Parameter Estimation for Interrupted Sampling Repeater Jamming Based on ADMM
Abstract
:1. Introduction
- (1)
- The parameter estimation of ISRJ is recast as a problem of windowed vector estimation from a new perspective, and a nonlinear integer optimization model is developed for parameter estimation to mitigate the high computational complexity suffered by brute two-dimensional TF analysis.
- (2)
- The ADMM method is introduced to decomposing the nonlinear integer optimization problem into several simple sub-problems with lower computation complexity to estimate the width and the number of sample slices, which achieves better performance for ISRJ than the TF analysis methods used in the published literature.
2. ISRJ Signal Mode
3. Parameter Estimation Model
4. Parameter Estimation Method
4.1. ADMM Algorithm
4.2. Parameter Estimation
- Step 1:
- Pulse compression is applied to the radar signal and ISRJ signal, respectively.
- Step 2:
- The parameter estimation of ISRJ is transformed into a nonlinear integer optimization problem for windowed vector estimation.
- Step 3:
- The nonlinear integer optimization model is decomposed into a discrete model and continuous model.
- Step 4:
- The ADMM is used to estimate the width and number of sample slices for ISRJ.
- Step 5:
- The width of sample slices and the number of sample slices are estimated iteratively until the residual error reaches convergence accuracy.
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roome, S.J. Digital Radio Frequency Memory. Electron. Commun. Eng. J. 1990, 2, 147–153. [Google Scholar] [CrossRef]
- Andrea, D.M. Introduction to Modern EW Systems; Artech House: Boston, MA, USA, 2012; pp. 1–3. [Google Scholar]
- Christopher, P.H. Digital Radio Frequency Memory Synthetic Instrument Enhancing US Navy Automated Test Equipment Mission. In Proceedings of the 2016 IEEE AUTOTESTCON, Anaheim, CA, USA, 12–15 September 2016. [Google Scholar]
- Wu, W.Z.; Zou, J.W.; Chen, J.; Xu, S.Y.; Chen, Z.P. False Target Recognition Against Interrupted-Sampling Repeater Jamming based on Integration Decomposition. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 2979–2991. [Google Scholar] [CrossRef]
- Wang, X.S.; Liu, J.C.; Zhang, W.M.; Fu, Q.X.; Liu, Z.; Xie, X.X. The Mathematical Principle of Intermittent Sample Repeater Interference. Sci. China (Ser. E Inf. Sci.) 2006, 36, 891–901. [Google Scholar]
- Du, C.J.; Zhao, Y.; Wang, L.; Tang, B.; Xiong, Y. Deceptive Multiple False Targets Jamming Recognition for Linear Frequency Modulation Radars. J. Eng. 2019, 2019, 7690–7694. [Google Scholar] [CrossRef]
- Zhang, J.D.; Zhu, D.Y.; Zhang, G. New Anti-velocity Deception Jamming Technique using Pulses with Adaptive Initial Phases. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1290–1300. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, F.F.; Liu, Q.H. An Adaptive Transmitting Scheme for Interrupted Sampling Repeater Jamming Suppression. Sensors 2017, 17, 2480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, G.; Zeng, D.G.; Tang, B. Anti-Jamming Filter for DRFM Repeat Jammer based on Stretch Processing. In Proceedings of the 2010 2nd International Conference on Signal Processing Systems, Dalian, China, 5–7 July 2010. [Google Scholar]
- Zhou, K.; Li, D.X.; Su, Y.; Liu, T. Joint Design of Transmit Waveform and Mismatch Filter in the Presence of Interrupted Sampling Repeater Jamming. IEEE Signal Process. Lett. 2020, 27, 1610–1614. [Google Scholar] [CrossRef]
- Feng, D.; Xu, L.T.; Pan, X.Y.; Wang, X.S. Jamming Wideband Radar Using Interrupted-Sampling Repeater. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 1341–1354. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, G.; Liu, W.B. Efficient Filter Design Against Interrupted Sampling Repeater Jamming for Wideband Radar. EURASIP J. Adv. Signal Process. 2017, 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Mou, N.W.; Guo, L. Depressing Distance of Coherent Jamming. Electron. Inf. Warf. Technol. 2015, 30, 33–36. [Google Scholar]
- Li, H.; Zheng, G.Y.; Yang, Y.K.; Guo, H.F. The Performance analysis of Multi-False Target Jamming of Part Copying Radar Pulse. Electron. Inf. Warf. Technol. 2010, 25, 39–44. [Google Scholar]
- Cihan, B. A Novel Nonlinear Frequency Modulated Chirp Signal for Synthetic Aperture Radar and Sonar Imaging. J. Nav. Sci. Eng. 2015, 11, 68–81. [Google Scholar]
- Doerry, A.W. Generating Nonlinear FM Chirp Waveform for Radar; Sandia National Laboratories: Albuquerque, NM, USA, 2006; pp. 1–34. [Google Scholar]
- Cihan, B. Enhancements to Synthetic Aperture Radar Chirp Waveform and Non-Coherent SAR Change Detection Following Large Scale Disasters. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2013. [Google Scholar]
- Cihan, B.; David, F.; Christopher, F.B. Assessment and Enhancement of SAR Noncoherent Change Detection of Sea-Surface Oil Spills. IEEE J. Ocean. Eng. 2018, 43, 211–220. [Google Scholar]
- Cihan, B.; Azmi, A.A.; Fatih, O. Self-Localized Solitons of a q-Deformed Quantum System. Commun. Nonlinear Sci. Numer. Simul. 2021, 92, 105474. [Google Scholar]
- Shabir, B.; Saikat, G.; Christian, W.; David, V.; Jeffery, H.S.; Stefano, P. Microwave Quantum Illumination. Phys. Rev. Lett. 2015, 114, 080503. [Google Scholar]
- Cihan, B.; Fatih, O. Freezing Optical Rogue Waves by Zeno Dynamics. Opt. Commun. 2018, 413, 141–146. [Google Scholar]
- Cihan, B. Zeno Dynamics of Quantum Chirps. Phys. Lett. A 2021, 389, 127096. [Google Scholar]
- Lorenzo, M.; Ren, C.L. Quantum Radar. Phys. Rev. Lett. 2020, 124, 200503. [Google Scholar]
- Fatih, O.; Cihan, B.; Azmi, A.A. Nonlocal Activation of Bound Entanglement via Local Quantum Zeno Dynamics. arXiv 2021, arXiv:2109.02214. [Google Scholar]
- Fatih, O.; Azmi, A.A.; Can, Y.; Cihan, B. Dzyaloshinskii-Moriya Interaction as a Fast Quantum Information Scrambler. arXiv 2021, arXiv:2110.03645v1. [Google Scholar]
- Wei, Z.H.; Liu, Z.; Peng, B.; Shen, R. ECCM Scheme against Interrupted Sampling Repeater Jammer based on Parameter-Adjusted Waveform Design. Sensors 2018, 18, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, S.X.; Wei, X.Z.; Li, X. ECCM Scheme against Interrupted Sampling Repeater Jamming base on Time-Frequency Analysis. J. Syst. Eng. Electron. 2014, 25, 996–1003. [Google Scholar] [CrossRef]
- Chen, J.; Wu, W.Z.; Xu, S.Y.; Chen, Z.P.; Zou, J.W. Band Pass Filter Design Against Interrupted-Sampling Repeater Jamming based on Time-Frequency Analysis. IET Radar Sonar Navig. 2019, 13, 1646–1654. [Google Scholar] [CrossRef]
- Zhang, J.X.; Zhou, C. Interrupted Sampling Repeater Jamming Suppression Method base on Hybrid Modulated Radar Signal. In Proceedings of the 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Chongqing, China, 11–13 December 2019. [Google Scholar]
- Zhou, C.; Liu, Q.H.; Zeng, T. Research on DRFM Repeater Jamming Recognition. Signal Process. 2017, 33, 911–917. [Google Scholar]
- Zhou, C.; Liu, Q.H.; Chen, X.L. Parameter estimation and suppression for DRFM-based Interrupted Sampling Repeater Jammer. IET Radar Sonar Navig. 2018, 12, 56–63. [Google Scholar] [CrossRef]
- Zhan, P.L.; Li, G.L.; Li, F. Deception Jamming Suppression Method of LFM Fuze based on STFRFT. J. Nav. Aeronaut. Astronaut. Univ. 2015, 30, 111–115. [Google Scholar]
- Chen, J.; Xu, S.Y.; Zou, J.W.; Chen, Z.P. Interrupted-Sampling Repeater Jamming Suppression Based on Stacked Bidirectional Gated Recurrent Unit Network and Infinite Training. IEEE Access 2019, 7, 107428–107437. [Google Scholar] [CrossRef]
- Stephen, B.; Neal, P.; Eric, C.; Borja, P.; Jonathan, E. Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers; Now Foundations and Trends: San Francisco, CA, USA, 2011; pp. 1–128. [Google Scholar]
- Merrill, I.S. Radar Handbook, 3rd ed.; Mc Graw Hill: New York, NY, USA, 2008; pp. 373–374. [Google Scholar]
- Nadav, L.; Eli, M. Radar Signals; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 57–58. [Google Scholar]
- Marcos, A.J.D.; Mahdi, P.K.; Marcos, J.R. A Branch and Bound Algorithm to Solve Nonconvex MINLP problems via Novel Division Strategy: An Electric Power System Case Study. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017. [Google Scholar]
- Daria, P.; Stefan, P. Efficient Unit Commitment-A Modified Branch-and-Bound Approach. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016. [Google Scholar]
- Emmanuel, J.C.; Michael, B.W.; Stephen, P.B. Enhancing Sparsity by Reweighted l1 Minimization. J. Fourier Anal. Appl. 2008, 14, 877–905. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Hu, W.; Geng, Z.; Zhang, J.; Zhu, D. Parameter Estimation for Interrupted Sampling Repeater Jamming Based on ADMM. Sensors 2021, 21, 8277. https://doi.org/10.3390/s21248277
Wang C, Hu W, Geng Z, Zhang J, Zhu D. Parameter Estimation for Interrupted Sampling Repeater Jamming Based on ADMM. Sensors. 2021; 21(24):8277. https://doi.org/10.3390/s21248277
Chicago/Turabian StyleWang, Chaoyu, Wanwan Hu, Zhe Geng, Jindong Zhang, and Daiyin Zhu. 2021. "Parameter Estimation for Interrupted Sampling Repeater Jamming Based on ADMM" Sensors 21, no. 24: 8277. https://doi.org/10.3390/s21248277
APA StyleWang, C., Hu, W., Geng, Z., Zhang, J., & Zhu, D. (2021). Parameter Estimation for Interrupted Sampling Repeater Jamming Based on ADMM. Sensors, 21(24), 8277. https://doi.org/10.3390/s21248277