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Abstract: The real-time artery diameter waveform assessment during cardio cycle can allow the
measurement of beat-to-beat pressure change and the long-term blood pressure monitoring. The aim
of this study is to develop a self-calibrated bio-impedance-based sensor, which can provide regular
measurement of the blood-pressure-dependence time variable parameters such as the artery diameter
waveform and the elasticity. This paper proposes an algorithm based on analytical models which
need prior geometrical and physiological patient parameters for more appropriate electrode system
selection and hence location to provide accurate blood pressure measurement. As a result of this
study, the red cell orientation effect contribution was estimated and removed from the bio-impedance
signal obtained from the artery to keep monitoring the diameter waveform correspondence to the
change of blood pressure.

Keywords: artery diameter waveform; red cell orientation effect; blood pressure; bio-impedance

1. Introduction

Arterial blood pressure is the main physiological indicator of cardiovascular sys-
tem [1,2]. However, a deviation from normal range can be used to identify different
diseases such as thrombosis and atherosclerosis, which can lead to mortality if the medical
intervention is not started on time [3,4]. The arterial blood pressure parameters tend to
change over time, so long-term monitoring helps to provide more accurate evaluation of the
patient’s condition, as well as beat-by-beat measurement of blood pressure, which could
offer several advantages toward the early detection and the patient response to specific
therapy and medication [5]. Currently, there are several approaches for blood pressure
measurement [6—14]. The blood pressure assessment by sphygomomanometry is the widely
used method in medical practice due to its simplicity and sufficient accuracy; however, this
method cannot provide long-term measurements due to frequent occlusion [11]. The nonin-
vasive arterial blood pressure waveform estimation based on an arterial cross-sectional area
measurement combined with an elasticity measurement of the vessel has been developed
using ultrasound [6]. However, the devices created by scientists based on these approaches
are either stationary or more dimensional. The optical based methods are unreliable for
obese patients, while the tonometry methods require a specific anatomical structure with
superficial artery supported by bone and so is sensitive to the device placement [15-17].
The analysis of blood pressure estimation methods is summarized in Table 1.
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Table 1. Blood pressure estimation techniques.

Method Features Limitation
-Sensitive to indoor noise, to the friction of the cuff on clothes,
. to the location of a microphone [22].
Auscultation

-It is possible to take into account individual physiological
characteristics of the body [18].
-Low measurement errors during patient movements [19].
-Devices often do not require a power supply [20].
-Confirmed correlation with invasive method [21].

-Require high qualifications [20].

-The unacceptability of the method for 5-10% of patients with

deaf tones [19].
-Inaccuracy of measurements with low stiffness of artery
walls [23].
-Not suitable for long-term monitoring.
-Difficult to automate [22].
-Time consuming [10].
-Correct results depend on cuff size [21].

Oscillometric

-Is recommended for clinical use by WHO [20].

-It is possible to take measurements under a small layer of
clothing and measure pressure for patients with weak and
infinite tones [19].

-Placement is not critical [9].

-External noise does not affect results [9].
-Automatic pressure estimation [22].

-Sensitive to mechanical vibrations, hand movements, to
patient specificity [9,24].

-Large errors if patient has cardiac rhyme disease [24,25].
-Various results with different devices [9].
-Accuracy depends on algorithm [26].
-Importance of training personnel [20]
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Table 1. Cont.

Method

Features

Limitation

Palpatory

-Devices often do not require a power supply [20].

-Suitable for noisy environment measurements [27].

-Sensitive to tremors, severe obesity, shivering [27].
-Not suitable for long-term monitoring.
-Issues with diastolic arterial pressure assessment [27].
-Frequent measurements can harm the vessels.
-Not suitable for diastolic pressure estimation [27].

Compensatory

Counter pressure
| W\’\/
NN,
I

~ L.
J I }v ?
L)
LTT74

T

-Non-invasive [28].
-Suitable for long-term monitoring [9].
-Small size of device and cuff.
-Accurate measurements [9].
-Attaching to a finger.

-High cost [9].
-Sensitive to limb temperature.
-Calibration is required [28].
-Artefacts are possible during measurement.
-Not suitable for deep-seated arteries measurements [29].

Control-
—> |  System
Constant finger volume
Tonometry
Skin Pressure -High cost [30].

sensor

I Radial
artery

-The pressure sensors are pressed directly against the skin [30].

-Non-invasive [30].
-Does not stop blood flow [31].

-Less sensitive than finger cuffs to vasoconstriction and

vascular disease [10].

-Sensitive to device position, outdoor noise [30].
-Calibration required [9].
-Limited area of measurement due to instrument size [30].
-Not suitable for long-term and
deep-seated arteries measurements [9].
-Not suitable for arteries without supportive bony
structures [14].
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Table 1. Cont.

Method Features Limitation
Ultrasound
Transducer
unit
- \,....‘— - -Requires ultrasound [32].

K

Acoustic
beam

-Non-invasive [32].
-Possibility of deep tissue observation [14].
-The possibility of creating portable devices [14].

-The ability to determine the speed of blood flow [33].

-A high degree of research of the method [32].

-Issues with diastolic arterial pressure assessment.
-Sensitive to transducer location [33].
-The bulkiness and rigidity of ultrasound probes [14].
-Korotkov’s tones must be determined.
-The occurrence of interference with minor movements [9].
-The difficulty of positioning [32].

-The simplicity of carrying out measurements.
-Cuffless method [34].
-Non-invasive [34].

-Suitable for long-term monitoring [34].

-Confirmation of correlation between pressure and pulse wave
velocity depends on model [34].
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Recently, the pulse transit time-based methods have been widely used in order to
develop a wearable device that can measure blood pressure continuously. Two sensors
located at two different sites can measure the pulse waveforms, which can be used to
calculate the pulse transit time (PTT) value. The change of the PTT value shows a strong
correlation with blood pressure [3]; however, the standard model equation used for this
calculation depends on the artery diameter, which cannot be identified for large measure-
ment segments [35]. In [6], there is an attempt to develop a portable blood pressure device
based on local PTT measurements. However, the mathematical model used in this work
is identified for the volume change in the whole segment under study, which makes the
estimation based on this model not accurate and not related to diameter change. Thus,
the aim of this study is to develop a wearable bio-impedance sensor for blood pressure
waveform monitoring. This method is based on electrical impedance measurement in
a small segment with uniform artery diameter and depth. The sensor provides regular
measurement of the pressure-dependent physiological parameters such as the artery di-
ameter waveform and elasticity, which allow the accurate measurement of blood pressure.
This work proposes the use of a mathematical model for diameter waveform assessment;
however, the required ultrasound-based information before the measurement provides
specific sensor parameters, which lead to a more accurate determination of blood pressure.
According to [35-37], the arterial wall elasticity changes with the blood pressure change;
thus, this work proposes an additional measurement of pulse transit time, which can help
the regular estimation of arterial elasticity change. The idea of red cell orientation effect
estimation was suggested by [38,39] to better understand the impedance cardiography
waveforms. However, the idea of understanding the orientation effect contribution to the
peripheral bio-impedance signal obtained from the specific small segment illustrated in
this study is the first according to our knowledge.

As a result, a key objective of this study is to improve the accuracy of the existing
algorithm based on PTT measurement to estimate the arterial blood pressure by taking into
account the contribution of red cell orientation effects as well as the artery diameter and
stiffness change during long-term monitoring.

2. Materials and Methods
2.1. Mathematical Model

For artery diameter waveform assessment from the corresponding electrical bio-
impedance signal, it is required to develop a justified mathematical model which charac-
terizes the region of interest with full details [40]. To solve this problem, both analytical
and numerical methods can be used. As a rule, numerical methods for solving problems,
describing the electric current distribution through biological tissues, involve powerful
computing systems, which do not solve the issue of calculating the necessary numerical
estimates in real time, inherent in wearable monitoring systems. However, in the case
of a semi-homogenous study area, the analytical approaches with some assumptions are
promising towards the solution of this problem. Accordingly, the region of interest should
be a place with a peripheral artery that can be isolated from the adjacent artery branches
and veins to obtain the required bio-impedance measurement without any deterioration
and additional sources that can affect the desired signal from the selected artery. However,
the region of interest, where the major arteries widely used for such measurement [41]
are the carotid, brachial, and radial arteries, comprises such tissues which have different
conductivity [42]. The electrical resistivities of different tissues in the region of interest as a
function of frequency are shown in Figure 1.

Thus, an electrical current with 100 kHz was considered in this work as the impact of
the capacitive part, which was determined by the heterogeneity of tissue structures in the
region of interest as less than 10%. Morever, a four-electrode system configuration, which
is shown in Figure 2, was proposed in this study to provide the desired accuracy for bio-
impedance measurement; thus, two outer electrodes were used to inject a small alternating
current into the human body. The voltage drop between the inner electrodes was measured
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to calculate the impedance, while the electrode impedances did not contribute to the
measured voltage.
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Figure 1. Resistivities for various human tissues in the region of interest as a function of frequency [43].
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Figure 2. Schematic diagram of the four-electrode setup. A and B are the current electrodes, M and
N are the measuring electrodes.

Thereby, for small segment selection, where the change of blood volume is dominated
by the artery diameter, it is acceptable to join all tissues around the artery with common
apparent resistivity p; . This assumption could minimize the requirement of the mathemat-
ical model as well as the calculation time without losing the desired accuracy. As a result,
an analytical solution for the mathematical model of uniform space with cylinder inclusion
was proposed in this work, while the artery and the surrounding tissues are modeled by a
cylinder and uniform half-space, respectively, as shown in Figure 3.
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Figure 3. The mathematical model of artery in the region of interest.

In the proposed mathematical model, the electrical potential is a solution of Laplace’s
equation in cylindrical coordinates with appropriate boundary conditions associated with
a cylinder [44]. This model considers orthogonal electrode system placement regarding the
artery, and with prior information about the artery depth and diameter, the appropriate
electrode system can be set. The analytical solution of the proposed mathematical model is
a function, which depends on serval parameters shown in Equation (1). The limit values
for the model parameters that can be measured are illustrated in Figure 3. Thus, depending
on the prior obtained information, the doctor can also select the right place for sensor
placement, which can be the brachial, radial, or carotid artery depending on patient obesity.

Z = func(a,b,r,h,x,01,p2,) 1)

where 7 is the distance between current electrodes, b the distance between potential elec-
trodes, r the artery radius, & artery depth, x is the displacement of the electrode system
relative to the center of the artery. This work proposes accurate placement of the electrode
system regarding the artery position, which is why the x parameter is equal to zero.

The apparent resistivity p; of the surrounding tissues can be calculated from the
measured base impedance value according to [40] which is a quasi-constant value, while the
resistivity of blood p; is a function, which depends on different factors such as hematocrit,
temperature, viscosity, velocity, and share rate [45,46].

Basically, for artery diameter change estimation based on the corresponding bio-
impedance measurement, the inverse problem for the proposed model should be obtained
as shown in Equation (2). However, this approach requires multichannel measurements
and sophisticated calculation, which make it undesirable for a portable monitoring system.

dR = func(a,b,r,h,x,p1+ Ap1,02,dZ) (2)

The initial calibration step which requires prior information such as the artery diameter
and depth as well as the blood velocity allows minimizing the multi-parameter model to
one unknown parameter function. The only unknown dynamic parameter of the proposed
model is the diameter change of a cylinder, which simulates the artery diameter change
and the blood volume change in arteries. This unknown parameter can be estimated from
the measured pulse impedance from an artery by means of the dependence dR = func(dZ),
which is the inverse of the forward dependence dZ = func(dR) that can be obtained on
the basis of the proposed analytical model. Figure 4 shows the pulse impedance change
depending on artery diameter change and vice versa. The observed decrease in impedance
with an increase in artery diameter can be explained by the fact that blood is a more
conductive medium comparing with the surrounding tissues. However, since the function
dZ = func(dR) is monotone, then there is a unique inverse solution for this function. Thus,
an iterative algorithm to address the linear inverse value of the diameter change was
proposed in this paper.
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Figure 4. The dependence of electrical impedance changes due to artery diameter change: (a) The forward problem; (b) the

inverse problem.

This model, nevertheless, has an assumption of point electrodes and does not take into
consideration the electrodes” dimensions. It was verified for adequacy in previous study
by this author [40] and concluded for its application to resolve the forward and inverse
problem. Moreover, the use of spherical electrodes can minimize this error as the current
distribution from a point physically not differing from the sphere.

2.2. Red Blood Cell Orientation Effect Estimation

The generation of shear forces across the width of a blood artery vessel during flow
causes the cells to align with the minimal cross-sectional area facing the direction of
flow. This in turn results in a larger cross-sectional area of plasma and a reduction in
the resistivity of the blood as the flow increases [38]. Understanding the contribution
of this effect on the peripheral impedance signal is a vital step in achieving the artery
diameter waveform [12,13,36]. The experimental study, which was conducted in vitro on
rigid tubes [38], showed a blood resistivity change of 15-30% due to erythrocyte orientation,
and according to [38,39], the change of blood resistivity due to velocity can be estimated
using Equation (3). This equation was deduced for the longitudinal electrode system
position regarding the artery axis. However, the red cell contribution of the blood electrical
resistivity change on the orthogonal direction is the same in value but with opposite
direction [47].

Bz = —0.45-H-ps- (1 = exp(-026-(7)"¥) ), 3)

where p; is the blood electrical resistivity, 7 is the shear rate averaged over the cross section
of the vessel, and H is the hematocrit [48].
The shear rate averaged over the cross-section of the vessel is determined by

Equation (4) [49].
_ 2-Viyax n
= — , 4
LA @
where V;qx is the maximum velocity in the center of the vessel estimated using spectral

Doppler [50,51], R is the radius of the vessel, n is the exponent of the power law, n =2 for a
parabolic profile and more than 2 for a flat profile.

2.3. Elastic Modulus Estimation

The elastic response of a blood vessel can be expressed in terms of compliance, dis-
pensability, stiffness, or elastic modulus [52,53]. According to [53], the elasticity modulus is
not a constant parameter and can vary in a wide range, depending on internal and external
factors. These changes will cause an additional error in blood pressure; thus, the blood
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pressure estimation is based on mathematical models, which contain such parameters as
the diameter change and the elasticity modulus. The elastic modulus is related to the pulse
wave velocity and the artery thickness by the Moens—Korteweg Equation (5) below [54].

V2~p~d
E=— ®)
where V is the pulse wave propagation speed, E is elastic modulus of the artery wall, p is
the arterial blood density, d is the radius of the artery, h, is the vessel thickness.

The measurement of local pulse wave velocity (PWV), which can be achieved by
measuring the pulse waveform from two different points, can determine the actual elasticity
of the artery in the region of interest, while adding a sensor that can provide the monitoring
of this value and recalibrate the system according to this change can allow the accurate
beat-to-beat blood pressure measurement.

2.4. Experimental Setup

The experimental study was conducted at the medical center of Bauman Moscow State
Technical University and the research ethics was followed. Four healthy young subjects
were involved in this study. The measurements were performed on the arm in the area of
the elbow joint, at the distal end of the brachial artery before the bifurcation into radial and
ulnar arteries. The advantage of this location is the access to control the right electrode
position regarding the artery location [55]. The General Electric model LOGIC S8 with an
ML6-15-D ultrasonic transducer at a frequency of 6.3 MHz was used during this study to
obtain prior information such as the arterial blood velocity, diameter, depth, and the wall
thickness as shown in Figure 5. Figure 5a shows the brachial artery velocity, which can be
used for red cell orientation effect estimation, while the artery diameter and depth were
also determined. These data have been used as inputs for the mathematical model to select
the appropriate electrodes system as well as the further estimation of red cell orientation
effect and the brachial artery waveform diameter. The blood velocity curves for all subjects
obtained using US were digitized and averaged as shown in Figure 5b.
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Figure 5. The obtained data using Doppler US: (a) brachial blood velocity assessment during 5 cardio cycles; (b) the

averaged blood velocity curve.

The multichannel system Reo-32 was used for bio-impedance measurement. The
system provides a 4-electrode technique by applying an alternating current of frequency of
100 kHz and constant amplitude to a 3-mA-current electrode, and provides simultaneous
measurement through different measuring channels [56]. The technical specifications of
the multichannel system are illustrated in Table 2.
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Table 2. The technical specification of Reo-32.

Parameter Value
Number of impedance measurement channels 31
Number of ECG channels 1
Sample frequency 500 Hz
Measuring scheme Tetrapolar
Current amplitude 3 mA
Current frequency 100 kHz
The pulse measured range 2 Ohm
The base measured range 1-250 Ohm
The pulse impedance measuring accuracy 1 mOhm
The base impedance measuring accuracy 50 mOhm
The ECG measuring accuracy 3uVv

The electrode system array shown in Figure 6 was designed for the multichannel
measurement. The electrode array provides electrical impedance mapping from 5 adjacent
points. Dry electrodes with a diameter of 5 mm and a distance between adjacent electrodes
of 7 mm were used to provide symmetrical and identical requirements for measurements
for the bio-impedance signal obtained from the artery, which depend also on the electrode
system spacing. The advantage of this electrode system is the ability to control the desired
artery position.

Channel 1 |@

o

N
Channel 2 |@ I®I ()

o

N

(b)

Figure 6. The electrode system prototype: (a) multichannel electrode system placement; (b) the layout scheme of the relative
electrodes’ positions and channels in the region of interest.

Figure 6a shows the experimental setup and the electrode placement in the region
of interest. Skin preparation prior to electrode placement on a patient was performed to
increase the conductivity for the dry electrodes. The right location of the electrode system
was controlled by the obtained signals from all the measuring channels. Non-inversion
behavior of signals was observed, which testifies that the whole artery length was located
in the positive sensitivity region of the electrode system.

The obtained bio-impedance signals were used for both diameter estimation and the
local brachial artery stiffness index, which were performed from 2 channels located in
parallel at a distance of L = 21 mm as shown in Figure 6b.

3. Results

As shown in Figure 7a, the blood velocity curve obtained from US was digitized
and approximated by linear interpolation, then filtered by a Savitzky—Golay filter to get
an adequate signal for shear rate estimation. Thus, Savitzky—Golay filtering can provide
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accurate smoothing by using polynomial approximation of local least-squares [57]. The
obtained filtered curve of blood velocity was used for share rate assessment using Equation
(4), while the exponent of the power law (n) was equal to 2 as the velocity profile was
parabolic. Figure 7b shows the obtained share rate curve, which has been used as an input
for the blood cell orientation effect estimation model shown in Equation (3). The hematocrit
value during this calculation was accepted to be equal to 47%, which corresponds to a
normal healthy value.
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Figure 7. The red blood cells” orientation effect estimation; (a) the averaged and smooth arterial blood velocity curve; (b)
blood share rate curve.

Figure 8 shows the blood resistivity change due to red cell orientation effect for one of
the involved subjects, which corresponds to a 16% increase compared with the initial blood
resistivity value 1.35 Ohm-m. [58]. The obtained results from the first step showed the high
contribution of brachial blood velocity in the electrical impedance change, respectively; the
change behavior of this value during the cardiac cycle should be taken into consideration
for the following steps and calculations.
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Figure 8. The blood resistivity change caused by red blood cells’ orientation effect.
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Figure 9 shows the electrical bio-impedance signals obtained from the brachial artery.
Simultaneously, the base impedance and the pulse impedance were recorded. Nevertheless,
the designed electrode system provides simultaneous measurement from five adjacent
locations; two signals were selected for further processing. The selected signals were far
from each other by 21 mm, which were enough to get the PTT [6,58]. Moreover, this distance
was enough to select a uniform segment of artery as the recoding signals were equal in
amplitude but have a shift in time due to different location of the measuring electrodes.

Figure 9. The recording of the bio-impedance signal with the first and second derivative.

The analytical solution of the proposed mathematical model is an infinite sum of Bessel
functions. Thus, in order to reduce the computation time, an algorithm based on the first
and the second derivative was developed for five points per cardiac cycle extraction from
the measured pulse waveforms. The first point is the diastolic point that corresponds to
the maximum of the second derivative; the second point is the maximum slope point in the
middle of the ascending point section that corresponds to the maximum of first derivative;
the third point is the systolic point that corresponds to the zero value of the first derivative;
the fourth point is the dicrotic notch that corresponds to the maximum of the second
derivative; and the fifth point is the reflection point. The selected points are necessary for
full restoration of the diameter waveform shape and its correct amplitude; thus, the time
derivative of the bio-impedance signal was obtained by the following transfer function:

1

H(Z) = 5= (22722714 2" +222) ©)

where T is the sampling period; z is the recorded bio-impedance signal.

According to the obtained data from the previous sections, the diameter waveform was
estimated by the following algorithm: as the electrode system was located against the artery,
the red cell orientation effect increased the blood electrical resistivity; correspondingly, the
Vp shown in Figure 8 was added to the actual blood resistivity p;, which was equal to
1.35 Ohm.m. The rest of the model parameters such as the radius and depth are constant
as shown in Equation (7).

AZy = func(a,b,r,h,x,p1,02 + Ap2,dR) @)
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The base impedance was used to estimate the apparent resistivity p; of the region
of interest according to Equation (8) [40], while the AZ,, is the recorded pulse impedance
signal shown in Figure 9.

2p1 b
mt(a? —b?2)

For every selected point based on the derivative-based algorithm, the artery diameter
change was evaluated and, correspondingly, the diameter artery waveform was restored.
Figure 10 shows the obtained diameter change for the four involved subjects; these curves
show the percentage change in artery diameter relative to diastolic diameter Dp. However,
the obtained curves of diameter waveform reflect the nature of blood pressure change
during the cardio cycle.

Zbase = 8)

Diameter change (%]

N Patient 3|

Patient 1
Patient 2

Patient 4

0.2 0.4 0.6 0.8 1
Time (a.u.)

Figure 10. The resulting curves of diameter changing for four patients.

Basically, the local brachial elasticity was estimated from the time delay between
the two recorded signals. The maximum of the first derivative was selected as a specific
point to get the PTT between two points with an inaccuracy of £0.001 s corresponding
to a sample frequency of 500 Hz. According to Equation (5) and based on the obtained
PTT values, the local brachial artery elastic modulus was determined and illustrated in
Table 3: the obtained values correspond to healthy arteries [59]. However, these values can
vary significantly with blood pressure change and the bio sensor should be recalibrated
according to the possible change.
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Table 3. The obtained results from experimental studies.

Dp, mm Depth, mm p1, Ohm-m Aps, % E, kPa dZ, Ohm AD, % Dg, mm
3.8 8.0 3.8 14.9 78.6 0.13 49 4.0
3.9 55 5.6 15.8 94.0 0.45 3.4 41
3.3 6.5 45 171 122.2 0.12 24 34
3.1 3.1 29 16.8 84.9 0.29 51 3.3

4. Discussion

This work presents a new method for real-time arterial diameter waveform estimation,
which can improve the accuracy of blood pressure measurement. This method is based
on an electrical bio-impedance signal obtained from an artery using appropriate electrode
system with dry electrodes. The bio-impedance pulse obtained from the artery dominantly
contains different mechanisms, which have absolutely different behaviors depending on
the location of the bio-impedance sensor against the artery. According to the proposed
electrode system position in this study, the diameter change leads to increase in the blood
conductivity while the velocity effect goes in the absolute opposite direction, which makes
the diameter waveform assessment a big challenge to be extracted from the integral signal
that has these two coherent mechanisms. In this study, a mathematical model, which is a
function of different geometrical and electrophysiological parameters, was proposed to
get the artery diameter waveform. However, the inverse problem of this model requires
sophisticated mathematical calculations, which makes it not suitable for a wearable device
for the blood pressure monitoring. Alternatively, the prior information required for this
study using the US allowed minimizing the multi-parameter model to one unknown
parameter function. The change of the peripheral arteries’ diameter during the cardio cycle
was very low compared with its own diameter, hence, the electrical bio-impedance change
due to this variation was also very low. Thus, the prior calculation using the mathematical
model helps to select not only the appropriate electrode system parameters but also the
right arterial site position for measuring the bio-impedance signal, which can be in the
brachial, carotid, or radial artery, in order to provide accurate blood pressure measurement.
The effect of the red cell orientation on the electrical bio-impedance of pulsatile blood
flow through the brachial artery, which was considered in this study, is the first for the
implications of artery diameter waveform estimation. Although the pulse transit time has
been a promising non-invasive and cuff-less method to measure blood pressure, the blood
pressure-PTT relationship, which is modelled by the Moens-Korteweg, was derived from
a simplified mechanical model, which was insensitive to the artery diameter change. This
can lead to an error with arterial pressure measurement, especially in young patients where
the artery diameter can be noticeably changed with the change of blood pressure. Thus,
improving the accuracy of the existing algorithm based on PTT measurement to estimate
the arterial blood pressure, by taking into account the contribution of red cell orientation
effects and the artery diameter and stiffness change during long-term monitoring, is a very
important task and this paper completely covers and answers all of these lacking questions.
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