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Abstract: In December 2016, the wastewater treatment plant of Baarle-Nassau, Netherlands, failed.
The failure was caused by the illegal disposal of high volumes of acidic waste into the sewer network.
Repairs cost between 80,000 and 100,000 EUR. A continuous monitoring system of a utility network
such as this one would help to determine the causes of such pollution and could mitigate or reduce
the impact of these kinds of events in the future. We have designed and tested a data fusion system
that transforms the time-series of sensor measurements into an array of source-localized discharge
events. The data fusion system performs this transformation as follows. First, the time-series of
sensor measurements are resampled and converted to sensor observations in a unified discrete time
domain. Second, sensor observations are mapped to pollutant detections that indicate the amount
of specific pollutants according to a priori knowledge. Third, pollutant detections are used for
inferring the propagation of the discharged pollutant downstream of the sewage network to account
for missing sensor observations. Fourth, pollutant detections and inferred sensor observations are
clustered to form tracks. Finally, tracks are processed and propagated upstream to form the final list
of probable events. A set of experiments was performed using a modified variant of the EPANET
Example Network 2. Results of our experiments show that the proposed system can narrow down the
source of pollution to seven or fewer nodes, depending on the number of sensors, while processing
approximately 100 sensor observations per second. Having considered the results, such a system
could provide meaningful information about pollution events in utility networks.

Keywords: continuous monitoring; information fusion and sensors; internet of things; multisensor
fusion

1. Introduction

In recent years, there has been a growing global concern regarding the security
of water distribution systems (WDSs) and wastewater networks (WWNs). WDSs and
WWNs are spatially diversified, pervasive, and linked to the basic needs of human society.
They are therefore considered as critical infrastructures by all national security agencies.

Events occurring in these systems that can have an impact on civilians include
the following:

• Accidental contamination of a WDS leading to contamination as a result of non-
potable water surrounding pipe breaks and leaks, or from the back-flow of polluted
water from customer facilities.

• Intentional contamination of WDSs by terrorists, i.e., the deliberate poisoning of a
given population downstream.

• Prohibited connections to storm water networks that could potentially cause pollution
of natural water bodies.

• Careless dumping of waste over WWNs, which could lead to explosions and cause
major catastrophes due to the constant presence of flammable gasses produced by
existing bacteria.
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• Discharge of toxic substances into a WWN, which may result in the release of illegal
and harmful concentrations of pollution into the environment.

1.1. Case Studies

There have already been cases of intentional contamination of WDSs by terrorist.
Water-related terrorist activities have been reported in ancient Rome, in the United States
during the Civil War, in Europe and Asia during World War II, and during the Kosovo
conflict of 1999 [1].

With regard to WWNs, the discharge of sulfuric acid (H2SO4) to sewers could originate
from applications, such as etching of semiconductors, accumulator acid or the produc-
tion of organic chemical substances [2]. Sodium hydroxide (NaOH) is widely used for
cleaning surfaces in metal processing in industrial applications [3], whereas discharge
of sodium sulfate (Na2SO4) can be caused by the regeneration of cation exchange resins,
which are used for softening water in industrial water treatment [4]. Illegal discharge of
such dangerous harsh industrial waste into sewage networks could be harmful for the
biological stage of waste water treatment plants (WWTPs), its personnel, sewer pipes,
and the general public. Once of the most recent cases of this occurred in December 2016,
when the WWTP of Baarle-Nassau, Netherlands, failed [5]. The operator noticed that
the biological treatment stage failed completely as the pH level in the aeration tank was
extremely acidic, with a pH level of nearly 1. This damage was caused by the improper
disposal of large volumes of wastewater containing high concentrations of sulfuric acid
into the sewage system.

1.2. Past Works

During the past decade, to mitigate the effects of potential polluting events in water
systems, the research and industrial communities have focused primarily on three lines of
research and development: (1) innovative sensor technologies for monitoring pollutant
levels; (2) network planning solutions aimed at providing optimal network coverage
constrained to a given capital, expenditure or event likelihood; and (3) source localization
methods for detecting the most likely injection point of a pollutant if such an event occurs.

In recent years, several project initiatives [6,7] and prototypes of sensor systems [8–22]
for wastewater monitoring have been proposed and studied. These include the design
of sensors (electrochemical sensors, optical sensors, mass spectrometry, ion spectrometry,
etc.) for manholes, main sewer lines, water bodies, and basins at the WWTP for estimating
the presence or concentration of specific pollutants at the point and time of measurement.
These systems are not capable of inferring the localization in the network where the
pollutant was introduced.

A second line of research involves the design of planning methods for the deployment
of a set of sensors in a given network [1,23–27] so that the arrangement of the deployed
sensors maximizes the likelihood of detecting any anomaly. Furthermore, some research
was done on the topic of portioning WDSs. Di Nardo et al. in [28] proposed a methodology
that combines an algorithm for the automated creation of district metered area (DMA)
boundaries with practical criteria for DMA design. Ciaponi et al. in [29] focused on proving
the benefits of partitioning by simulating a discharge of cyanide and investigating the
influence of district isolation on the security of a water supply system.

In this article, we focus on the third line of research: localization methods for detecting
the most likely injection point of a pollutant. We present and evaluate a data fusion
framework that aids the localization of the most likely source of pollution for sewer
networks. The data fusion framework processes measurements collected by point-detection
sensors in the sewage network (as input) and it estimates (as output) the likelihood that a
sewage network inlet was the source of the pollutant.

In 2008, Di Cristo and Leopardi proposed an iterative procedure for identifying the
source of pollution among a set of nodes that are monitored by sensors in a WDS [30].
Di Cristo and Leopardi identified the most likely source of the pollution by solving an
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optimization problem. The problem formulation minimizes the squared difference be-
tween the values measured by a sensor and the hydraulic model values for each node,
where the hydraulic conditions of the network allowed for pollution. However, Di Cristo
and Leop-ardi did not consider the localization of the pollution source outside the set of
monitored nodes.

In the same year, Preis and Ostfeld proposed a genetic algorithm (GA) for solving
a similar optimization problem [31]. However, the objective function was formulated
as the least-squares difference between the detected (at the monitoring stations) and
simulated contaminated values. The GA evaluated different permutations of four problem
variables: (1) the contaminant injection node (integer), (2) the injection start time (real),
(3) the injection duration (real), and (4) the injection mass rate (real). Two additional
studies considered the usage of a GA to solve similar objective functions with the same
four problem variables. In [32], the minimization of the absolute value of the difference
between the values measured by a sensor and the hydraulic model values was proposed.
A year later the minimization of the normalized square difference between simulated and
measured contaminant concentration values was depicted [8].

In 2009, Huang and McBean provided provided a heuristic solution to the problem
using a different approach [33]. Huang and McBean assumed that the insertion time
of a pollutant into the network was known then, the heuristic determined whether a
measurement corresponded with the insertion of the pollutant at the source by comparing
the arrival times of the measurement to a monitored node with the expected arrival time
window estimated by a hydraulic model. By considering a sequence of measurements
over all nodes in the network, Huang and McBean estimated the probability that such an
injection event was caused at a given node.

In 2010, Sanctis et al. presented the contamination status algorithm (CSA), which is
based on the particle backtracking algorithm (PBA) [34]. The PBA infers the mass con-
centration ratio that every output node in a network shall receive over time from any
of its upstream (input) nodes as a linear function. The CSA categorizes the state of the
input nodes as safe, unsafe, or unknown based on the concentration ratios over all feasible
input–output pairs of nodes in a network derived by the PBA.

All previously mentioned studies provide a methodology for localizing the source of
a pollutant injection in a WDS. To the best of our knowledge, the work presented by the
authors in this article is the first one inferring on the localization of a pollutant injection in
sewage WWN.

In addition to the anomaly localization problem in WDSs and WWNs, there is the
anomaly detection problem—the source of an anomaly cannot be found even if an ab-
normal time series of measurements occurs. Support vector machine (SVM) approaches
for anomaly detection are widely used [35–39], but these are not effective at detecting a
gradual anomalous change of sensor values in a time-series [35]. Numerous studies have
used artificial neural networks (ANNs) for anomaly detection [35,38,40–43].

In the present study, we propose an algorithmic solution that assumes the following:

• the network topology is known and static,
• the localization of the sensor devices is known and static,
• the number of sensor devices is limited and not all points of the sewage network

are monitored,
• the sensor devices have heterogeneous but complementary sensing capabilities, and
• the sensor devices sample water quality at a subset of network junctions at arbitrary

sampling times.

This article is organized as follows. Section 2 describes the data fusion strategy,
Section 3 presents the process and the outcomes of its evaluation, and Section 4 contains
the conclusion of our findings.



Sensors 2021, 21, 826 4 of 16

2. Methods

The sewage network is represented by a directed acyclic graph G(V, E). A node v ∈ V
represents a sewage network junction or spot, such as a building or sewage well. One or
more sensors could be deployed in a node. Each edge e ∈ E represents a pipe between two
nodes. The attribute oe of every edge e provides the current flow propagation time offset
(lag) it introduced between its two connecting nodes. The direction of an edge corresponds
to the direction of the wastewater flow. Additionally, it is assumed that (1) the graph
G is consistent, (2) each node is connected to the root by exactly one path, and (3) the
graph G contains a node representing the sink (drain). The sewage network’s sink is the
location where all the wastewater exits the network. Hereinafter, we use the terms “sink”
and “root” interchangeably. The graph G is a directed tree created under the assumptions
mentioned above. Section 3 shows two examples of such networks, where root nodes are
marked as “1”.

The sensors provide measurements of the wastewater properties in the form of obser-
vations O [44]:

O = 〈Q, v, t, y, ∆y〉, where (1)

Q is the entity, v is the spatial location of the measurement, t is the time-stamp of the
measurement, y is a digital representation of the measured value, and ∆y is the uncertainty.
Possible entity values for Q include electrical conductance, and pH and concentration of a
specific compound. The spatial location of an observation O corresponds to the node v in
G where the measurement was taken.

We define the vector of all observed entities as Q = 〈Q1, Q2, · · · , QN〉.
In the presented system a finite list of substances (compounds) to be tracked is repre-

sented by set C = {C1, C2, C3, · · · , CM}, where Ci ∈ C is a compound. Predefined functions
are used to convert measured values to amounts for each compound Ci. It should be noted
that C included not only pollutants, but also other compounds, primarily those that are
generally present in wastewater.

The data fusion algorithm consists of five steps: resampling, pollution quantifica-
tion, downstream propagation, tracking, and event generation (Figure 1). These steps
are repeated. The input data for resampling (first step of the algorithm) consists of
sensor measurements, the output data of the resampling is the input for the pollution
quantification, etc.

    Resampling
    

    Interpolating and aggregating
    measurements to form
    observations at regular

    intervals  

    Pollutant Quantification
    

    Calculating possible
    amounts of compounds  

    Downstream
propagation

    
    Predicting

    the compound flow  

    Tracking
    

    Clustering observations
    and tracking the compounds

  

    Event generation
    

    Reconstructing the
    discharge event  

Figure 1. The data fusion algorithm.

2.1. Resampling

Each sensor in the system is capable of sampling at a different time period. In the
resampling step, we convert sensor measurements into sensor observations in a unified
discrete-time domain by setting a common sampling time period for all sensors and
estimating the value of sensor measurements that were not initially collected. Therefore,
for each iteration of the data fusion algorithm, the values of y and ∆y are calculated.
This process utilizes linear interpolation when the sampling period T is greater than the
sensor measurement period or if there are missing measurements, and mean aggregation,
when the sampling period is less than the sensor measurement period.

Sensor observations resulting from this step are represented as indicated below.

O′ = 〈Q, v, k, y, ∆y〉, where (2)

k is the discrete-time step k = 0, 1, 2, · · · .
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Time steps are referenced to a fixed point in time t0 so that measurements taken
at t0 have k = 0. In the present study, we assume uniform time sampling. Therefore,
discrete-time step k represents tk = t0 + k · T.

2.2. Pollutant Quantification

The pollution quantification step converts sensor observations O′ = 〈Q, v, k, y, ∆y〉
into the identification and quantification of sought compounds.

The pollution quantification step yields a set of pollution detections D = 〈D1, D2, · · · ,
DM〉. Each pollution detection Di takes the form Di =

〈
Ci, v, k, ai, ∆ai〉, where ai is the

amount in liters of a substance Ci that is detected with uncertainty ∆ai by node v.
Pollution detections are created using the following method. For each sensor obser-

vation O′, every compound C ∈ C is considered independently. A potential discharge
amount is calculated using the mapping function f (C, y, ∆y)→ 〈C, a, ∆a〉, where y is the
measured value of entity Q, C is the compound, and a is the amount.

A threshold value σ is considered for filtering out sensor observations that are below
the noise level. In other words, only if the inferred pollution detection amount ai is
greater than the threshold σ, pollution detection is created and added to the detection set.
The algorithm used to calculate pollution detections is depicted in Algorithm 1.

Algorithm 1: Pollution quantification algorithm

Input: observations O′ in discrete time, O′ = 〈Q, v, k, y, ∆y〉
Output: detections D, D =

〈
ci, v, k, ai, δai〉

1 D = [];
2 for O′ in O′ do
3 for C in C do
4 D := map(O′, C);
5 if ai ≥ σ then
6 D := D + D;
7 end
8 end
9 end

The map(O′, O) function in line 4 of Algorithm 1 compound amount a from an input
sensor observation y in the following way. Let z = |y− b|, where y is a sensor observation
value and b is the baseline, which is defined as the sensor observation value when no
compound is present in the proximity of the sensor. In the presented study, we assume
linear mapping from z to the compound amount, a = αz. Parameter α specifies how a unit
amount of a compound can be quantified into pollutant volume units.

A new detection object is created only if amount a exceeds the detection threshold.
Thresholds are set per compound and are constant in time. These thresholds allow us to
filter out insignificant detected amounts caused by small fluctuations of measured values.

2.3. Downstream Propagation

The downstream propagation step infers additional pollution detections in vertices
of the graph where no sensors are installed. The majority of vertices are like this as
we assume the number of available sensors to be limited, due to either high capital or
operational costs.

The inferred time of arrival of a pollutant is generated from pollution detections D
using Algorithm 2.

A depth-first search algorithm is used to create new detections downstream from their
original nodes with maximum depth d, for each pollution detection D ∈ D.

New pollution detections are inferred by considering the propagation model of com-
pounds in the utility network between neighbor vertices. For this, we consider the following
three simplifications.
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1. The propagation time of a substance for an edge, oe, is known, constant in time, and
equal for every compound. In practice, this condition is satisfied only when the flow
characteristics do not change in time and the flow rate for each compound is the same.

2. The total amount of a discharged compound does not change as the substance flows
through the network. In practice, a substance may either react with other domestic
waste and change its intrinsic characteristics, or may adhere to the sewage pipe walls.

3. The sensors have infinite resolution and no noise. Therefore, tiny volumes of diluted
compounds in the network over time can be measured.

Algorithm 2: Detection propagation algorithm
Input: detections D, D = 〈C, v, k, a, ∆a〉
Output: detections D′, D′ = 〈C, v, k, a, ∆a〉

1 D′ = [];
2 for D in D do
3 N := depth-first-search(G(V, E), vD, d);
4 for n in N do
5 D′ = calculate(D, n);
6 if aD ≥ threshold then
7 D′ := D′ + D;
8 end
9 end

10 end

Inferred detections D′ with amounts less than a given threshold (representing the
process noise) are not considered. After detection propagation, pollution detections are
associated with almost every vertex in the graph.

2.4. Tracking

The tracking algorithm clusters pollution detections by the detected compound.
A cluster of pollution detections associated with a detected compound is named a track.
Therefore, pollution detections can not be associated with a track if there is a difference in
compounds between the detection and the track.

In this article, a Kalman filter is used for predicting the most probable location of a
detected compound within the network in a previous algorithm iteration (for time ti−1).
The tracking algorithm updates the most probable location for time ti using the pollution
detections calculated in the previous two steps.

The filter state (Equation (3)) represents the location in the network of a substance at a
given point in time. For each track, the most probable amount a of a compound, as well as
the most probable location d (as a function of time), are determined. Location is expressed
as a real number equal to the distance from the network sink.

x̂k|k =
[
a d

]T (3)

The precise location of a compound within a track can be calculated at any time based
on the fact that only one path connects each node to the sink and that the starting node of
the track is stored. This localization scheme places a compound on the graph edge located
at vector 〈u, v, α〉, where u, v are the source and the destination of the edge, respectively,
and α ∈ [0, 1) is a number describing the position relative to the edge.

The tracking algorithm (Algorithm 3) assigns pollution detections to tracks, creates new
tracks, and removes stale tracks. Once the location of compounds within tracks are predicted
by the Kalman filter, an assessment of whether the pollution detection can be supported is
performed by comparing the amounts ad, at and graph distance Dg between the detections and
the track representatives. If these values are less than their respective thresholds, the detection
is counted as supporting the track. If the detection cannot be associated with the existing
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tracks, a new track is created. Tracks with no new associations over several previous algorithm
iterations are labeled as outdated and are removed.

Algorithm 3: Tracking algorithm
Input: detections D and D’
Output: tracks T (groups of detections)

1 T := tracks from previous step;
2 for t in T do
3 update(Kalman);
4 end
5 for d in {D, D’} do
6 for t in T do
7 r = representative(t);
8 if cr = cd ∧ |ar − ad| < tha ∧ Dg(r, d) < thg then
9 t.support := t.support + d;

10 end
11 end
12 if d does not support any t then
13 T := T + init(d);
14 end
15 end
16 for t in T do
17 if t.support < thT then
18 T := T − t;
19 end
20 end

2.5. Event Generation

The final step, namely, event generation, only considers tracks that have a large number
of supporting (associated) detections. Events are created for each of these tracks, where an
event represents the discharge of a compound into a node of the graph.

Event generation is depicted in Algorithm 4.

Algorithm 4: Event generation algorithm
Input: tracks T (groups of detections)
Output: events E

1 T’ = filter(T);
2 for t in T do
3 e = traverse( t, G(V,E) );
4 E := E + e;
5 end
6 cluster(E);
7 sort(E);

Possible events are generated for each important track. Subsequently, equivalent
events from different paths are transformed to a single event with the confidence being
equal to the sum of the confidences of those events and the compound amount being equal
to the maximum of the amounts in a cluster. Finally, the events are sorted in descending
order of confidence.

2.6. Implementation

The data fusion algorithm was implemented as a Python package with a modular
layout. This enabled the user to replace any of the modules with ones that were more suited
to their specific use. This was especially important as the subsequent modules of the system
were then simplified compared to the real world. The sampling process relied on linear
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interpolation and mean aggregation. The amounts of the compounds were assumed to be
in a linear relationship with the values measured. The detection and clustering thresholds
and Kalman filter parameters were constant.

A client-server application was developed to store measurements and implement
data fusion. This application also contains a presentation layer that allows the results to
be presented using a web browser. Our application use a PostgreSQL database, Python
standard packages, and the Django web framework.

3. Results

The fusion algorithm was tested using simulated data. Several numerical experiments
were conducted to evaluate our system across multiple scenarios.

Two network topologies were considered. The first network G1(V, E) was a path
graph. It consisted of linearly connected nodes (Figure 2).

g: 0.90
o: 60

g: 0.90
o: 60

g: 0.90

o: 60

g: 0.90o: 60

g: 0.90o: 60

g: 0.90o: 60

g: 0.90o: 60

g: 0.90o: 60
g: 0.90
o: 60

g: 0.90
o: 60g: 0.90

o: 60
g: 0.90

o: 60
g: 0.90

o: 60

g: 0.90

o: 60

g: 0.90

o: 60

g: 
0.9

0
o: 

60

g:
 0

.9
0

o:
 6

0

g:
 0

.9
0

o:
 6

0

g: 0.90
o: 60

g: 0.90
o: 60

g: 0.90

o: 60

g: 0.90o: 60
g: 0.90o: 60

g: 0.90o: 60 g: 0.90o: 60 g: 0.90o: 60 g: 0.90
o: 60

g: 0.90
o: 60

g: 0.90
o: 60

g: 0.90
o: 60

g: 0.90
o: 60

g: 0.90

o: 60

g: 0.90

o: 60
g: 

0.9
0

o: 
60

g:
 0

.9
0

o:
 6

0

0

1

2

3

4

5

6
7

8910
11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26 27 28
29

30

31

32

33

34

35

Figure 2. The G1(V, E) network topology used in simulations.

The second network G2(V, E) (Figure 3) was a simplified version of the sample net-
work available in the EPANET software. The original network was a water distribution
network, so the edges were reversed to resemble a sewage network. The modification
included transforming the acyclic graph into a tree via a depth-first search starting at node
1. The edge gains (ge) and offsets (oe) were calculated using pipe lengths (le) from the
original EPANET network description (Equations (4) and (5)). The offsets were computed
by dividing the pipe length by a constant velocity v = 10 km

h .

oe =
le
v

(4)

The gains were calculated for each edge using a linear function. The minimal gain
gmin = 0.65 was chosen to make similar travel times for G1 and G2.

ge = [le −min(le)] ·
gmin − 1

max(le)−min(le)
+ 1 (5)
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Figure 3. The G2(V, E) network topology used in simulations (based on the EPANET sample network 2).

We simulated two types of sensors: (1) the microMole sensor system [6] and (2) liquid
chromatography with tandem mass-spectrometry (LC-MS-MS). The microMole sensor
system measures the pH and electrical conductivity (EC) of wastewater every second. It can
be mounted in main sewer pipes of no less than 250 mm in diameter. The microMole system
is not capable of identifying chemical compounds. LC-MS-MS is laboratory equipment
capable of detecting and quantifying chemical compounds. Within the H2020 SYSTEM
project [7], LC-MS-MS is used for analysis of wastewater samples collected at WWTPs.
It analyses the composition of wastewater every 10 min. As LC-MS-MS is located at the
WWTP, LC-MS-MS data are not sufficient for localizing the source of pollution in a sewage
network graph.

Our sensors measured one of three entities of different characteristics:

Q1 with a range of [0,+∞) and a neutral value of 1400, which refers to the electrolytic
conductivity,

Q2 with a range of [0, 14] and a neutral value of 7.65, which refers to the pH, and
Q3 with a range of [0, 1] and a neutral value of 0, which indicates the relative concentration

of a pollutant.

The substances (compounds) that were tracked are listed in Table 1. The illegal sub-
stance is sodium hydroxide, described in Section 1.1. Pipe cleaner is legal but has a similar
pH and electrolytic conductivity. The presence of those compounds in the proximity of the
sensors measuring Q1 and Q2 affected readings in the same way: a positive peak of Q1
(Q1+) and a negative peak of Q2 (Q2−). The measured values of Q3 were influenced only
by C2 in the form of a positive peak (Q3+).

Table 1. Substances tracked by the data fusion system.

Short Substance Legality pH EC [mS/cm]

C1 Pipe cleaner Legal 12 22–26
C2 Sodium hydroxide, NaOH Illegal 12 1

Thresholds for Algorithms 1, 2 and 4, and the Kalman filter parameters were constant
for all simulations. The specific values were derived using the expectation-maximization
algorithm on a representative sample of the measured values.
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The average results of four experiments are presented below. For each network
topology, the influence of sensor coverage, substance discharge amount, update period,
and downstream propagation depth was calculated. The parameter values are presented
in Table 2.

Table 2. Parameters used in numerical experiments.

Parameter Default Value Considered Values

Update period [s] 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Sensor coverage 0.5 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Discharge amount [l] 25 25, 50, 75, 100, 125, 150, 175, 200
Downstream propagation depth [nodes] 1 1, 2, 3

The updated period T was the constant time period used in resampling that deter-
mined how many iterations of the data fusion algorithm were performed.

The sensor coverage was represented by a number in the range [0, 1], which expressed
the number of sensors in the network relative to the number of nodes. For a given simula-
tion, Q1 and Q2 sensors were placed randomly among all nodes (except the sink) using
sampling without replacement. A single sensor measuring Q3 was always located in the
sink of the network.

3.1. Simulations

To create random scenarios for the data fusion module, a measurement generation
module was produced. The method for creating simplified sensor observations was
conceived based on the results of real-world experiments.

To create a simulation scenario, several parameters of the discharge event were re-
quired: the compound, node, amount, noise, and function inverse to the mapping function
described in Section 2.2. An additional edge e parameter known as gain ge was also re-
quired. The edge gain ge was a real number that satisfied ge ∈ [0, 1]. The amplitude of the
signal measured at the edge end divided by the amplitude of the signal measured at the
edge start yielded ge. The gain parameters revealed how the signal was attenuated while
the compounds traveled through the edges. Noise was introduced by adding random
values from a Gaussian distribution with a mean of 0 and a standard deviation equal to the
product of the measurement value and the noise parameter.

Real-world measurements often resemble exponential functions with bases in the
range from 0 to 1. In our experiments, a rectangle impulse function was used to simplify
reverse mapping of the amount of the compound. Generating a single measurement
series consisted of an initial calculation of the target area between the baseline reading
and the measured values, and then the generation of a suitable number of measurements.
A series corresponding to a single discharge event differed only in signal length (which was
calculated by dividing the target area by the product of the gains of all the edges from the
discharge node to the current node) and the initial signal amplitude (which was a property
of the entity).

During one discharge event, many measurement series were generated that corre-
sponded to each sensor in each node on the path from the discharge node to the sink.
Scenarios in which more than one discharge event occurred were not taken into account,
as this would have required knowledge of the behavior of compounds when they mix in
the sewage network.

3.2. Quality of Data Fusion

For each scenario, a set of events was generated by the system using many iterations of
the fusion algorithm depicted in Figure 1. Scenarios involved the simulated data of a single
discharge in a random node, a node where pollution was introduced into the network was
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selected using a uniform distribution. The detected events were labeled either true positive
or false positive. It should be noted that at most, one event was true positive.

Based on these labels, metrics were calculated for each simulation:

• The confidence coefficient, which was computed by dividing the confidence of the
true positive event by the average confidence of all events. This metric showed how
the confidences of true positive events compared to the confidences of false positive
events. For the system to be useful, this metric had to be greater than 1.

• The number of reported events. The ground truth was 1. The smaller this number
was, the more precise the localization. In studied scenarios, multiple events signified
multiple possible nodes of discharge or multiple compounds; therefore, this was a
valuable metric that demonstrated the precision of the system.

The results demonstrated that, as expected, the performance of the system depended
on the sensor coverage of the network. According to Figure 4, the number of generated
events decreased faster with an increase in the number of sensors in the network. In the
case of the simple “path” network (G1), the event count plot showed a median count of
approximately 20 for a coverage of 10%. Taking into account that the a priori knowledge
included two similar compounds, the system should reduce the source of the pollution to
approximately 10 nodes. A coverage of 20% provides a twofold decrease in the event count.
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(b) Net2 network
Figure 4. Event count by sensor coverage. The number of false positives rapidly decreased with an increase in sensor
coverage.

According to simulations performed on the more realistic “Net2” network (G2),
the event count should not exceed 15 for coverage of 10% or greater. Moreover, tak-
ing into account that two similar compounds were considered, an event should be reduced
to approximately seven nodes. Achieving such coverage in real networks may not be
possible, but this metric provides a valuable overview of what can be expected concerning
the performance of the system. It is important to note that to expect reconstructed events in
a single node, sensor coverage would have to reach 100%, which in practice is impossible to
achieve. This fact, however, does not mean that one cannot obtain accurate results from the
proposed system at low sensor coverage. This means that the lower this value is, the more
nodes must be considered as a potential source of pollution.

Figure 5 shows that if the position of the sensors and the discharge node are aligned
in a way that allows for any detection (confidence coefficient 6= 0), assuming that coverage
is greater than 10%, it can be expected that true events have greater confidence than false
events. Across all experiments with coverage of greater than 10%, true events had ≈30%
greater confidence than false events in the simple network and ≈50% greater confidence in
the more complicated network.
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(b) Net2 network
Figure 5. Confidence coefficient by sensor coverage. True positive events had confidence greater than the average confidence
across all events.

When it comes to correct identification of the source node, Figure 6 shows that we can
get very close to 100% identification chance with network coverage of 80%.
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(b) Net2 network
Figure 6. Percentages of identification of the right source node. Accuracy grows with an increase in sensor coverage.

Comparing these results with events counts shown in Figure 4, we can observe that
even though a high coverage is needed to achieve excellent accuracy, results achieved
at lower coverage would still be useful. When the number of sensors is low and the
sensors are located far from the pollution source, we can expect that the system would
generate several similar events in multiple nodes in proximity of the source. It is difficult
to distinguish the actual source in such a case. However, as already mentioned (Figure 5),
on average, our system assigns higher confidence values to actual pollution sources than
to neighbor nodes.

Di Cristo and Leopardi in 2008 achieved a location identification rate from 60.5% to
100% with 31% of nodes containing sensors [30], while our system needed 60% coverage to
get such high values. However, in the cited article, sensor locations were constant across
simulations and only one discharge node was considered. In contrast, we considered
random placement of sensors and the discharge node was chosen at random. Additionally,
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Di Cristo and Leopardi used hydraulic simulation by the EPANET simulator, which causes
the performance of the system to be dependent on simulation quality. Our aim was to
create a system which could continuously monitor the network and perform calculations
as new measurements appear.

3.3. System Performance

The performance of the system was also evaluated by analyzing the algorithm
execution time and the total number of observations that translated into the usage of
system memory.

Figure 7 illustrates that memory usage (observation count) was directly proportional
to the number of sensors. Analysis of the simulation run time charts (Figure 8) showed
that the time complexity of the used algorithms was linear relative to the number of
measurements that generated detections. As shown in Figure 8, the system can be expected
to process more than 100 sensor observations per second.
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(b) Net2 network
Figure 7. Detection count by sensor coverage. The number of observations increased linearly with coverage.
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(b) Net2 network
Figure 8. Calculation run-time by the number of detections. The time of execution was directly proportional to the total
number of observations.
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4. Conclusions

The proposed localization strategy allowed the source of the pollution to be pinpointed
to a small number of nodes in the networks. Our system correctly detected nearly 100% of
events when sensors were present in at least 10% of the network nodes. To achieve such
high location identification rates we needed 60% coverage. A large number of sensors
were not required to be placed in the network to achieve meaningful results. The algo-
rithms presented in this study can be expected to process at least 100 sensor observations
per second.

Further research will focus on model formation for acyclic graphs, not only trees.
This will allow us to consider all possible flow paths, therefore improving the quality of the
results of data fusion. An additional benefit of this future approach will be the ability to
use an unmodified network model in our system, thus removing the need for additional
decisions regarding the modification process. Moreover, we will implement of parallel
processing to increase the observation processing rate. The research will also include the
use of machine learning algorithms in the event generation stage [45] to achieve improved
quality compared to the algorithm based on threshold that is currently in use. Last, we plan
to consider the uncertainty of measurements by incorporating this into the confidence
coefficient of generated events.
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