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Abstract: In many medical image classification tasks, there is insufficient image data for deep
convolutional neural networks (CNNs) to overcome the over-fitting problem. The light-weighted
CNNs are easy to train but they usually have relatively poor classification performance. To improve
the classification ability of light-weighted CNN models, we have proposed a novel batch similarity-
based triplet loss to guide the CNNs to learn the weights. The proposed loss utilizes the similarity
among multiple samples in the input batches to evaluate the distribution of training data. Reducing
the proposed loss can increase the similarity among images of the same category and reduce the
similarity among images of different categories. Besides this, it can be easily assembled into regular
CNNs. To appreciate the performance of the proposed loss, some experiments have been done on
chest X-ray images and skin rash images to compare it with several losses based on such popular
light-weighted CNN models as EfficientNet, MobileNet, ShuffleNet and PeleeNet. The results
demonstrate the applicability and effectiveness of our method in terms of classification accuracy,
sensitivity and specificity.

Keywords: medical image classification; convolutional neural networks; batch similarity based
triplet loss

1. Introduction

Medical image classification is one of the more basic and important tasks for computer-
aided diagnosis (CAD). An efficient medical image classifier can help reduce the workload
for the doctors and guide the inexperienced physicians. In recent years, deep learning
(DL), especially the convolutional neural networks (CNNs)-based methods, have shown
outstanding performance for image processing tasks. Therefore, some researchers have
developed and applied lots of heavy-weighted CNNs for medical image classification [1].
For example, the AlexNet [2] is used for breast cancer recognition from histological im-
ages [3] and Alzheimer’s disease diagnosis from MRI images [4]. Besides this, the visual
geometry group (VGG) network [5] is utilized to identity papillary thyroid carcinomas in
cytological images [6] and discover COVID-19 cases based on X-ray images [7]. In addition,
the Inception-V3 [8] is trained for distinguishing skin cancer images from normal ones [9],
and differentiating benign and malignant renal tumors based on CT images [10]. Moreover,
the residual network (ResNet) [11] is applied to HEp-2 cell classification [12] and the quality
assessment of retinal OCT images [13]. Even though these mentioned heavy-weighted
models can achieve better performance in some specific applications, they have limited
capabilities in many medical applications in the case of small samples. The reason lies
in the fact that the effectiveness of these networks depends on the quality and quantity
of training data, while there are usually not enough annotated image data to train very
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deep networks. Therefore, such light-weighted networks as DenseNet [14], MobileNet [15],
ShuffleNet [16] and EfficientNet [17] arouse researchers’ interest, and many models are
applied to medical image classification tasks. For example, Yuan et al. used the DenseNet
to realize polyp recognition from the wireless capsule endoscopy images [18]. Brehar et al.
designed a new shallow CNN model to recognize hepatocellular carcinoma and it provided
a higher accuracy than the compared deep models [19]. Besides this, some researchers tried
to diagnose COVID-19 using MobileNet V2, ShuffleNet, and EfficientNet based on X-ray
images [20–22]. These light-weighted models have less adjustable weights, are easier to
train and have better computational efficiency compared with the heavy-weighted ones,
but their classification ability still needs to be improved to deal with complex medical
applications, especially in the case of small amounts of training samples.

From the perspective of loss function, the mentioned CNN models take the traditional
cross entropy (CE) as the loss function for the training process. However, the CE function
only measures the difference between the predicted probability distribution and the target
distribution [23], which means that CE-based models cannot analyze the distribution of
samples and classes. Compared with regular CNN models, some models for few-shot
recognition tasks adopt different losses where the deep metric learning (DML) technique
is involved [24]. The DML losses take advantage of data distribution for discovering
the differences among classes and finding the major common patterns for each category.
In other words, the DML losses can assist the CE-based CNN models in the training process.

Generally, the DML-based CNNs use multi-inputs and produce multiple embedding
vectors so that they can calculate a certain distance metric from the embedding vectors
as the loss for training. By minimizing the loss, the CNNs can generate similar embed-
ding vectors for images belonging to the same class, and dissimilar vectors for different
categories of inputs [25]. For example, the Siamese network [26] proposed by Jane et al.
took paired images as inputs so that it can use the distance of embedding vectors along
with the ground truth to form the contrastive loss function. Hoffer et al. [27] designed the
triplet network which used the ternary input to obtain distinguishing features from two
different kinds of samples. To get more information from different classes, Sohn et al. [28]
proposed multi-class N-pair loss, which utilized one sample from each class to identify
each input example. Notice that this pair-based DML loss only observes several samples
one at a time, which means the estimated data distribution varies a lot. As an improvement,
Song et al. proposed a lifted structured feature-embedding method [29], which measured
all the distances between every two samples in a training batch so that it could learn to
discriminate embedding vectors according to the data distribution of the input batch.

Despite the fact that the DML-based CNNs can analyze the data distribution and
improve the training process, they are designed for such few-shot recognition or image
retrieval tasks as face recognition [28,30]. Even though some researchers have tried to
apply DML loss to train CNNs in such medical applications as coronary heart disease
classification [31] and COVID-19 diagnosis [32], these models need extra classifiers to
accomplish the classification tasks. Besides this, it is hard to select a reasonable support set
for regular medical image classification tasks. There are two simple ways to introduce DML
into regular classification applications without a query image set. One is to use DML loss to
train the CNN models to obtain distinguishing embedding vectors, and classify them with
a traditional classifier. For example, Gupta et al. [33] proposed Siamese CNN, which was
trained based on the triplet loss, and used the SVM to recognize mitotic HEp-2 cell images.
This kind of scheme relies on the classification ability of the adopted classifier in the case of
a small training dataset. Another idea is to combine the DML loss with the CE loss to train
models. However, these mentioned pair-based DML losses involve specially designed
rules for pairing the samples. The rules are incompatible for regular CE-based CNNs at the
training stage. Sun et al. [34] tried to combine triple loss with the CE loss to overcome the
problem that the herbal images are too diverse and complicated. Lei et al. [35] proposed a
novel class-center-involved triplet loss, and combined it with the CE loss to deal with the
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imbalanced data problem for the skin disease classification. However, these DML losses
are still pair-based and cannot effectively represent the data distribution of the dataset.

To more effectively utilize the DML loss to train the regular CNNs in the case of
medical image classification applications, we have proposed a novel batch similarity-based
triplet loss, denoted as “BSTriplet” loss for short. The proposed loss can facilitate assessing
the similarities among a batch of input images instead of several pairs to evaluate the
distribution of training data. As shown in Figure 1, the proposed BSTriplet loss takes the
embedding vectors produced by the CNN model to calculate a similarity matrix, which
contains all the similarities between every pair of two samples in the input batch. For each
sample, the BSTriplet loss analyzes the similarities between it and the rest of the samples.
According to the ground truth, the BSTriplet loss converts the difference of samples from
the same class and the similarity of the rest of the samples into a loss. By reducing the
produced loss, the CNN model can achieve the goal of making the samples of the same class
become closer in the embedding space, or farther apart if they are from different categories.
The BSTriplet loss calculates the loss for each sample in parallel, which means that it is
compatible for model training by CE loss. Since the proposed loss can only play a role in
clustering, we integrated the softmax for classification and utilized the CE to evaluate the
ability of classification. Moreover, we have designed a novel sample-mining method to
build the input batch according the distribution of the whole training dataset. In this way,
the input batch will contain diverse samples of all classes, and still have better consistency
compared with batches constructed by the random selection. To evaluate the effectiveness
of the proposed loss, we have tried to use the BSTriplet loss combined with CE loss to
train such popular light-weighted networks as MobileNet-V3 [36], ShuffleNet-V2 [37],
EfficientNet [17] and PeleeNet [38] on three different medical image datasets. The results
show that the BSTriplet loss can guide the CNN models to cluster the embedding vectors.
Moreover, it can help these light-weighted CNN models to achieve better performance
compared with the traditional CE loss or other combined losses.
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Figure 1. Framework of a convolutional neural network (CNN) trained by batch similarity-based
triplet loss and cross entropy.

In this study, our main contributions are as follows:

1. We have introduced a novel batch similarity-based loss, which can be embedded into
arbitrary CNN models to help the training process;

2. A reasonable sample mining strategy is designed to help CNN models in the better
estimation of the distribution of the training dataset;

3. The proposed loss is combined with cross entropy to train several light-weighted
CNN models, and its effectiveness has been demonstrated on different kinds of
medical image datasets.

The context of this paper is organized as follows. Section 2 describes the details of the
designed BSTriplet loss and the designed data mining technique. Section 3 presents the
experiments performed to discover some characteristics of the proposed loss and compare
it with some other DML loss. The conclusion is given in Section 4.
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2. Method
2.1. Similarity-Based Triplet Loss

When training a CNN model F(·), a batch of samples X is given to the model in each
iteration of the error back-propagation algorithm. For an arbitrary sample xi ∈ X, one can
obtain the embedding vector fi = F(xi) ∈ R1×l of length l. Generally, the output of the
pooling layer or flattening layer which follows the last convolutional layer is adopted as
the embedding vector fi. We use f+i to denote a vector corresponding to the sample x+i
belonging to the same class as xi, and f−i to denote the opposite case. As mentioned above,
an ideal loss function can guide the embedding vector to get closer to those in the same
class, and further away from the others. Therefore, we will consider the triplet loss in this
research. The regular similarity-based triplet loss is defined as [39]

Ls
trip
(
s+i , s−i

)
= max

(
0, 1− s+i + s−i

)
i. e. s+i =

f T
i f+i

‖ fi‖2‖ f+i ‖2
, s−i =

f T
i f−i

‖ fi‖2‖ f−i ‖ 2

(1)

where s+i and s−i are the similarity between fi and f+i , and that between fi and f−i , respec-
tively. Accordingly, the embedding vectors fi are normalized via L2 normalization (i.e.,
ˆ
f i = fi/‖ fi‖2) so that similarity s+i can be expressed as s+i =

ˆ
f

T

i

ˆ
f
+

i , where
ˆ
f

T

i means the

transposition of
ˆ
f i. By reducing Ls

trip, s+i and s−i will be close to 1 and 0, respectively. Notice
that for fi, Ls

trip only uses two reference vectors f−i and f+i to calculate the loss, which is
disadvantageous for training due to the variety and complexity of the triplet inputs.

2.2. Batch Similarity Based Triplet Loss

In the BSTriplet, we aim at making full use of the input batch. Therefore, similarities
between every set of two corresponding samples in the batch are measured to evaluate the
data distribution. After the embedding vectors f ∈ RNb×l for the input batch containing Nb

samples are obtained, each vector fi is L2 normalized to produce
ˆ
f i = fi/‖ fi‖2, which is

inherited from the traditional similarity-based triple loss. The similarity matrix S ∈ RNb×Nb

is produced by S =
ˆ
f

ˆ
f

T

, which stores the similarities of all possible pairs of samples in
the batch. To analyze the similarity matrix S, the ground truth y ∈ RNb×1 is necessary.

Each label yi ∈ R1×1 can be transformed into a row vector
ˆ
yi ∈ R1×C according to the

one-hot encoding method, where C is the number of classes. As a result,
ˆ
yi is a row vector

full of zeros, except the yi-th element is one. A binary matrix B ∈ RNb×Nb can be generated

by B =
ˆ
y

ˆ
y

T
. The binary matrix B is utilized to distinguish the similarities for positive pairs

from those for negative ones by calculating the discriminative similarity matrix D:

D = S⊗ B + S⊗ (B− 1)− S⊗ I
= S⊗ (2B− 1)⊗ I

(2)

where the symbol ⊗ denotes the Hadamard product [40]. 1 ∈ RNb×Nb and I ∈ RNb×Nb

are a matrix full of 1s and an identity matrix, respectively. Note that in the matrix D,
the similarities of positive pairs are greater than 0, and vice versa. Moreover, the diagonal
elements of D are zero. The diagonal elements of S will be wiped out in that they represent
the similarity between the vectors fi and themselves, and they are helpless for evaluating
data distribution due to the fact that Si,i = 1. The process of evaluating the similarities
among all samples for the BSTriplet loss is shown in Figure 2.
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the similarities of positive pairs and negative pairs, respectively.

Based on the above discriminative similarity matrix D, the loss for each input sample
xi ∈ X can be evaluated by observing the i-th row of the matrix D. The values Di,j in
the i-th row represent the similarity between the vector fi and other vectors in the batch
(except the diagonal element Di,i = 0). Clearly, there may be multiple similarities for
positive and negative pairs in the i-th row. For convenience, we re-denote the similarities
for positive pairs as D+

i,j, j = 1, 2, . . . , N+, and negative ones as D+
i,k, k = 1, 2, . . . , N−,

respectively. Please note that Nb = N+ + N− + 1. The batch similarity-based triplet loss
for xi is defined as

Lb
trip(D, xi) = max

(
0, m− 1

N+

N+

∑
j=1

D+
i,j

2 − 1
N−

N−

∑
k=1

D−i,j
2
)

(3)

where m ∈ [0, 1] is a constant. The two complex items in the brackets represent the average
similarity for positive pairs and that for negative ones, respectively. Since

∣∣Di,j
∣∣ ≤ 1,

the square of Di,j is adopted instead of linear functions so that the loss can have a smoother
gradient around the optimal solution. The average loss for the input batch is equal to the
average of losses for every xi, which is realized by

L
b
trip =

1
Nb

Nb

∑
i=1

Lb
trip(D, xi) (4)

As shown in Figure 3, by reducing the loss L
b
trip, all the embedding vectors fi will

move towards the center of the vectors f+i,j and further away from the other kinds of vectors

f−i,k. Because D+
i,j > 0 and D−i,k < 0 are established, it can be inferred that the upper bound

for L
b
trip is |1 + m|. In addition, for a well-trained model, the lower bound for D+

i,j is m,

while the allowed upper bound of
∣∣∣D−i,k∣∣∣ is 1−m. In other words, m controls the strictness

of the constraint for clustering, and it should be near 1. The reason for not setting m = 1
directly is that it is unnecessary and unrealistic to let all the embedding vectors in the same
class be the same.
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To accomplish the classification and evaluate the classification capability, the softmax
classifier and the CE loss Lce are used. They are defined as

pi,j = softmax(oi) =
eoi,j

C
∑

j=1
eoi,j

(5)

Lce = −
1

Nb

Nb

∑
i=1

C

∑
j=1

1yi=j log pi,j (6)

where oi,j ∈ oi is the output of the last fully connected layer in the model F(xi), and pi,j is
the predicted probability for sample xi, belonging to the j-th class. 1yi=j represents that
the ground truth yi is equal to j. The total loss is determined by both the CE loss and the
BSTriplet loss as

L = Lce + λL
b
trip (7)

where λ is a trade-off parameter. Since the value of L
b
trip is close to that of Lce, the parameter

λ is empirically set as 1.

2.3. Data Mining Strategy

For the regular triplet loss, each triplet must meet the requirement that every triplet
input contains a sample xi, and two reference samples x+i and x−i to form both a positive
pair and a negative pair. Therefore, the data mining is necessary for constructing the
available triplet input. In contrast with the regular triplet loss, the proposed BSTriplet loss
will work well even in the case that samples in the batch can only compose positive pairs
or negative ones. The only unavailable case for the BSTriplet loss is Nb = 1. Nevertheless,
to obtain the objective data distribution of the training dataset, we have designed a new
data mining strategy, which can be described in the following steps:

1. Classify the original images into different categories according to the ground truth;
2. Cluster the original images into several groups for each category;
3. Count the number of images in each group, and calculate the ratio for each group;
4. Randomly select samples from every group to construct an input batch according to

the obtained ratios.

The number of groups for each class in the dataset can be different because it depends
on specific applications and data distribution. Notice that this strategy is only used in the
training process. During the test phase of a trained CNN model, the model will ignore
both the BSTriplet loss and the CE loss, and takes the output of the softmax function as the
predicted results.
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2.4. Computational Complexity

Supposing the number of training datasets is Ntrn, it takes Ntrn floating point oper-
ations (FLOPs) for indexing in the first step of the proposed data mining scheme. As for
the second step, its computational efficiency depends on the adopted clustering method.
The required number of FLOPs for clustering is denoted as O(clsutering). Given the num-
ber g of groups of training images, the third step will take g FLOPs to obtain the ratios,
and the fourth step needs Nb FLOPs to construct an input batch. Notice that the first three
steps of the proposed data mining strategy are carried out only once before the training
process, and they need O(clsutering) + Ntrn + g FLOPs in total, while the fourth step will
be performed once for each iteration in the training process.

The calculation process of the BSTriplet loss consists of basic mathematical operations.
Therefore, it is computationally efficient and easy for implementation. Normalization
for the embedding vectors requires lNb multiplication and (l − 1)Nb addition, which are
(2l − 1)Nb FLOPs. Meanwhile, the calculation for obtaining the similarity matrix S needs(

l2 + l − 1
)

N2
b FLOPs. Besides this, encoding the ground truth y into a one-hot vector

ˆ
y

takes Nb operations of indexing and assignment, the calculation cost of which is considered
to be 2Nb FLOPs in this paper for facilitating statistical analysis. The binary matrix B
is generated with (C2 + C− 1)N2

b FLOPs. As for the discriminative similarity matrix D,
it is calculated once and shared for every sample in the batch, and it can be produced by
setting the diagonal value of S⊗ (2B− 1) as 0. Therefore, the cost of D is 3N2

b + Nb FLOPs.
Equation (3) needs to be calculated repeatedly Nb times, and it costs 2N2

b + 2Nb FLOPs in
total. The average operation of the BSTriplet loss can be performed at a cost of Nb FLOPs.
Overall, the number of required FLOPs for the BSTriplet loss in each iteration is

Cost
(

L
b
trip

)
=
(

l2 + C2 + l + C + 3
)

N2
b + (2l + 5)Nb (8)

3. Experimental Results
3.1. Experimental Setup

In the following, some experiments have been performed to test the effectiveness of
the proposed BSTriplet loss. We have tried to apply the proposed loss to such popular light-
weighted networks as EfficientNet-B1, MobileNet-V3-Small, ShuffleNet-V2 and PeleeNet
for testing its performance. Those chosen models have distinctive structures and state-of-
the-art performance, and they have been widely used in a variety of image classification
tasks. The reason for adopting EfficientNet-B1 rather than the other models in [17] is
that EfficientNet-B1 has a similar complexity to other light-weighted models, and its
classification ability is better than that of the EfficientNet-B0. The number of parameters
and the computational complexity of the compared networks are shown in Table 1, where
the FLOPs are produced when the size of the input images is 128× 128× 1. According
to Table 1, PeleeNet has the fewest parameters and MobileNet-V3-Small has the smallest
number of FLOPs. All the involved networks are realized using Python 3.6.2 (downloaded
from www.python.org) with Keras 2.3.1 and TensorFlow 2.0.0. In addition, all the following
experiments are conducted on a computer with Ubuntu 16.04, a CPU of Intel Xeon Gold
6129 and a GPU of Nvidia Tesla V100 with CUDA 10.0 for acceleration.

Table 1. Complexity of the compared networks.

Metrics EfficientNet-B1 MobileNet-V3-Small ShuffleNet-V2 PeleeNet

Parameters (M) 6.58 3.04 4.02 2.11
FLOPs (M) 395 43.7 319 323

During the training process of every network, the initial learning rate is set as 0.001
to let the training loss get smaller quickly. The training loss is monitored. Once there is
no improvement for the training loss for 20 epochs, the learning rate is multiplied by 0.3

www.python.org
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to help the models find the optimal solutions. The maximum number of epochs is set as
400, and the minimum learning rate is set as 10−8. Besides this, some images are chosen
from the test dataset to constitute the validation dataset for observing the performance of
the network. In addition, the early-stopping technique is adopted to avoid the over-fitting
problem, which is realized by stopping the training process once the improvement in
validation loss is less than 10−4 for a successive 30 epochs.

3.2. The Influence of Nb

The number of images in one batch Nb is an important parameter in the calculation
of the BSTriplet loss, because it can influence the similarity matrix S and further affect the
estimation for training data distribution. Besides this, it has an impact on the stability of
the training process. To explore the influence of Nb, we have downloaded a dataset of chest
X-ray images [41,42] from the Kaggle [43] website. This dataset is denoted as “Chest-1”
for brevity in the following. For this dataset, the X-ray images will be classified into three
classes, including normal, (regular) pneumonia, and COVID-19. Several examples are
shown in Figure 4. Here, these images are cropped to squares for better clarity. All the
images are resized as 128× 128 to be input into the network, and the construction of the
Chest-1 dataset is shown in Table 2. According to the data mining strategy described above,
we cluster the images in the Chest-1 dataset into six groups by K-means [44], wherein there
are two groups for each class. Based on the ratios of groups, we have sampled each group
to build different sizes of input batches Nb ∈ {6, 12, 18, 24, 30, 36}. ModbileNet-V3-Small
is used as the base framework and is trained by CE loss combined with the proposed
BSTriplet loss. Some experiments have been performed with various Nb, while other
hyper-parameters are fixed according to the method of controlling variables. The accuracy
(ACC) is adopted as a metric to evaluate the performance, which is defined as:

ACC =

C
∑

i=1
TPi +

C
∑

i=1
TNi

N′
(9)

where TPi and TNi are the numbers of true positive and true negative cases for the i-th
class, respectively, and N′ is the number of test images.
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Table 2. The construction of the Chest-1 dataset.

Normal Pneumonia Covid-19 Total

Training 1266 3418 920 5604
Testing 317 855 116 1288
Total 1583 4273 1036 6892

All the obtained ACC values for different Nbs are shown in Figure 5. From Figure 5,
we can see that the accuracy (94.95%) achieved using Nb = 36 is the highest, and the
accuracy (93.31%) achieved using Nb = 6 is the lowest. Overall, the accuracy has a positive
correlation with Nb, which is in line with the supposition that a bigger Nb will ensure that
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each input batch can represent the data distribution of the training dataset more precisely.
Moreover, the curve converges quickly. The reason for this is that the CE loss provides a
base accuracy, and it increases the stability of the curve. Furthermore, our data mining
technique ensures the diversity of images in the batch. Therefore, a batch with a small Nb
has a similar data distribution to that with a big Nb. Considering that a bigger Nb will lead
to insufficient iteration times for network training in one epoch, we will use Nb = 36 as the
default setting for the rest of the experiments.
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Figure 5. Accuracy of MobileNet-V3-Small for different Nb on the Chest-1 dataset.

3.3. Clustering Effect of the BSTriplet Loss

To display the effect of the BSTriplet loss in an intuitive way, principal component
analysis (PCA) was applied to reduce the dimension of the embedding vectors for visualiza-
tion. We have compared two distributions of embedding vectors for the training images in
Figure 6, which are generated via two kinds of MobileNet-V3-Small trained with different
kinds of loss function for 10 epochs using the batch size Nb = 36. For all the obtained
embedding vectors, their dimensions are reduced from 1280 to 2 through PCA. Figure 6a
is obtained via the model trained by only CE loss, while Figure 6b involves the BSTriplet
loss. Obviously, the BSTriplet loss is able to increase the inter-class distance and decrease
the intra-class distance. In other words, it helps to improve the classification ability of
MobileNet-V3-Small.
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Figure 6. The visualization of the embedding vectors obtained by MobileNet-V3-Small trained with
different kinds of loss functions. (a) Cross entropy; (b) cross entropy combined with BSTriplet.
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3.4. Effect of the Data Mining Strategy

To assess the effect of the data mining strategy, we trained MobileNet-V3-Small with
several schemes. The training schemes utilize random selection (RS) or the proposed data
mining (DM) strategy to construct input batches, and use CE or “CE+BST” as the loss
function, where the latter means CE combined with the BSTriplet function. The loss curves
of training and validation for each training scheme are given in Figure 7, and the obtained
ACC values are shown in Table 3. In Figure 7, “RS” and “DM” refer to the schemes using
the random selection and the proposed data mining strategy, respectively. From Figure 7a,
we can see that the loss curves of the DM scheme are much smoother than those of the RS
scheme. This indicates that the network is easier to train using the date mining strategy.
Besides this, for two kinds of loss functions, the proposed strategy can reduce the gap
between the training loss and the validation loss, which means that it can alleviate the
over-fitting problem.
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Figure 7. Loss curves of different training schemes for MobileNet-V3-Small on the Chest-1 dataset.

Table 3. Accuracy of different training schemes for MobileNet-V3-Small on the Chest-1 dataset.

Schemes CE (RS) CE (DM) CE+BST (RS) CE+BST (DM)

ACC (%) 92.70 93.91 94.05 94.95

From Table 3, it can be seen that the data mining strategy used in the CE-based model
can improve the accuracy by 1.21% compared with random selection. For the model based
on CE+BST loss, its accuracy is improved by 0.90%. The results show that the proposed
data mining strategy is helpful for training CNN models. Here, the strategy is more helpful
for the CE-based model than for the CE+BST based one. The reason is that the BSTriplet
loss can evaluate the data distribution of the training dataset to a certain extent, while the
CE function lacks this ability.

3.5. Applicability of the BSTriplet Loss

Moreover, we have compared the performances of several mentioned models with
the BSTriplet loss to discover its applicability and effect. For each compared network,
we have trained it with the CE loss and CE+BST loss. The training loss and validation
loss are shown in Figure 8. By comparing the four networks trained with CE loss, we can
see that the validation loss of EfficientNet-B1 and MobileNet-V3-Small goes up when the
time of iteration gets bigger. This observation means that there is a more severe over-
fitting problem in their training process compared with the others. When these models are
trained by CE+BST loss, the over-fitting problem is suppressed. Moreover, the gap between
training loss and validation loss demonstrates that there is a smaller gap for CE+BST loss
than for CE loss in such models as EfficientNet-B1, MobileNet-V3-Small and ShuffleNet-V2.
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As for PeleeNet, it has a relatively small over-fitting problem, which benefits from the
fact that it has the lowest number of weights. Overall, the BSTriplet loss can suppress
the over-fitting problem, which demonstrates that the BSTriplet loss can play the role of a
regularization term for the CE loss.
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Figure 8. Loss curves for the compared networks on the Chest-1 dataset.

To verify the effectiveness of the proposed combined loss, we have compared it with
CE combined with triple loss [45] and CE combined with the improved lifted structure
loss [46]. We test all these loss functions on four compared networks on the Chest-1 dataset.
Since Chest-1 provides a multi-class classification task, the average sensitivity SEN and
specificity SPE are used as metrics for evaluating the performance of the networks. SEN
and SPE are calculated as

SEN =
1
C

C

∑
i=1

SENi, with SENi =
TPi

TPi + FNi
∈ [0, 1] (10)

SPE =
1
C

C

∑
i=1

SPEi, with SPEi =
TNi

TNi + FPi
∈ [0, 1] (11)

where SENi and SPEi respectively represent the sensitivity and specificity of the i-th class,
which shows the ability of the classifier to correctly find real positive cases and negative
ones for the target disease; FPi and FNi denote the number of false positive and false
negative cases for the i-th class, respectively. Besides this, the ACC and the area under the
curve (AUC) of the receiver operating characteristic (ROC) are also employed to assess
the classification ability of the trained models. The results are listed in Table 4, where
“Triplet”, “LS” and “BST” represent the regular triplet loss, the improved lifted structure



Sensors 2021, 21, 764 12 of 21

loss and the proposed BSTriplet loss, respectively. For each evaluated model with different
losses, the best value for every metric is indicated with bold in Table 4. Clearly, ShuffleNet-
V2 provides the highest accuracy among all the compared networks for each of the four
different losses, which demonstrates the superiority of its structure. For each network alone,
both the LS loss and the BSTriplet loss can improve the accuracy compared with the CE loss.
By comparison, the regular triplet loss causes ACC to decrease from 92.70% to 92.24% for
MobileNet-V3-Small, and ACC to decrease from 92.93% to 90.06% for PeleeNet. The reason
is that the regular triplet loss identifies each input sample only according to one positive
pair and one negative pair, which easily leads to an unstable training process and could
make it difficult to search for the optimal solution. Furthermore, among all the compared
losses, the CE+BST loss guides such models as EfficientNet-B1, MobileNet-V3-Small and
ShuffleNet-V2 to gain the highest accuracy, sensitivity, specificity and AUC values. As for
PeleeNet, the proposed CE+BST loss achieves the second highest AUC value (0.9841) and
specificity (96.21%). Overall, the BSTriplet loss is helpful for training light-weighted CNN
models when employed and combined with CE loss, and it is more effective than the
regular triplet loss and lifted structure loss.

Table 4. Metrics for the compared networks on the Chest-1 dataset.

Model Loss SEN (%) SPE (%) ACC (%) AUC

EfficientNet-B1

CE 92.20 95.14 92.31 0.9523
CE+Triplet 94.28 96.10 94.18 0.9613

CE+LS 91.67 94.86 93.32 0.9406
CE+BST 94.69 96.53 94.72 0.9849

MobileNet-V3-Small

CE 91.58 95.67 92.70 0.9795
CE+Triplet 91.80 95.04 92.24 0.9741

CE+LS 92.71 95.66 93.40 0.9792
CE+BST 94.55 96.58 94.95 0.9807

ShuffleNet-V2

CE 92.48 95.60 93.56 0.9780
CE+Triplet 94.21 96.63 94.95 0.9800

CE+LS 94.75 96.75 95.19 0.9791
CE+BST 95.02 96.90 95.50 0.9861

PeleeNet

CE 91.83 95.23 92.93 0.9788
CE+Triplet 90.03 94.21 90.06 0.9673

CE+LS 90.85 96.50 93.48 0.9882
CE+BST 94.07 96.21 94.25 0.9841

To intuitively show the superiority of the proposed BSTriplet loss, the confusion ma-
trixes of the four networks trained with CE loss and CE+BST loss are given in Figure 9.
It can be seen that the normal images are relatively more easily misclassified as pneumo-
nia images or COVID-19 images for all the compared models. Therefore, the proposed
loss has the lowest average recognition rate (0.905) over all trained models. However,
the average recognition rates for pneumonia images and COVID-19 images are 0.949 and
0.944, respectively. In addition, EfficientNet-B1, ShuffleNet-V2 and PeleeNet achieve higher
recognition rates for every class when trained with CE+BST loss compared to when trained
with CE loss. As for the MobileNet-V3-Small model, the proposed CE+BST loss causes the
recognition rate for normal images to decrease from 0.928 to 0.909, but it has a much better
ability to distinguish the images of the rest of the categories. Moreover, the recognition rate
for COVID images is improved the most among the three classes when the BSTriplet loss is
used, which indicates that it can resolve the problem of data imbalance.
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To further verify the consistency of the proposed BSTriplet loss, we have carried out 
comparative experiments on another dataset of chest X-ray images denoted as “Chest-2”. 
This dataset is also downloaded from the Kaggle [43] website. Here, Chest-2 is used for 
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“P” and “C” denote normal images, pneumonia images and COVID-19 images, respectively.

To further verify the consistency of the proposed BSTriplet loss, we have carried out
comparative experiments on another dataset of chest X-ray images denoted as “Chest-2”.
This dataset is also downloaded from the Kaggle [43] website. Here, Chest-2 is used
for the classification of lung images into normal lung images and pneumonia images.
Some examples are shown in Figure 10. The construction of Chest-2 is listed in Table 5.
Each of the mentioned four light-weighted networks is trained with four kinds of losses on
Chest-2. Similar to the experiments on Chest-1, all these images in Chest-2 are resized into
128× 128. We have performed the K-means algorithm to partition the training images into
six groups, and randomly selected six samples from each group to build the input batch
for the proposed CE+BST loss.
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Table 5. The construction of the Chest-2 dataset.

Data Normal Pneumonia Total

Training 1341 3875 5216
Testing 234 390 624
Total 1575 4265 5840

The results for the classification of Chest-2 are shown in Table 6. From Table 6, we can
see that ShuffleNet-V2 still has the best performance because it can achieve the highest
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average SEN (97.14%), average SPE (80.56%), average ACC (90.91%) and average AUC
(0.9569) over four kinds of losses. Besides this, the CE+Triplet loss helps ShuffleNet-V2 to
provide the highest ACC (92.47%), which is 3.21% higher than that of ShuffleNet-V2 trained
with CE loss. Nevertheless, CE+Triplet loss achieves lower ACC and AUC compared with
CE loss when they are applied to PeleeNet, which reveals that the consistency of the
effectiveness of CE+Triplet loss cannot be guaranteed for various networks. In comparison,
both CE+LS and our CE+BST loss have better consistency, which benefits from the analysis
for all the pairs formed by the samples in the batch. Furthermore, the proposed CE+BST
loss surpasses the CE+LS loss in terms of average values of SEN, SPE, ACC and AUC
over four evaluated networks by 0.26%, 7.27%, 2.89% and 0.012%, respectively. The reason
why BSTriplet outperforms LS is that the former adopts similarity instead of Euclidean
distance, so that it has a clear upper bound, and the value of BSTriplet loss is close to CE
loss, so that it can achieve better coordination than LS loss. We have also provided the
ROC curves of all compared methods in Figure 11. When the ROC curve is closer to the
upper left corner, it means the corresponding classifier has a better classification ability.
For ShuffleNet-V2, all the three combined losses show similar performances, and they all
surpass the performance of CE loss. As for the rest of the networks, our CE+BST loss can
provide the most significant improvement in classification performance for each network,
especially when it is used in PeleeNet. In general, the proposed BSTriplet loss is more
suitable for assisting CE loss in CNN training, and it outperforms the other compared
DML losses.

Table 6. Metrics for the compared networks on the Chest-2 dataset.

Model Loss SEN (%) SPE (%) ACC (%) AUC

EfficientNet-B1

CE 93.85 72.65 85.90 0.9178
CE+Triplet 94.87 72.22 86.38 0.9323

CE+LS 96.67 72.65 87.66 0.9327
CE+BST 97.69 77.35 90.06 0.9457

MobileNet-V3-Small

CE 96.92 70.51 87.02 0.9424
CE+Triplet 93.08 81.20 88.62 0.9486

CE+LS 97.18 71.37 87.50 0.9441
CE+BST 94.87 84.62 91.03 0.9603

ShuffleNet-V2

CE 95.64 78.63 89.26 0.9535
CE+Triplet 99.23 81.20 92.47 0.9593

CE+LS 96.15 80.77 90.38 0.9569
CE+BST 97.44 81.62 91.51 0.9579

PeleeNet

CE 95.13 70.51 85.90 0.9472
CE+Triplet 88.72 73.50 83.01 0.9057

CE+LS 94.36 73.50 86.54 0.9458
CE+BST 95.38 83.76 91.03 0.9649

To further validate the effectiveness of the proposed BSTriplet loss, some experiments
have been conducted on a skin rash image dataset, which is used to distinguish the images
containing Lyme disease from those with other disease [47]. The composition of the rash
image dataset is listed in Table 7. Figure 12 shows some images in the rash image dataset.
It can be seen that the images in this dataset are colorful optical images, which are much
different from the above X-ray images. Besides this, the number of images in the rash
image dataset is evidently less than that in the above datasets. To alleviate the over-fitting
problem, we have augmented the training images by such methods as rotation by 90

◦
, 180

◦

and 270
◦
, horizontal/vertical flipping, and horizontal/vertical translation for five pixels

so that the number of training images is enlarged by seven-fold. As for the test images,
the augmentation has not been implemented. We have clustered the images into four
categories, and built the input batches for the proposed CE+BST loss according to the steps
in Section 2.3.
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The results for each evaluated model are given in Table 8. It can be seen that almost
all the metrics are lower than those in the above experiments. The reason for this is that
the rash images are full of varied backgrounds and the training images are insufficient.
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Nevertheless, when the loss involves the DML methods, the CNNs can gain higher accuracy
compared with themselves trained with CE loss, except that CE+LS loss provides the
same ACC (75.86%) for MobileNet-V3-Small. MobileNet-V3-Small provides the highest
ACC (83.91%) and AUC (0.8755) when trained with the proposed CE+BST loss, and it
can produce the second best ACC (82.76%) and AUC (0.8423) when it is trained with
CE+Triplet loss. Both ShuffleNet-V2 and PeleeNet gain the second highest ACC (80.46%)
when they are trained with our CE+BST loss. A comparison among the four results
obtained by PeleeNet shows that CE+LS loss gives the highest SEN but the lowest SPE,
while CE+Triplet loss gives the opposite results. In comparison, our CE+BST loss can
provide both the second highest SEN (77.78%) and SPE (82.35%), as well as the highest
ACC (80.46%), for PeleeNet. Besides this, if the results for the CE loss are used as the
baseline for each model, the average improvement for each combined loss in four models
can be calculated. The proposed CE+BST loss gains an advantage over CE+Triplet loss and
CE+LS loss by providing the highest average improvements in SEN, SPE, ACC and AUC,
by 9.03%, 5.39%, 6.90% and 0.1063, respectively.

Table 8. Metrics for the compared networks on the rash image dataset.

Model Loss SEN (%) SPE (%) ACC (%) AUC

EfficientNet-B1

CE 66.67 78.43 73.56 0.7334
CE+Triplet 72.22 78.43 75.86 0.8132

CE+LS 72.22 76.47 74.71 0.7835
CE+BST 75.00 82.35 79.31 0.8227

MobileNet-V3-Small

CE 63.89 84.31 75.86 0.7323
CE+Triplet 83.33 82.35 82.76 0.8423

CE+LS 61.11 86.27 75.86 0.8224
CE+BST 72.22 92.16 83.91 0.8755

ShuffleNet-V2

CE 61.11 80.39 72.41 0.7230
CE+Triplet 66.67 80.39 74.71 0.7358

CE+LS 69.44 86.27 79.31 0.8088
CE+BST 75.00 84.31 80.46 0.8208

PeleeNet

CE 77.78 72.55 74.71 0.7764
CE+Triplet 63.89 90.20 79.31 0.7514

CE+LS 83.33 72.55 77.01 0.8292
CE+BST 77.78 82.35 80.46 0.8287

The ROC curves for every test model on the rash image dataset are shown in Figure 13.
It is clear that these curves are not as smooth as those in Figure 11 due to the small number
of test images. Almost all the combined losses surpass CE loss for each compared CNN,
especially for MobileNet-V3-Small. Only CE+Triplet is inferior to CE loss when applied
to PeleeNet, which reveals its instability again. In addition, the curves of the proposed
CE+BST loss are much closer to the top left corner in each subfigure than the rest, which
demonstrates its effectiveness for a small dataset and adaptability to different networks.

To further verify the applicability of the BSTriplet loss to other medical image modalities,
additional experiments have been done on an osteosarcoma histology image dataset [48–50],
which can be accessed from the cancer imaging archive (TCIA) [51]. There are three kinds of
images in the osteosarcoma histology image dataset, as shown in Figure 14. Compared with
the above involved images, the histology images are colored images, and their backgrounds
are simpler than those of the skin rash images. This dataset is a small sample dataset and
its construction is listed in Table 9. The augmentation for this dataset is the same as that
for the rash images. We have clustered each kind of images into two groups for CE+BST
loss according to the proposed data mining strategy. Using the accuracy ACC, average
sensitivity SEN, average specificity SPE and AUC as metrics, we have tested MobileNet-
V3-Small trained with several different loss functions. The results are provided in Table 10
and Figure 15.
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Figure 14. Examples of the osteosarcoma histology images. (a) Non-tumor; (b,c) necrotic tumor; (d,e) viable tumor.

Table 9. The construction of the osteosarcoma histology image dataset.

Non-Tumor Necrotic Tumor Viable Tumor Total

Training 429 210 276 915
Testing 107 53 69 229
Total 536 263 345 1144

Table 10 shows that CE+BST loss-based MobileNet-V3-Small provides the best perfor-
mance in terms of all the metrics. In particular, the accuracy provided by CE+BST loss is
2.18% higher than the second best ACC, which is produced by CE+LS loss. Besides this,
the regular triplet loss and the LS loss help the CE to obtain better SEN, SPE and ACC
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values, although their AUC values are smaller than those of CE loss. On the other hand,
BSTriplet loss obtains the best AUC value in Table 10 and ROC curve in Figure 15. The re-
sults demonstrate that, compared with the LS loss and the regular triplet loss, our proposed
BSTriplet loss has a better ability to assist CE loss in improving the performance of the
CNNs on small sample datasets.

Table 10. The metrics for MobileNet-V3-Small on the osteosarcoma histology image dataset.

Model Loss SEN (%) SPE (%) ACC (%) AUC

MobileNet-V3-Small

CE 87.66 93.80 87.34 0.9508
CE+Triplet 88.17 94.15 87.77 0.9391

CE+LS 88.72 94.35 88.21 0.9265
CE+BST 90.48 95.45 90.39 0.9549
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4. Conclusions

In this paper, a novel batch similarity-based triple loss is proposed for light-weighted
CNNs in the case of medical image classification. The proposed loss takes the similarities
among all the samples in the input batch into account in order to gather samples of the
same class and distinguish those of different classes. It can be easily assembled into existing
CNNs, and assist cross entropy loss in training the CNNs by resolving the over-fitting
problem. A reasonable data mining technique is also provided, which can help to build
input batches according to the distribution of the training data. Several experiments have
been implemented on such medical image datasets as chest X-ray images and rash images.
The results show the superiority and consistency of the proposed loss combined with cross
entropy loss compared to other combined losses in terms of sensitivity, specificity, accuracy
and AUC. Our further work will be focused on the optimization of the computational
efficiency of the proposed loss, its combination with more loss, and testing on other image
datasets to ensure that the training process of CNNs will be more stable and the over-fitting
problem can be addressed more effectively.
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openly available in Kaggle at https://www.kaggle.com/sshikamaru/lyme-disease-rashes. The os-
teosarcoma histology image data can be found in The Cancer Imaging Archive (TCIA) at https:
//doi.org/10.7937/tcia.2019.bvhjhdas.
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