by FT-NIR spectroscopy on peeled tubers. Molecules 2019, 24, 967. [Google Scholar] [CrossRef] [Green Version]
- Sorak, D.; Herberholz, L.; Iwascek, S.; Altinpinar, S.; Pfeifer, F.; Siesler, H.W. New Developments and applications of handheld raman, mid-infrared, and near-infrared spectrometers. Appl. Spectrosc. Rev. 2012, 47, 83–115. [Google Scholar] [CrossRef]
- Beć, K.B.; Grabska, J.; Huck, C.W. NIR spectroscopy of natural medicines supported by novel instrumentation and methods for data analysis and interpretation. J. Pharm. Biom. Anal. 2021, 193, 113686. [Google Scholar] [CrossRef] [PubMed]
- Crocombe, R.A. Portable spectroscopy. Appl. Spectrosc. 2018, 72, 1701–1751. [Google Scholar] [CrossRef]
- Grassi, S.; Alamprese, C. Advances in NIR spectroscopy applied to process analytical technology in food industries. Cur. Opin. Food Sci. 2018, 22, 17–21. [Google Scholar] [CrossRef]
- VIAVI Solutions Inc. MicroNIR Pro v3.0. User Manual; VIAVI Solutions Inc.: Santa Rosa, CA, USA, 2019; p. 308. [Google Scholar]
- Beć, K.B.; Grabska, J.; Huck, C.W. Biomolecular and bioanalytical applications of infrared spectroscopy—A review. Anal. Chim. Acta 2020, 1133, 150–177. [Google Scholar] [CrossRef] [PubMed]
- Dhanoa, M.S.; Lister, S.J.; Barnes, R.J. On the scales associated with near infrared reflectance difference spectra. Appl. Spectros. 1995, 49, 765–772. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westhaus, M.O. Analysis of Agriculture and Food Products by Near Infrared Reflectance Spectroscopy. Monograph NIR Systems. Infrasoft International, NIR Systems; Silver Spring Inc.: New York, NY, USA, 1995; p. 488. [Google Scholar]
- Williams, P. The RPD statistic: A tutorial note. NIR News 2014, 25, 22–26. [Google Scholar] [CrossRef]
- Esbensen, K.H.; Geladi, P.; Larsen, A. The RPD myth…. NIR News 2014, 25, 24–28. [Google Scholar] [CrossRef]
- Stark, J.C.; Love, S.L. (Eds.) Tuber quality. In Potato Production Systems; University of Idaho: Moscow, ID, USA, 2003; pp. 329–342. [Google Scholar]
- López, A.; Arazuri, S.; García, I.; Mangado, J.; Jarén, C. A review of the application of near-infrared spectroscopy for the analysis of potatoes. J. Agric. Food Chem. 2013, 61, 5413–5424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helgerud, T.; Wold, J.P.; Pedersen, M.B.; Liland, K.H.; Ballance, S.; Knutsen, S.H.; Rukke, E.O.; Afseth, N.K. Towards on-line prediction of dry matter content in whole unpeeled potatoes using near-infrared spectroscopy. Talanta 2015, 143, 138–144. [Google Scholar] [CrossRef]
- Subedi, P.P.; Walsh, K.B. Assessment of potato dry matter concentration using short-wave near-infrared spectroscopy. Potato Res. 2009, 52, 67–77. [Google Scholar] [CrossRef]
- Chen, J.Y.; Zhang, H.; Miao, Y.; Asakura, M. Nondestructive determination of sugar content in potato tubers using visible and near infrared spectroscopy. Jpn. J. Food Eng. 2010, 11, 59–64. [Google Scholar] [CrossRef]
- Lei, T.; Sun, D.W. A novel NIR spectral calibration method: Sparse coefficients wavelength selection and regression (SCWR). Anal. Chim. Acta 2020, 1110, 169–180. [Google Scholar] [CrossRef] [PubMed]
Mean | SD | Min | Max | ||
---|---|---|---|---|---|
Samples set by potato cultivar | |||||
Kennebec (N = 48) | Dry matter (%) | 19.88 | 1.63 | 16.00 | 22.10 |
Reducing sugar (g/100 g) | 0.23 | 0.09 | 0.15 | 0.49 | |
Agria (N = 41) | Dry matter (%) | 20.19 | 1.04 | 17.30 | 22.20 |
Reducing sugar (g/100 g) | 0.15 | 0.04 | 0.10 | 0.37 | |
Calibration set (N = 70) | |||||
Dry matter (%) | 19.67 | 2.07 | 16.0 | 22.0 | |
Reducing sugar (g/100 g) | 0.19 | 0.08 | 0.10 | 0.49 | |
Validation set (N = 19) | |||||
Dry matter (%) | 19.89 | 1.25 | 17.80 | 22.0 | |
Reducing sugar (g/100 g) | 0.20 | 0.09 | 0.12 | 0.43 | |
Total sample set (N = 89) | |||||
Dry matter (%) | 20.03 | 1.39 | 16.00 | 22.20 | |
Reducing sugar (g/100 g) | 0.19 | 0.08 | 0.10 | 0.49 |
Constituent | Math Treatment * | N | Mean | SD | Range of Applicability | SEC | RSQ | SECV | RPD | |
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | |||||||||
Dry matter | Detrend only 0,0,1,1 | 65 | 20.09 | 1.36 | 16.00 | 24.18 | 0.72 | 0.72 | 0.93 | 1.90 |
Standard MSC 2,10,10,1 | 65 | 20.04 | 1.42 | 15.77 | 24.31 | 0.75 | 0.72 | 10.21 | 1.89 | |
None 2,4,4,1 | 65 | 20.17 | 1.25 | 16.41 | 23.94 | 0.68 | 0.71 | 0.98 | 1.85 | |
Standard MSC 2,4,4,1 | 63 | 20.15 | 1.28 | 16.30 | 24.00 | 0.70 | 0.70 | 0.96 | 1.84 | |
SNV only 2,4,4,1 | 66 | 20.07 | 1.43 | 15.76 | 24.37 | 0.79 | 0.70 | 10.31 | 1.82 | |
Reducing sugars | SNV only 0,0,1,1 | 62 | 0.18 | 0.06 | 0.01 | 0.35 | 0.04 | 0.55 | 0.05 | 1.48 |
Detrend only 2,8,6,1 | 61 | 0.17 | 0.04 | 0.06 | 0.28 | 0.02 | 0.51 | 0.03 | 1.42 | |
Standard MSC 0,0,1,1 | 63 | 0.17 | 0.04 | 0.05 | 0.29 | 0.03 | 0.50 | 0.03 | 1.41 | |
Detrend only 0,0,1,1 | 61 | 0.17 | 0.04 | 0.06 | 0.28 | 0.03 | 0.48 | 0.03 | 1.39 | |
None 2,4,4,1 | 60 | 0.17 | 0.04 | 0.06 | 0.27 | 0.03 | 0.48 | 0.03 | 1.39 |
Constituent | Mean Residual | RMSE | p-Value |
---|---|---|---|
Dry matter | 1.01 | 1.17 | 0.22 |
Reducing sugars | 0.05 | 0.07 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escuredo, O.; Meno, L.; Rodríguez-Flores, M.S.; Seijo, M.C. Rapid Estimation of Potato Quality Parameters by a Portable Near-Infrared Spectroscopy Device. Sensors 2021, 21, 8222. https://doi.org/10.3390/s21248222
Escuredo O, Meno L, Rodríguez-Flores MS, Seijo MC. Rapid Estimation of Potato Quality Parameters by a Portable Near-Infrared Spectroscopy Device. Sensors. 2021; 21(24):8222. https://doi.org/10.3390/s21248222
Chicago/Turabian StyleEscuredo, Olga, Laura Meno, María Shantal Rodríguez-Flores, and Maria Carmen Seijo. 2021. "Rapid Estimation of Potato Quality Parameters by a Portable Near-Infrared Spectroscopy Device" Sensors 21, no. 24: 8222. https://doi.org/10.3390/s21248222
APA StyleEscuredo, O., Meno, L., Rodríguez-Flores, M. S., & Seijo, M. C. (2021). Rapid Estimation of Potato Quality Parameters by a Portable Near-Infrared Spectroscopy Device. Sensors, 21(24), 8222. https://doi.org/10.3390/s21248222