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Abstract: With an ageing society comes the increased prevalence of gait disorders. The restriction
of mobility leads to a considerable reduction in the quality of life, because associated falls increase
morbidity and mortality. Consideration of gait analysis data often alters surgical recommendations.
For that reason, the early and systematic diagnostic treatment of gait disorders can spare a lot of
suffering. As modern gait analysis systems are, in most cases, still very costly, many patients are
not privileged enough to have access to comparable therapies. Low-cost systems such as inertial
measurement units (IMUs) still pose major challenges, but offer possibilities for automatic real-time
motion analysis. In this paper, we present a new approach to reliably detect human gait phases, using
IMUs and machine learning methods. This approach should form the foundation of a new medical
device to be used for gait analysis. A model is presented combining deep 2D-convolutional and
LSTM networks to perform a classification task; it predicts the current gait phase with an accuracy of
over 92% on an unseen subject, differentiating between five different phases. In the course of the
paper, different approaches to optimize the performance of the model are presented and evaluated.

Keywords: gait analysis; deep learning; LSTM networks; convolutional neural networks; ConvLSTM
networks; gait phase detection

1. Introduction

Even though walking is the most basic method of locomotion, independence and
self-determination are linked to it. Abnormal gait patterns, often caused by occasional
pain, injuries or surgeries in the past, can lead to serious damage in the lower limbs and
back [1–3]. Early detection of wrong movements can help to prevent worse conditions.
Instead of fighting the symptoms, it can be more helpful to identify the underlying cause
by analyzing the movement patterns. These patterns can be found and evaluated with the
use of gait analysis methods. Nowadays, gait analysis is primarily performed by visual
experts’ valuation in real time or by using specialized measurement equipment. The use
of supporting systems offers the advantage of more accurate and data-driven evaluations.
Systems such as SIMI-motion (Simi Reality Motion Systems GmbH, Unterschleißheim,
Germany), Qualisys Track Manager (Qualisys AB, Göteborg, Sweden) abd Zebris FDM-T
system (zebris Medical GmbH, Isny, Germany) are often used in modern gait analysis labo-
ratories. They rely on either marker-based video capturing systems or foot pressure-based
measurement systems, which combine a pressure plate with a treadmill. The downsides of
these systems are that they can only be used in a stationary way, are limited in time, are
expensive and require costly post-processing steps, making online usage difficult. This
problem can be solved by the usage of inertial measurement units (IMUs).

Wearable sensors have become increasingly popular in recent years [4]. Smart de-
vices, such as smartwatches, smartphones and smart glasses, already gather a tremen-
dous amount of data on human movement by using the IMUs, which can integrate a
3D-accelerometer, a 3D-gyroscope, a magnetometer, a barometric pressure sensor and
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sometimes even electromyography (EMG) sensors. This provides the possibility to make
long-term measurements with small, cost-efficient devices. Nevertheless, until today
wearable sensor units have rarely been used when analyzing human gait in a clinical
environment due to several reasons. The first difficulty is to automatically divide the
continuous signal into the existing gait phases before an evaluation of further parameters
is possible. To solve this problem, Hidden markov models (HMMs) [5,6] or rule-based
approaches are commonly used, oftentimes only detecting the heel strike (HS) and toe
off (TO) and discarding the extra information, such as the division of inner phases [7]. In
2014, a rule-based algorithm reaching over 90% accuracy tackling this task was presented
by Goršič et al. [8]. As the human gait is highly individual, conventional algorithms of-
ten fail to generalize when depending on threshold values, as can be seen in this case.
Thresholds have to be adapted to each user individually. To solve this problem, deep
learning, which denotes the use of multi-layer neural network models, is often used. Using
deep learning for activity recognition and gait analysis is a very active field of research.
The main focus of the field lies in handling time series data. For time series data in gen-
eral, long short-term memory (LSTM) networks are often used because of their ability to
carry past information for current predictions [9]. In 2020, Vaith et al. [10] published an
approach to predict single and double support phases using an LSTM network in IMU
input data and active learning methods. Other approaches are based on convolutional
neural networks (CNNs), using time segments as input. These segments are generated by
defining a window with a fixed size and sliding it across the time series [11,12]. In this
paper we combine convolutional and LSTM networks (ConvLSTM). In [13], a common
activity recognition dataset was analyzed with a ConvLSTM model and compared to the
baseline CNN model. It can be seen that the ConvLSTM outperforms the baseline CNN
model in terms of F1 score performance for all chosen tasks. In [14], again, a ConvLSTM
was used for human identification with IMU sensors, showing that this type of network
shows a good performance in processing IMU sensor data. As the data were recorded
under unconstrained conditions, steps had to be segmented first. This was done without
the use of machine learning methods. Gait phases were not separated. In 2018 an approach
to detect gait phases with IMU sensors was published by Martinez-Hernandez et al. [15].
They gathered data of 12 subjects, separating each step into eight periods. To detect the
beginning and end of a step, two foot pressure-insole sensors were used. With this setup,
an accuracy of 98.32% was reached. Unfortunately no sensory ground truth was used to
detect the inner gait phases, leading to gait phases between HS and TO being assumed to
be equidistant, making the calculation by far simpler, as the complexity of this setup is not
significantly different from detecting initial contact, since equidistant inner periods can be
separated manually.

In 2020 another approach using a CNN was presented by Jeon et al. [16] reaching
99.8% accuracy, but having a huge drop in accuracy when testing with unseen data. In
this paper, a new ConvLSTM approach is presented to automatically divide the time series
into its gait phases, with higher granularity and individuality compared to other papers
before. This then serves as a basis for later automatic or manual gait analysis, with the
claim that the temporal assignment of a regarded signal to the gait cycle is more accurate
and stable than approached in other publications. Since errors can have particularly serious
consequences in medical applications, the output and possible sources of error are analyzed
and the model is optimized to minimize mispredictions. In addition, the certainty coming
along with the predictions is taken into consideration as an additional feature by ignoring
uncertain predictions. Furthermore, we try to reduce the number of parameters of the
model, by visualizing the feature importance during prediction and eliminating unused
features. This should allow faster calculation to enable the possibility for online usage. The
paper is structured as follows: In Section 2 the methods are presented, involving the sensor
setup that has been used, the label generation process, the network architecture and the
training routine. Section 3 shows how the trained network performs on new data. Here
the results are analyzed with focus on the questions of why mispredictions occur, which
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features are most important and how the risk coming along with mispredictions can be
minimized. In Section 4 the results are discussed, and a conclusion is drawn in Section 5.

2. Materials and Methods
2.1. Inertial Measurement Units and Sensor Setup

For this paper all the data were recorded at the THU (Ulm University of Applied
Science, Ulm, Germany). Since predictions were made based on IMUs, all measurements
were with the Shimmer3 Consensys IMUs (Shimmer Research Ltd, Dublin, Ireland). These
consist of an accelerometer (±8.0 g), a gyroscope (±250

◦
sec ), a magnetometer and a baro-

metric pressure sensor. A sampling rate of 120 Hz was used for all measurements. The
measurements were made using 11 IMUs. The IMUs were attached to the foot, tibia,
thigh, hip and arm on each side of the body. One sensor, the master, was only used for
synchronization and functioned as a reference for the current air pressure. The slaves
were synchronized via Bluetooth with the master, which also received a 3 V trigger edge
signal. Master/slave architectures are commonly used to ensure synchronicity across
sensor units [17]. The treadmill and master IMU were triggered simultaneously to ensure
synchronicity across the systems. For classification, 7 channels were used: acceleration and
rotation in x, y and z directions, and barometric pressure data. In order to get an adequate
amount of data, 11 subjects were recorded, being between 20 and 34 years old and 160 and
203 cm tall. The subjects consisted of 3 women and 8 men. All subjects were healthy and
did not have any relevant physical restrictions.

2.2. Label Generation

To record and calculate the labels for the IMU training data, a hpcosmos treadmill
(mercury) was used, in combination with an FDM-T pressure plate attached below the
treadmill belt, manufactured by Zebris (Zebris Medical GmbH). An alternative to using a
pressure plate sensor would be a video-based motion analysis system based on markers.
Although this technique could improve the accuracy, the pressure plate measurements are
valid for generating the labels according to gait phases for this application. In contrast to
this, video-based systems normally lead to a large overhead of applying markers, cross-
calibration of cameras and manual post-processing steps. The software provided by Zebris
allowed the extraction of the pressure distribution on the plate and some preprocessed
parameters, such as the global step length and step width. The overall measured pressure
allows for inference of the gait phases. Naturally, the pressure data do not provide further
information about the swing phase and its sub phases, as the pressure was zero during
the whole swing phase. The label of the corresponding class was assigned to every
timestamp. Local maxima and minima help with finding the defined gait phases; see
Figure 1. The signal is split into five phases: initial contact to loading response (IC), loading
response (LR), mid stance (MS), terminal stance (TS) and swing phase (SW). The signal is
synchronized with the IMU signal, by receiving a simultaneous trigger signal, which starts
the pressure plate measurement. This start trigger signal is received in the analog–digital
converter channel of one IMU sampled at 120 Hz, which serves as a synchronization
trigger. This leads to a maximum time uncertainty of 8 ms regarding the trigger signal. An
additional time uncertainty of one time frame of the IMUs (8 ms) has to be expected in
the result. Synchronization between all IMUs is done using the synchronization approach
developed by Shimmer. This approach is based on the estimation of clock offsets between
the sensors and a master sensor by consecutively exchanging timestamps via Bluetooth. As
the measurements were comparatively short, long-term errors in the on-board oscillators
(drift) of the sensors did not need to be taken into account.
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Figure 1. The pressure curve of one step, measured by the treadmill. The different colors indicate the gait phases used in
this work. On the x-axis the time is given in frames (1 frame = 8 ms). The y-axis indicates the absolute pressure accumulated
on the plate.

Considering the initial contact, a gait phase might not seem intuitive, since it denotes a
single gait event. Stretching it to more than one timestamp was done to prevent the dataset
from being unbalanced. The first timestamp in the defined IC phase, which is the actual
event, can then be easily determined.

2.3. Deep Neural Network Architecture

As described above, a combination of a convolutional neural network (CNN) and
LSTM was used as a baseline model. An overview over the network architecture is shown
in Figure 2. For the sake of brevity, we refer to [18,19] for an introduction to CNNs and
LSTM networks. The input consists of raw data being fed to six convolutional layers, where
the features are learned and extracted. The choice of kernel sizes followed AlexNet [20],
starting with a big kernel size (6 × 6) and then using smaller kernel sizes (3 × 3). In
contrast, the number of filters increases for deeper layers. For performing the convolutional
operations, zero padding is used. In the pooling layers the kernel sizes are 2× 2 in the
first and last layer and 3× 3 in the second. Additionally, max-pooling is performed after
every second layer, which is a common method to avoid overfitting and to reduce the
computational effort. After the final convolutional layer, the resulting (flattened) feature
vector then serves as input for two LSTM layers, two dense layers and one output layer,
holding five output neurons. The LSTM layer is supposed to learn temporal dependencies
within the sequences. All weights are initialized with the method presented by Xavier
Glorot [21], and the Adam optimizer is used. The LSTM layer uses half the number of
neurons as samples involved in one sequence. The first dense layer holds 1024 neurons and
the second one 256. For better generalization, L2 regularization is used for the convolutional
layer and a dropout of 0.2 is used for the dense and LSTM layers.



Sensors 2021, 21, 789 5 of 15

Figure 2. The structure of the neural network. Features generated by 6 convolutional layers are flatted and serve as input to
2 LSTM layers and 3 dense layers, including the output layer.

2.4. Training the Model

To guarantee training success, invariance in the test persons has to be ensured. Per-
forming the training on one subject after another would not comply with that claim. Caused
by the Adam optimizer algorithm [22], the learning rate would change constantly, and so,
the network would be likely to overfit on the first person. Simply shuffling all the data is
not a good option either, as this would neglect the temporal dependency. Taking this into
consideration, we decided to cut the data into sequences of a certain length and shuffle
those sequences. For the baseline model, the sequence length was 4 s (480 data points). The
data were then fed to the network by using the sliding window approach. To do this, a
window of fixed size was shifted along the time axis. The window shift was 1, leading to
overlapping windows. As the convolutional network expects two-dimensional inputs, such
as images, the windows containing T timestamps and N · C channels can be interpreted
as such. Hereby N is the number of IMU sensors and C denotes the overall number of
channels used. The baseline model uses 50 timestamps per window. The columns of this
window are composed of 10 IMU sensors with 7 channels each, so input dimensions are
50× 70. Raw data are fed to the network. No digital filters are used to smooth the signal.

Data from 11 subjects served as the training set within this study. The whole set of
training, testing and validation procedures was performed according to the leave-one-
subject-out validation method. This resulted in 10 training and 1 individual test subjects.
This test subject was chosen randomly and is called the unseen subject in the following, as
its data remains unseen to the model during training. The data of the remaining 10 subjects
were also split into training (66%) and test sets (34%), whereby 10% of the training set was
used for validation during the training. The tests were performed using both the test set
and data of the unseen subject. The model converged after 10 epochs. Calculations were
done at the THU on a workstation based on a NVIDIA GTX 1070Ti GPU, an AMD Ryzen
7 CPU with 3.7 GHz and 32 GB memory. On the software side, MATLAB (2018) and Python
(version 3.6) have been used. The preprocessing routine, in terms of synchronization and
interpolation, was implemented in MATLAB. Preparation and training of the model were
done in Python. The final model was set up with Tensorflow (API r1.13); loading and
managing the data were done with the pandas (version 0.23.4) and numpy (version 1.15.4)
libraries. Matplotlib (version 3.0.1) was used for visualization of the data.
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2.5. Hyperparameter Optimization

Finding the optimal set of hyperparameters can be very costly, due to the large amount
of trainable hyperparameters. Fine tuning those parameters can result in a more stable
and accurate model. Algorithms like grid search, which are often used, train the model
for every joint specification of hyperparameter values in the Cartesian product of an
individually chosen subset of the parameter space; the one with best validation results is
chosen; see [23]. For reasons of limited computing power, the greedy approach is used
in this paper, optimizing one parameter after the other, relying on experience and local
best responses of the model. The drawback of this method is the risk that the globally best
combination could be missed.

2.6. Feature Importance and Channel Order

Due to the fact that the network should be able to make online predictions, it is
desirable to use as little data as possible. Since features are generated automatically by the
convolutional layer, it is unclear which IMUs and channels have the most influence on the
results—meaning, it is not only necessary to keep track of the data, but to also focus on
the relevance of the individual channels. In order to obtain an insight into how the input
representation affects the result, we analyzed, which channels are relevant and which order
of channels leads to most auspicious results. The determination of most relevant data can
be very costly. It would require the investigation of over three million combinations in
order to determine which IMUs and channels provide the most important information
to the network. Due to computational limitations, that is not an option. The strategy
instead, is to analyze the activations in the convolutional layers, in order to get a feeling
about the most relevant features when predicting and eliminating the other channels, again
using a greedy approach. Here we observe whether the prediction accuracy can keep up
further results.

Yet another factor concerning the result of the model is about the order of the channels.
Changing the order leads to different features, as the neighborhood in the convolutional
operations is entirely different. We start by merging the channels of one IMU, as Figure 3 shows.
Another surveyed configuration groups channels by their measurement (ax, ay, etc.). Both
configurations will finally be compared in Section 3.3.

Figure 3. The figure shows how the channels are arranged in one window. All channels of an inertial
measurement unit (IMU) are stringed together and are then merged with the channels of the other
IMUs.

2.7. Network Certainty

As misclassifications in the medical field can have serious consequences, ensuring
that misstatements are avoided is critical. As an indicator for good predictions, we define
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the output of the softmax function as certainty, while being well aware of the fact that this
is not to be equated with the true correctness likelihood [24]:

Certainty(z)i =
exp(zi)

∑K
j=1 exp(zj)

, for i = 1, ..., K und z = (z1, ..., zK) ∈ RK (1)

Post processing methods to avoid overconfidence, such as temperature scaling, are
not used, as we do not need to know the exact probability to set thresholds. Since every
prediction comes along with such a certainty, these will be analyzed for correct predictions
and incorrect ones respectively. Thus, it can be considered whether it makes sense to allow
predictions with maximum certainty only.

3. Results

After the training process finished and the model was validated and considered satis-
factory, the test set was analyzed. While the validation set reached an accuracy of 97.24%,
the test set reached 95.24%. In the confusion matrix in Figure 4, most misclassifications can
be found on the first minor diagonal. It is also obvious that the swing phase and the initial
contact have the best prediction rates.

Testing on an unseen subject results a slightly lower accuracy, but still, the same pattern
can be seen (Figure 4b). It becomes evident that the prediction still reaches stable results,
even though the network has not seen the data of the test person before. Additionally, the
second and third minor diagonals have no entries, signifying that all misclassifications
occur at the transition of two classes.

Figure 4. Confusion matrix of predictions applied to the test set (a), which consisted of 34% of the whole dataset and to one
test person, who was not involved in the training process (b). On the main diagonal the correctly predicted labels can be
seen.

To prove that the approach is stable across all subjects, the leave-one-out cross-
validation (LOOCV) method was used [25]. For each subject an individual model was
trained, not involving that subject’s data. Table 1 shows the individual result for each
subject, and in Figure 5 the corresponding box plot is depicted. Like this, we can show that
the method generalizes reliably, when getting new data. The mean accuracy for all subjects
is 0.9229 with a standard deviation of 0.01586.
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Table 1. Table showing the accuracy of each subject being left out during training.

Test Subject (Left Out) Accuracy

subject 1 0.9218

subject 2 0.9469

subject 3 0.9204

subject 4 0.9428

subject 5 0.9451

subject 6 0.9209

subject 7 0.9161

subject 8 0.9020

subject 9 0.8952

subject 10 0.9168

subject 11 0.9234

Figure 5. Box plot of the results of the LOOCV. For each model one subject was left out, and each
model was tested for said subject. The median accuracy was 0.9209.

3.1. Misclassification

In Figure 6, the values that were misclassified in the untrained dataset are exemplified.
The blue dots show at which timestamps the correct label were predicted. To visualize the
actual gait phase wherein the prediction fails, the corresponding pressure plate reaction
was plotted. As can be seen, the errors are found at the local peaks (minima and maxima)
of each step. Looking back at the label generation in Section 2.2, it is notable that most of
the errors occur at the transitions between two classes, correlating with the results seen in
the confusion matrices.

To corroborate this hypothesis, the time differences between mispredictions and the
actual occurrences of the events were measured and visualized in Figure 7. The results
confirm the impression of the exemplary plot, visualized in Figure 6: The majority of false
predictions missed the period by <16 ms (<2 time frames). The highest deviation was
56 ms (7 time frames). Thus, the assumption that transitions are most problematic was
approved statistically.
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Figure 6. Correct (blue dots) and misclassified (red crosses) data samples in the label data. The y-axis
indicates the total cumulated force [N].

Figure 7. Time differences of mispredictions from the actual occurrences of events. The graph
visualizes a box plot, representing the deviations in milliseconds (ms). The blue box shows the IQR
(25th percentile (Q1) to the 75th percentile (Q3)), with the mean value being shown as a gray line
inside the box. Besides that, minimum (Q1 −1.5· IQR), maximum (Q3 +1.5· IQR) and outliers are
plotted.

To demonstrate the extent to which the accuracy is influenced by the temporal resolu-
tion of the IMU sensors, we define an acceptance criterion allowing false predictions, when
missing the real class by 8, 16 and 24 milliseconds. For this experiment, data of an unseen
subject were used. Table 2 shows how accurate the predictions are when the temporal
uncertainty that originates in the process of label-generation is taken into consideration.

Table 2. The accuracy of an unseen subject when temporal uncertainty at transitions is taken into consideration.

Accepted Offset to the True Class 0 Time Frames 1 Time Frame 2 Time Frames 3 Time Frames
(0 ms) (8 ms) (16 ms) (24 ms)

accuracy 0.9353 0.9422 0.9740 0.9907
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3.2. Hyperparameter Optimization

Another important parameter influencing the result is the size of the LSTM layers. As
the perfect number of hidden LSTM units is always dependent on the domain and input
representation; five values were selected manually. The most obvious value is 480, which
matches the number of windows in one sample. The idea would be to “remember” every
value of the sequence before predicting the last one. Additionally, half the sequence length
(=215), 100, 10 and a value greater than the sequence length (=500) were evaluated. Again,
the model was tested on the unseen individual data, but also validated with the test set;
see Figure 8.

Figure 8. The influence of the LSTM layer size on the result. The test was done with the test dataset,
containing unseen data of the test persons that have been involved in the training process.

As both figures confirm, the LSTM layer size, matching the sequence length, provides
the best result and was therefore used in all further calculations.

3.3. Feature Importance and Channel Order

In Figure 9, the activations of the last convolutional layer are shown in a heat-map.
This way, spatial information about the most activated areas becomes visible. The activation
was recorded, making predictions on unseen data. Note that absolute activations were
averaged over all windows, normalized and resized: Due to the pooling operations, the last
convolutional layer shrank the input to a matrix of only 7× 9. For visualization purposes,
this matrix was up-sampled to a 1200× 700 Matrix.

The heat map shows that most activations can be measured in the shin or thigh area.
Due to the low resolution, a precise assignment is not possible. For that reason, further
tests have been conducted. The first approach was to take a look at each sensor’s location
individually.
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Figure 9. Activated regions in the last convolutional layer when predicting the gait phases. In (a) the
channels are arranged device after device (IMU1, IMU2, etc.). In (b) the channels are grouped by the
measurement type (ax, ay, az: acceleration; gx, gy, gz: gyro data; p1: barometric pressure data).

The results of this experiment support the theory that features generated from the
sensors located at the thighs provide the most beneficial information (see Figure 10).
The overall result was enhanced, while prediction time and experimental expenditure
decreased.

Figure 10. Accuracy of the classifier network reached by one pair of IMUs at different sensor locations,
being trained individually. Training was again done with 10 subjects and tested on 1 unseen one.

Using 2D-convolutional operations, the arrangement of the channels influences the
result. When grouping the channels by their measurement (ax, ay, etc.), the accuracy
decreases to 0.928. This suggests that spatial correlations have a greater influence on the
result than those of the same relative direction.

Even though the accuracy decreases, it is noticeable that gz exhibits the highest activity.
For further reduction, the heat map, when using only the thighs, was analyzed. Again,

the gyroscope data show higher activations. To find out if gyroscope data alone provides
enough information for the classifier, we conducted training without acceleration data,
only taking gyroscope data into account. This led to a significantly lower accuracy (0.894).
For that reason, this approach was discarded.
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3.4. Network Certainty

Figure 11a,b shows box plots of the prediction’s certainty when the prediction results
are correct or incorrect.

Figure 11. (a) Prediction certainty regarding correctly classified samples. (b) Prediction certainty regarding misclassi-
fied samples.

As one would expect, the mean certainty of the correct classified samples was much
higher than the that of the misclassified samples. Nevertheless, it should not be forgotten
that the sample size of correct classified samples was larger than that of the incorrect ones.
One idea is to declare all the samples under an intended certainty as unknown, to minimize
the risk of drawing the wrong conclusions. The downside of this method is that correctly
classified samples are also assigned to the unknown class.

Table 3 shows how the accuracy changes, if the certainty of the prediction is considered,
and how many samples are assigned to the unknown class, if a threshold of 0.8 or 0.9 is
chosen. These values relate to the evaluation of the untrained person’s data. With both
thresholds, the accuracy rises, as over 60% of the originally misclassified samples are
assigned to unknown. On the other hand, in numbers, more correctly classified samples
are assigned to unknown than misclassified ones, leading to the fact that 8–14% of all the
data are considered unidentified, whereas 6–10% of the correct ones are overruled. The use
of this method has to be assessed as part of a risk analysis of the particular product and
cannot be answered at this point.

Table 3. The change of accuracy when discarding samples under a chosen certainty is shown.
Additionally, the table shows how many samples of the total dataset, the correct classified subset and
the misclassified subset are assigned to “unknown” in consideration of the different certainties. The
test set consists of the untrained subject not being retrained.

Threshold 0.8 Threshold 0.9

accuracy (certainty > threshold) 0.9790 0.9880

unknown samples (amount) 2408 3866

correct→ unknown (amount) 1544 2757

misclassified→ unknown (amount) 864 1109

unknown samples (% of all samples) 0.0882 0.1416

correct→ unknown (% of all correct samples) 0.05969 0.1066

misclassified→ unknown (% of all false samples) 0.6017 0.7723

4. Discussion

The ConvLSTM model achieved an accuracy higher than 92% on unseen data of new
subjects. This result might not seem reliable enough for a medical application, but the
analysis of where and why the errors occur shows the robustness of the model. Nearly
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all of the errors can be found at the transitions between classes. As we measured with a
higher sampling rate than other papers we compared to above, difficulties at the transition
become more visible. Measuring with 100 Hz only would most likely lead to higher
accuracy values. To illustrate how small errors can lead to significant changes in accuracy,
an average step is analyzed here. One step lasts about one second (120 measurements) and
entails five transitions. Missing a transition on average by only one timestamp, would
lead to E = 5

120 · 100 = 4.17% misclassifications. Accordingly, to achieve an accuracy of
93% a transition is missed by an average of 1.12 time steps, where one time step is 8 ms.
This lack of accuracy leads back to the label generation where the peaks of the pressure
curve are calculated automatically to divide the signal into their gait phases. Since the
pressure curves are not always perfectly smooth, it is not possible to divide the phases
with an accuracy below one time frame. It is also possible that measurement errors in both
IMU and treadmill data emerge. Unexpected movements like head-scratching or other arm
movements could additionally influence the outcome, since the subjects were told to move
as intuitively and naturally as possible. As our analysis shows, the accuracy rises when we
accept a time uncertainty of one or more time frame. With three time frames, we already
reached an overall accuracy above 99% testing on the unseen subject. This might also have
been caused by the uncertainty in time synchronization explained in Section 2.2. With the
available sampling rate provided by the IMU, it is hardly possible to gain a more detailed
time resolution on the classification output.

The model was tested on 34% of the 10 training subjects, but the more significant test
was done with data of one subject that had been left out for training, since these results are
more critical, as can be seen when comparing the confusion matrices. Nevertheless, it is
worth arguing whether the data of one subject are enough to evaluate the model’s ability
to generalize. As the data generation and training is costly, switching training and test
subjects to cross-validate the result has not been implemented.

It is also to be noted that all subjects were 35 years old or younger and healthy. There
was no evidence that the model shows similar results with older people or people with
abnormal gait characteristics.

5. Conclusions and Outlook

Throughout this paper, a deep neural network model based on a combination of CNN
and LSTM was presented and comprehensively analyzed to predict the current gait phase
while walking, using IMU sensors. Compared to previous approaches, labels are generated
highly individually, and one step is separated into five phases. The model shows robust
results, despite only being trained with ten subjects, reaching an accuracy of greater than
92% on unseen data, rising up to 99% if we accept a time deviation of up to three time
steps. Although some issues remain unsolved within the scope of this work, the question
of whether deep learning methods can build the foundation of a gait analysis system based
on IMU sensors can be answered in the affirmative. Approaches to gain insights into the
inner prediction process, with the aim of minimizing the number of parameters and the
risk of mispredictions, have been presented and showed that optimization goes beyond
simply testing a set of hyper-parameters. In future studies, more subjects should be used
to have a broader test setup. In addition to this, a further study should be carried out
examining the influences of older people and different gait patterns. Another promising
attempt could be to use transfer learning, whereby the OPPORTUNITY dataset could be
used to pre-train the convolutional network. With more computing power, it could also
be possible to find a better hyperparameter set by using computationally costly methods,
such as grid search.

All in all the results are very promising, and more accurate synchronization and
labeling could lead to even more precise predictions.
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